Semantics Properties

AAM36TPJ, 2013/2014

Global Properties of a
Programming Language

universality: the language can express all computable
programs;

determinism: the set of possible outcomes from executing a
program on any particular inputs is a singleton;

strong normalization: all programs are guaranteed to
terminate on all inputs (i.e., it is not possible to express an
infinite loop);

static checkability: a class of program errors can be found
by static analysis without resorting to execution;

referential transparency: different occurrences of an
expression within the same context always have the same
meaning.

SOS Formal Definition

S=<CF,=, FC,IF, OF >

e ('F'is a set of configurations,

e = is a binary relation over configurations (=C CF x C'F),
e F'C is a set of final configurations (F'C C CF),

e [F: Program X Input — C'F' is an input function and

o OF : F'C' — Output is an output function.

Syntax

Expr ::= Num |
Bool |
NFExpr |
Expr ® Expr |
if Expr then Expr else Expr

where Num is a predefined set of integer numbers (a.k.a. Z) and Bool is a
predefined set of boolean values.

Convention: e,e’,--- € FExpr, n,n’ € Num, b,b' € Bool, v € Num U Bool
and t € { Number, Boolean}.

Type System

= n : Number

~ b : Boolean

= e : Number
= Ae : Number

e : Number F e : Number

e ®e : Number

—e: Boolean Fe':t Fe':t

— if e then e’ else e’ :t

BOS

n+— n
Y e — true e — v
—> :
if e then e else e’ +— v
e —n
ANe — —n e — false €’ —wv

if e then ¢’ else e’ — v
e—n e —n

ee —=wn+n’

SOS

AN ~~» —n

e ~ e

Ne ~~ Ne’

non ~n-+n

e ~ e

e® e ~s e e

6/ ~~ 6//

e e ~ee

SOS

if true then e’ else ¢e’ ~» ¢

if false then e’ else e’ ~~ e”

e ~ 6///

if e then € else e’ ~~ if €'’ then e’ else e’

6/ S 6///

/77

if e then e’ else e’ ~~ if e then €’ else e’

/! 11
€ ~~c

if e then e’ else e’ ~~ if e then €’ else €'

Normal Form

e Stated formally, if (A,—) is an abstract rewriting
system, some xeA is in normal form if no yeA exists

such that x—v.

* Anirreducible configuration is also called a normal
form.

 Each normal form is either a final configuration or a
stuck state.

Example

For example, using the term rewriting system with a
single rule f(x,y)—y, the term 1((4,2),1(3,1)) can be
rewritten as follows:

f(f(4,2),1(3,1)) = f(3,1) = 1

Since no rule applies to the last term, 1, it cannot be
rewritten any further, and hence is a normal form of
the term f1(f(4,2),1(3,1)) with respect to this term
rewriting system.

Stuck States

e Stuck States have no output according to output
function.

o Stuck states include Cycling, Intinite Semantics,
more than one outcome.

Example

One rule system:

a(x,y)—=g(y.x)

Confluence

A relation R C A x A is confluent ift
Val, ao,03 < A:a1R*as N a1R*as = day € A: asR*as N asR*ay.

i
% %
a ds

R¥-. R
a4 a
a4

Confluence

* A contluent transition relation guarantees a unique
final configuration. Why*

* |Indeed, it guarantees a unigue irreducible
configuration (normal form). Why?

* Confluence does not guarantee a single outcome?
Why?

onfl
ue
NC
o

Q\\)“a\ ’
Q\\)s\\ l\ ,\\’Q\\)‘S\q))
Q\\)s\\ “S\%

y
e
A\ ‘ X
\ N
N N

\\)S\
\\ﬁ-\fb 2

(0\)\&\‘“0\ e

\)\x@ e

¢ \\)
‘ /\)
\

AN

Strongly Normalising
Relation

* A strongly normalising (or terminating) transition
relation produces normal form via every path. A
weakly normalising transition relation produces
normal form via at least one path.

 Well-typed programs don't get stuck.

Example

One rule system:

g(X,y) =X
Two rule system:
g(X,y) =X

a(X,X)—=g(3,X)

Semantics Equivalence

Ve € Expr:er—n < e ~" n.

lType Preservation

Ve, € Expr: (Fe:t)ANe~¢€e = (Fe' :t).

Progress

Ve € Expr: (Fe:t) = e € (NumU Bool)V 3e' € Expr: e~ €.

Termination

 Can be proved many ways.
* \We show the proof based on the Energy function.

e First we define Energy function for basic
expressions.

Termination

energy(v)::
energy(Ae) = 1+ energy(e),
energy(e ® e') = _——energy(e)-—energyﬁi),
energy(if e then e’ else €' = 1+ energy(e) + energy(e’)
/11

),

+ energy(e

Termination

Ve € Expr: energy(e) € N and

Ve,e' € Expr: e ~ € = energy(e) > energy(e’).

Determinism

* A programming language is deterministic if there is
exactly one possible outcome for any pair of
program and Inputs.

Vo,v" € (Num U Bool): Ve € Expr: e ~*vAe~"v =v=1"

