
Motivation
A4M36TPJ, 2015/2016

What is….

• Q: What is a programming language?

• A: A programming language is a formal
constructed language designed to communicate
instructions to a machine, particularly a computer.
Programming languages can be used to create
programs to control the behavior of a machine or to
express algorithms. [wikipedia]

History

Computational Models
• 1936 - A. Church invented Lambda Calculus

• 1936 - A. Turing invented Turing Machine

History…
• First programming languages 50s to 60s:

• 1951 - Regional Assembly Language

• 1952 - Autocode

• 1954 - IPL (forerunner to LISP)

• 1955 - FLOW-MATIC (led to COBOL)

• 1957 - FORTRAN (First compiler)

• 1957 - COMTRAN (precursor to COBOL)

• 1958 - LISP

• 1958 - ALGOL 58

• 1959 - FACT (forerunner to COBOL)

• 1959 - COBOL

• 1959 - RPG

• 1962 - APL

• 1962 - Simula

• 1962 - SNOBOL

• 1963 - CPL (forerunner to C)

• 1964 - BASIC

• 1964 - PL/I

• 1966 - JOSS

• 1967 - BCPL (forerunner to C)

Fortran
PROGRAM Compute_Factorial
IMPLICIT NONE

INTERFACE
 FUNCTION Factorial(n)
 INTEGER :: Factorial
 INTEGER, INTENT(IN) :: n
 END FUNCTION Factorial
END INTERFACE

! Declare local variables
INTEGER :: n

! Prompt user for radius of circle
write(*, '(A)', ADVANCE = "NO") "Enter n for computing n!: "
read(*,*) n

! Write out value of factorial using function call
write(*,100) n, "factorial is ", Factorial(n)
100 format (I3, 2x, A, 2x, I12)

END PROGRAM Compute_Factorial

RECURSIVE FUNCTION Factorial(n) RESULT(Fact)

IMPLICIT NONE
INTEGER :: Fact
INTEGER, INTENT(IN) :: n

IF (n == 0) THEN
 Fact = 1
ELSE
 Fact = n * Factorial(n-1)
END IF

END FUNCTION Factorial

LISP

(defun factorial (N)
 "Compute the factorial of N."
 (if (= N 1)
 1
 (* N (factorial (- N 1)))))

BASIC
10 PRINT "Enter a number to see the factorial"
20 INPUT N
30 LET F = 1
40 FOR L = 1 to N
50 LET F = F * L
60 NEXT L
70 PRINT N; "! = "; F
80 PRINT "Would you like to see another
factorial? 1=YES ANY(other)=NO"
90 INPUT RESPONSE
100 IF RESPONSE = 1 THEN GOTO 10
110 PRINT "Thanks! Goodbye."
120 END

History…
• The period from the late 1960s to the late 1970s brought a major flowering of

programming languages:

• Simula, invented in the late 1960s by Nygaard and Dahl as a superset of Algol
60, was the first language designed to support object-oriented
programming.

• C, an early systems programming language, was developed by Dennis
Ritchie and Ken Thompson at Bell Labs between 1969 and 1973.

• Smalltalk (mid-1970s) provided a complete ground-up design of an object-
oriented language.

• Prolog, designed in 1972 by Colmerauer, Roussel, and Kowalski, was the first
logic programming language.

• ML built a polymorphic type system (invented by Robin Milner in 1973) on top
of Lisp, pioneering statically typed functional programming languages.

Prolog
fact1(0,Result) :-

 Result is 1.

fact1(N,Result) :-

 N > 0,

 N1 is N-1,

 fact1(N1,Result1),

 Result is Result1*N.

ML

fun fac (0 : int) : int = 1

 | fac (n : int) : int = n * fac (n - 1)

C using loop
#include <stdio.h>

int main()

{

 int c, n, fact = 1;

 printf("Enter a number to calculate it's factorial\n");

 scanf("%d", &n);

 for (c = 1; c <= n; c++)

 fact = fact * c;

 printf("Factorial of %d = %d\n", n, fact);

 return 0;

}

C using recursion
#include<stdio.h>

long factorial(int);

int main()

{

 int n;

 long f;

 printf("Enter an integer to
find factorial\n");

 scanf("%d", &n);

 f = factorial(n);

 printf("%d! = %ld\n", n, f);

 return 0;

}

long factorial(int n)

{

 if (n == 0)

 return 1;

 else

 return(n * factorial(n-1));

}

History …

• 1980 - C++ (as C with
classes, renamed in 1983)

• 1983 - Ada

• 1984 - Common Lisp

• 1984 - MATLAB

• 1985 - Eiffel

• 1986 - Objective-C

• 1986 - Erlang

• 1987 - Perl

• 1988 - Tcl

• 1988 - Mathematica

• 1989 - FL (Backus)

The 1980s were years of relative consolidation in imperative languages. Rather than
inventing new paradigms, all of these movements elaborated upon the ideas invented in
the previous decade. C++ combined object-oriented and systems programming.

Ada
function Factorial(N : Positive) return Positive is

 Result : Positive := 1;

begin

 if N > 1 then

 Result := N * Factorial(N - 1);

 end if;

 return Result;

end Factorial;

Erlang
 -module(math).

 -export([factorial/1]).

 factorial(0) ->

 1;

 factorial(X) when X > 0 ->

 X * factorial(X-1).

Mathematica

fact[x_] := x!

fact[10]

History…

• 1990 - Haskell

• 1991 - Python

• 1991 - Visual Basic

• 1993 - Ruby

• 1993 - Lua

• 1994 - CLOS (part of ANSI Common Lisp)

• 1995 - Ada 95

• 1995 - Java

• 1995 - Delphi (Object Pascal)

• 1995 - JavaScript

• 1995 - PHP

• 1996 - WebDNA

• 1997 - Rebol

• 1999 - D

The rapid growth of the Internet in the mid-1990s was the next major historic event in programming
languages. By opening up a radically new platform for computer systems, the Internet created an
opportunity for new languages to be adopted. In particular, the JavaScript programming language
rose to popularity because of its early integration with the Netscape Navigator web browser. Various
other scripting languages achieved widespread use in developing customised applications for web
servers such as PHP.

Haskell

factorial n = if n < 2 then 1 else n *
factorial (n-1)

factorial 0 = 1  
factorial n = n * factorial (n - 1)

Python

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n-1)

JavaScript
function rFact(num)

{

 if (num === 0)

 { return 1; }

 else

 { return num * rFact(num - 1); }

}

Statistics

• Q: Which is the most popular programming
language?

• A: See http://langpop.com/ or http://githut.info

http://langpop.com/
http://githut.info

Programming paradigms
• Procedural languages (Imperative) - BASIC, C, ALGOL,

COBOL, …

• Object-Oriented languages - Smalltalk, C++, Java, C#, …

• Declarative languages

• Functional languages

• Logic languages

• Multi-Paradigm languages - C#, Scala

Elements

Elements
• All programming languages have some primitive

building blocks for the description of data and the
processes or transformations applied to them
(like the addition of two numbers or the selection of
an item from a collection).

• These primitives are defined by syntactic and
semantic rules which describe their structure and
meaning respectively.

Syntax
• The syntax of a language describes the possible combinations

of symbols that form a syntactically correct program.

• LISP syntax (RegEx and BNF):

expression ::= atom | list

atom ::= number | symbol

number ::= [+-]?['0'-'9']+

symbol ::= ['A'-'Z''a'-'z'].*

list ::= '(' expression* ')'

"Python add5 parse". Via Wikipedia - http://en.wikipedia.org/wiki/File:Python_add5_parse.svg

http://en.wikipedia.org/wiki/File:Python_add5_parse.svg

Semantics
• The term Semantics refers to the meaning of languages, as opposed to

their form (syntax).

• Static semantics

• Type system

• Argument checking, Local variable checking (duplicity etc…)

• Dynamic semantics

• Operational semantics

• Denotational semantics

• Axiomatic semantics

