
5

HTN Planning
  Motivation

»  For some planning problems, we may already have ideas for how to
look for solutions

  Example: travel to a destination that's far away:
»  Brute-force search:
•  Many ways to combine vehicles and routes

»  Experienced human: small number of “recipes”
•  e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

»  HTN planners use such recipes to generate the search space
  Ingredients

»  states, tasks, operators, methods, planning algorithm

6

States and Tasks
  State: description of the current situation

»  I’m at home, I have €20, there’s a park 8 km away

  Task: description of an activity to perform
»  Travel to the park

  Two kinds of tasks
»  Primitive task: a task that corresponds to a basic action
»  Compound task: a task that is composed of other simpler tasks

home"

park"

7

Operators
  Operators: parameterized descriptions of what the basic actions do

»  walk from location x to location y
•  Precond: agent is at x
•  Effects: agent is at y

»  call taxi to location x
•  Precond: (none)
•  Effects: taxi is at x

»  ride taxi from location x to location y
•  Precond: agent and taxi are at x
•  Effects: agent and taxi at y, agent owes 1.50 + ½ distance(x,y)

»  pay driver
•  Precond: agent owes amount of money r, agent has money m ≥ r
•  Effects: agent owes nothing, agent has money m – r

  Actions: operators with arguments

8

Methods
  Method: parameterized description of a possible way to perform a compound

task by performing a collection of subtasks
  There may be more than one method for the same task

»  travel by foot from x to y
•  Task: travel from x to y
•  Precond: agent is at x, distance to y is ≤ 4 km
•  Subtasks: walk from x to y

»  travel by taxi from x to y
•  Task: travel from x to y
•  Precond: agent is at x, agent has money ≥ 1.5 + ½ distance(x,y)
•  Subtasks: call taxi to x,

 ride taxi from x to y,
 pay driver

9

Travel by taxi

Initial
state

call taxi to home ride taxi to park

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

 I’m at home
 I have €20
 home to park is 8 km
 Taxi is at home

 I’m at home
 I have €20
 home to park is 8 km

 I’m at the park
 I have €20
 home to park is 8 km
 I owe €5.50
 Taxi is at the park

 I’m at the park
 I have €14.50
 home to park is 8 km
 I owe nothing
 Taxi is at the park

Final
state

 s1 s2 s3

 s0

Travel by foot
Precond:
ü I’m at home
× home to park ≤ 4 km

pay driver

Precond:
ü  I’m at home
ü  I have ≥ €5.50

Backtrack

Simple Travel-Planning Problem
  Left-to-right backtracking search (SHOP)

home"

park"

travel from home to park

14

c

a b

Propositions Versus State Variables

  Classical representation:
»  State: set of propositions
»  Actions add/delete them

  PDDL is based on this
  Reason is largely historical

»  AI planning evolved out
of AI theorem proving

{ontable(a), on(c,a),
 clear(c), ontable(b),
 clear(b), handempty}

{loc(a)=table, clear(a)=0, loc(c)=a,
 clear(c)=1, loc(b)=table,
 clear(b)=1, holding=nothing}

unstack(x,y)
Precond: loc(x) = y, y ≠ table,
 clear(x) = 1,
 holding = nothing
Effects: loc(x) = hand, clear(x) = 0,
 clear(y) = 1, holding = x

unstack(x,y)
Precond: on(x,y), clear(x),
 handempty
Effects: ¬on(x,y), ¬clear(x),
 clear(y), holding(x),
 ¬handempty

c
a b

unstack(c,a)

  State-variable representation:
»  State: variable bindings
»  Actions change the values

  Same expressive power
  More compatible with

conventional computer
programming

15

Pyhop
  A simple HTN planner written in Python

»  Works in both Python 2.7 and 3.2

  Planning algorithm is like the one in SHOP
  Main differences:

»  HTN operators and methods are ordinary Python functions
»  The current state is a Python object that contains variable bindings

•  Operators and methods refer to states explicitly
•  To say c is on a, write s.loc['c'] = 'a' where s is the current state

  Easy to implement and understand
»  Less than 150 lines of code

  Open-source software, Apache license
»  http://bitbucket.org/dananau/pyhop

s

c
a b

16

travel by foot from x to y
Task: travel from x to y
Precond: agent is at x, distance to y is ≤ 4 km
Subtasks: walk from x to y

def travel_by_foot(state,a,x,y):
 if state.dist[x][y] <= 4:
 return [('walk',a,x,y)]
 return False

travel by taxi from x to y
Task: travel from x to y
Precond: agent is at x, agent has money ≥ 1.5 + ½ distance(x,y)
Subtasks: call taxi to x, ride taxi from x to y, pay driver

def travel_by_taxi(state,a,x,y):
 if state.cash[a] >= 1.5 + 0.5 * state.dist[x][y]:
 return [('call_taxi',a,x),
 ('ride_taxi',a,x,y),
 ('pay_driver',a,x,y)]

 return False

declare_methods('travel',travel_by_foot,travel_by_taxi)

Travel-Planning Methods

home"

park"

17

walk from x to y
Precond: agent is at location x
Effects: agent is at location y

def walk(state,a,x,y):
 if state.loc[a] == x:
 state.loc[a] = y
 return state
 else: return False

call taxi to location x
Precond: (none)
Effects: taxi is at location x

def call_taxi(state,a,x):
 state.loc['taxi'] = x
 return state

Travel-Planning Operators (1)

home"

park"

18

ride taxi from x to y
Precond: agent and taxi are at x
Effects: agent and taxi are at y, agent owes 1.5 + ½ distance(x,y)

def ride_taxi(state,a,x,y):
 if state.loc['taxi']==x and state.loc[a]==x:
 state.loc['taxi'] = y
 state.loc[a] = y
 state.owe[a] = 1.5 + 0.5*state.dist[x][y]
 return state
 else: return False

pay driver
Precond: agent owes money, and has at least as much as what’s owed
Effects: agent owes nothing, agent’s money reduced by what was owed

def pay_driver(state,a):
 if state.cash[a] >= state.owe[a]:
 state.cash[a] = state.cash[a] – state.owe[a]
 state.owe[a] = 0
 return state
 else: return False

declare_operators(walk, call_taxi, ride_taxi, pay_driver)

Travel-Planning Operators (2)

home"

park"

