
 PDDL and Planners
PAH (Planning and Games)
Michal Štolba
michal.stolba@agents.fel.cvut.
cz



STRIPS (Stanford Research 
Institute Problem Solver)
•1966-1972 – Shakey the Robot
•<P,O,I,G>

▫P – finite set of propositional (true/false) 
variables

▫O – finite set of operators: 
▫pre: {p∊P s.t. p=true}
▫add: {p∊P s.t. p←true}
▫del: {p∊P s.t. p← false}
▫I – initial state (p∊P s.t. p=true, other false)
▫G – goal state (p∊P s.t. p=true; p∊P s.t. p=false)

•Set representation
▫True/false determined by the set membership

•Plan existence PSPACE-Complete



STRIPS - Example

•P – propositions:
 truck-at-A, truck-at-B
 plane-at-B, plane-at-C
 package-at-A, package-at-B, package-at-C, 

package-in-t, package-in-a
 2^9 = 512 states

•O – operators:
▫ load-p-a-B
▫ pre: {plane-at-B, package-at-B}
▫ add: {package-in-a}; del: {package-at-B}



Multi-valued Planning Task (MPT or 
SAS+)
•1995 (SAS+), 2005 (MPT – Fast Downward)
•<V,i,g,O>

▫V – finite set of state variables v with 
associated finite domain Dv

▫partial state over V is a function s over some 
subset of V s.t. s(v)∊Dv whenever s(v) is defined

▫state is a partial state s.t. s is defined for all v∊V
▫i – state over V called initial state
▫g – partial state over V called goal state



Multi-valued Planning Task 
(continued)
•<V,i,g,O>

▫O – finite set of operators <pre,eff>
▫pre: partial assignment (state) over V
▫eff: <cond, v, d>
▫cond: (possibly empty) partial assignment over V
▫v ∊ V – affected variable
▫d ∊ Dv – new value for v

•Plan existence PSPACE-complete
•Automatic conversion from STRIPS



MPT - Example

•V – variables and their domains:
 truck-at ∊ {A,B} 
 plane-at ∊ {B,C}
 package-at ∊ {A,B,C,t,a}
▫2x2x5 = 20 states

•O – operators:
▫load-p-a-B
▫pre: plane-at=B, package-at=B
▫eff: <{}, package-at, a>



PDDL (Planning Domain Definition Language)

•General language to describe planning 
problems
▫Domain – definition of types, predicates, 

operators
▫Problem – definition of objects, initial state and 

goal
▫Lisp-like syntax
▫Prefix notation (+ 1 2)
▫A lot of brackets
▫Several versions (1.2, 2.1, 3.1)



Planners (1)

•FF (Fast Forward, 2001) 
▫Forward-chaining heuristic state space 

search
▫Enforced hill-climbing / Breadth-first search
▫FF heuristic

•FD-fdss (stone soup)
▫Fast Downward (2006)
▫MPT, several search strategies, several heuristics
▫Automatic configuration



Planners (2)

•FD-ms 
▫Fast Downward
▫A* + Merge&Shring abstraction heuristic

•FD-lmcut
▫Fast Downward
▫A* + LM-Cut heuristic



Planners (3)

•Lama 2011
▫Built on FD
▫Multi-heuristic search (FF, Landmarks)
▫Weighted A*

•PROBE
▫GBFS + h_add
▫From each state a greedy probes with highly 

informed heuristics



Planners (4)

•SymBA*
▫ Bidirectional A*
▫ Perimeter-based abstraction heuristic

•Mercury
▫ GBFS
▫ Red-black relaxation heuristic



Planners (5)

•yahsp3
▫ Heuristic search with lookahead using 
relaxed plans



PDDL Excercise

•Formalize:

•Run planners

•Extend


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

