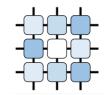


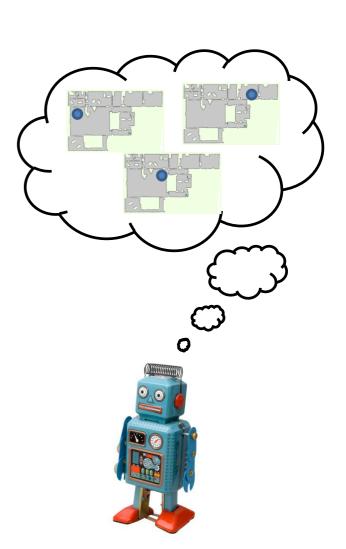
Partially Observable Markov Decision Processes

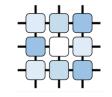
PAH 2013/2014



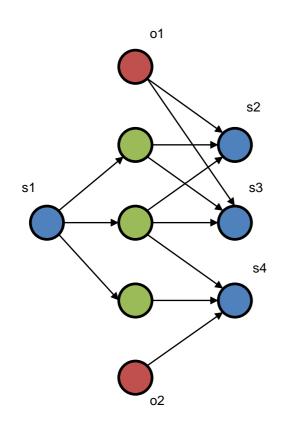
Partial Observability

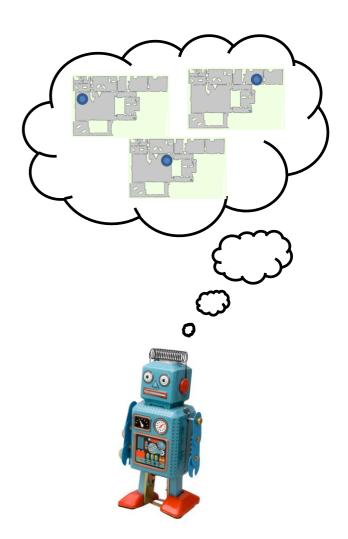
- the world is not perfect
 - actions take some time to execute
 - actions may fail or yield unexpected results
 - the environment may change due to other agents
 - the agent does not have knowledge about whole situation
 - sensors are not precise





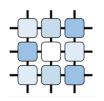
Partial Observability



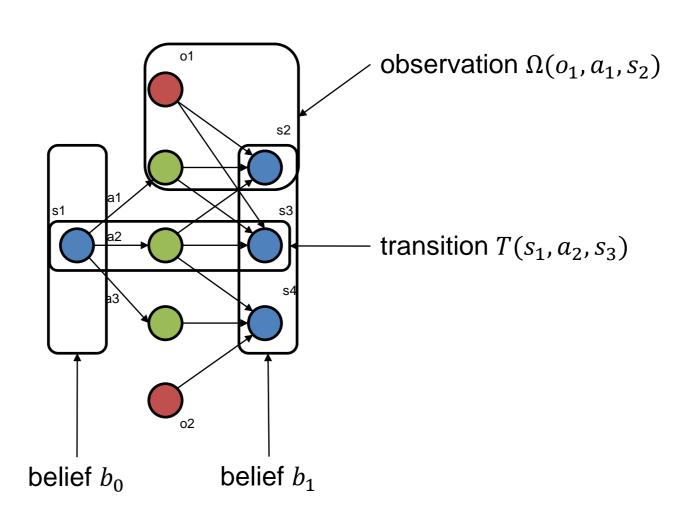


Partially Observable MDPs

- main formal model for scenarios with uncertain observations
- $\langle S, A, D, O, b_0, T, \Omega, R, \gamma \rangle$
 - states finite set of states of the world
 - actions finite set of actions the agent can perform
 - time steps
 - observations finite set of possible observations
 - initial belief function $b_0: S \to [0,1]$
 - transition function $T: S \times A \times S \rightarrow [0,1]$
 - observation probability $\Omega: O \times S \times A \rightarrow [0,1]$
 - reward function $R: S \times A \rightarrow \mathbb{R}$
 - discount factor $0 \le \gamma < 1$

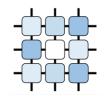


Partially Observable MDPs - probabilities



Partially Observable MDPs - beliefs

- beliefs represent a probability distribution over states
- beliefs are uniquely identified by the history
 - b_1 probability distribution over states after playing one action
 - $b_t \leftarrow \Pr(s_t | b_0, a_0, o_1, \dots, o_{t-1}, a_{t-1}, o_t)$
- we can exploit dynamic programming
 - $b_t(s') = \mu \Omega(o, s', a) \cdot \sum_{s \in S} T(s, a, s') b_{t-1}(s)$
 - where
 - *o* is the last observation
 - a is the last action
 - μ is the normalizing constant



Partially Observable MDPs - values

- beliefs determine new values
 - $V(b) = \max_{a \in A} [R(b, a) + \gamma \sum_{b' \in B} T(b, a, b') V(b')]$
- what we have done ...
 - we have transformed a POMDP to a continuous state MDP
 - belief state is a simplex
 - |S| 1 dimensions

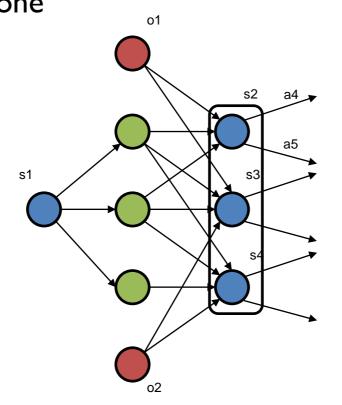
- in theory we can use all the algorithms for MDPs (value iteration)
 - but B is infinite



Solving Continuous State MDPs

in value iteration we take max of actions

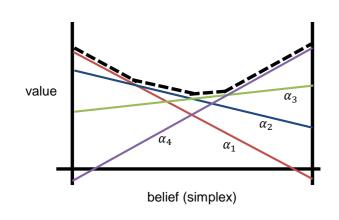
• the belief space can be partitioned depending on the fact, which action is the best one

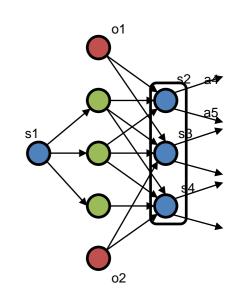


s2	s3	s4	V(a4)	V(a5)
0.2	0.1	0.7	3	2
0.7	0.1	0.2	1	7

Solving Continuous State MDPs

- values can be compactly represented as a finite set of α vectors; $V = \{\alpha_0, \dots, \alpha_m\}$
 - α vector is an |S| dimensional hyper-plane
 - a linear function, values after selecting some fixed actions
 - defines the value function over a bounded region of the belief
 - $V(b) = \max_{\alpha \in V} \sum_{s \in S} \alpha(s)b(s)$
 - *V* is a piece-wise linear convex function

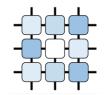




belief (simplex)

Solving Continuous State MDPs

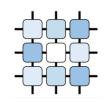
- Q: Can we modify value iteration algorithm to work with α functions?
- exact value iteration for POMDPs
 - $V^t(b) = \max_{a \in A} \left[\sum_{s \in S} R(s, a) b(s) + \right]$
 - + $\gamma \sum_{o \in O} \max_{\alpha' \in V^{t-1}} \sum_{s \in S} \sum_{s' \in S} T(s, a, s') \Omega(o, s', a) \alpha'(s') b(s)$
- how to implement this?
 - $\alpha^{a,*}(s) = R(s,a)$
 - $\alpha^{a,o}(s) = \gamma \sum_{s' \in S} T(s, a, s') \Omega(o, s', a) \alpha'(s')$
 - $V^a = \alpha^{a,*} \oplus \alpha^{a,o_1} \oplus \alpha^{a,o_2} \oplus \cdots$
 - $V = \bigcup_{a \in A} V^a$



Exact Value Iteration for POMDPs

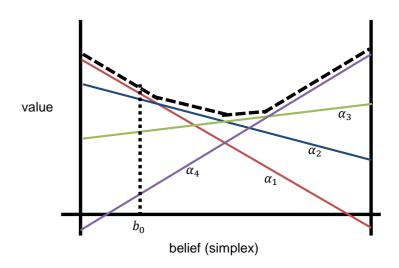
- exact baseline algorithm, however has several disadvantages
- complexity
 - exponential in size of observations |O|
 - base of the exponent is |V|
 - it is important to remove dominated alpha-vectors
 - useful only for very small domains

- can we do better?
- only a fraction of all belief state is actually achievable in POMDP
 - we can sample the belief state



Point Based Value Iteration for POMDPs

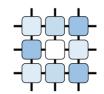
- instead of the complete belief space we use a limited set
 - $B = \{b_0, ..., b_q\}$
- the algorithm keeps only a single alpha vector for one belief point
- anytime algorithm altering 2 main steps
 - belief point value update
 - belief point set expansion





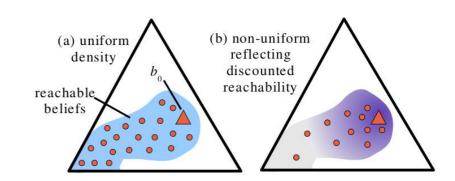
Point Based Value Iteration for POMDPs

- belief value update
 - $V_b^a = \alpha^{a,*} + \sum_{o \in O} \arg \max_{\alpha \in \alpha_i^{a,o}} (\alpha.b)$
 - $V \leftarrow \arg\max_{V_b^a, \forall a \in A} V_b^a$. $b \forall b \in B$
- removes the exponential complexity
- VI state ends after h iterations
 - finite horizon / the error is smaller than ε
- belief point set expansion
 - sampling new beliefs from existing beliefs
 - trying to uniformly cover reachable belief space



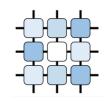
Point Based Value Iteration for POMDPs

- further improvements
- exploiting heuristics
 - for setting initial values
 - selecting belief points



- current scalability
 - up to 10^5 states of POMDP
- further reading
 - Shani, Pineau, Kaplow: A survey of point-based POMDP solvers (2012)

Beyond (PO)MDPs



- many other models
- specific variants of MDPs / generalization
 - AND/OR graphs
 - influence diagrams
 - dynamic Bayesian networks
- multiple agents
 - decentralized DEC-POMDPs
 - theoretical framework for multi-agent planning
 - can be solved by transforming to POMDP (2013)
 - partially observable stochastic games (POSG)
 - theoretical framework for interaction of rational agents