Markov Decision Processes
and
Probabilistic Planning

PAH 2013/2014

Markov Decision Processes

o« main formal model

« (SA,D,T,R)
. states — finite set of states of the world
« actions — finite set of actions the agent can perform
« horizon — finite/infinite set of time steps (1,2, ...)

o transition function
e T:SXAXSXD -]01]

o reward function
e R:SXAXSXD->R

MDPs - policy %

« history-dependent policy
e T-HXAXD - [0,1]

« for simple cases we do not need history and randomization
o Markovian assumption
o finite-horizon MDPs
o infinite-horizon MDPs with reward discount factor 0 <y <1
« stochastic shortest path

e (... and some others)

« from now on, policy is an assignment of an action in each state and
time

MDPs - policy (2) %

« Markov policy
e :SXD oA

« Wwhen the policy is same in every time-step — stationary policy

. (s, t) =n(s t')Vt,t' eD;t #t’

. otherwise — nonstationary policy

. Q:for which problems is the stationary policy sufficient?

MDPs - value of a policy %

« We can express an expected reward for every state and time-step
when specific policy is followed

. Vnk(S) = [E[th;o Vt ' Rt(St: at,St+1) [So = s, a¢ = T[(St)]

 for large (infinite) k we can approximate the value by dynamic
programming

e Vo(s)=0
e V() =Xic0T (s, a,8") [RM(s,a,s") + yVF1(s)] a = 1(s)

MDPs - towards finding optimal policy %

« we can exploit the concept of dynamic programming to find an
optimal policy

« basic algorithm for solving MDPs based on Bellman’s equation

o value iteration
e V9(s)=0 VvseS
. VE(s) = mgj(ZS,EST"(S, a,s") [Rk(s, a,s') +)/Vk_l(S’)]
a \

!

J

. Q-function (Q(s,a))

o for k — oo values converges to optimum V* — V*

MDPs - extracting policy %

« value iteration calculates only values

« the optimal policy can be extracted by using a greedy approach

. mh(s) = arg mEaj(ZS,ES Tk(s,a,s") [R*(s,a,s") + yV*(s"]
a

o alternative algorithm — policy iteration
o starts with an arbitrary policy

« updates using the same equations

MDPs - value iteration — convergence %

« value iteration converges
o for finite-horizon MDPs: |D| steps

o for infinite-horizon: asymptotically
« Wwe can measure residual r and stop if it is small enough (< ¢€)

o r=max|Vi1(s) — Vi(s)
SES

« convergence depends on Y, ...

MDPs - value iteration — improvements %

« value iteration is very simple
 updates all states during each iteration
 curse of dimensionality (huge state space)

« asynchronousVI
« select a single state to be updated in each iteration separately
« each state must be updated infinitely often to guarantee convergence

e lower memory requirements

. Q:Can we use some heuristics to improve the convergence?

MDPs - Heuristics %

« initial values can be assigned better

e We can use a heuristic function instead of 0

o Q:Can you think of any admissible heuristic function?
. e.g.,remember FFReplan/Robust FF?

« We can use a single run of a planner on the determinized version
 but, values are still updated regardless on the current values

« consider a typical probabilistic planning problem

o finite-horizon MDP with some goal states

MDPs - Real-Time Dynamic Programming %

 updates the values only on the path from the starting state to the
goal
 during one iteration updates one rollout/trial:
o start with s = s,
« evaluate all actions using Bellman’s Q-functions Q(s, a)
« select action that maximizes current value:argmax ,c40Q(s,a)
e setV(s) « Q(s,a)
o get resulting state s’
o if s’ is not goal, then s « s’ and go to step 2

« can be further improved with labeling (LRTDP) to identify solved
states

MDPs - Find and Revise %

« we can further combine selective updates with heuristic search
o starts with admissible V' (s) = V*(s) for all states

o select next state s’ that is:
o reachable from sy using current greedy policy 7y, and

o residual r(s') > ¢
 update s’

e repeat until such states exist

« many further improvements and algorithms ...

MDPs - Using Monte-Carlo Methods %

« Monte-Carlo sampling is a well known method for searching through
large state space

. exploiting MC in sequential decision making has first been successfully
designed in 2006 (Kocsis, Szepesvari)

=== FH‘? '
« foundations in mathematical theory i l Filh: ‘I(l’ i

« multi-armed bandit problem

« exploration/exploitation
« Upper Confidence Bounds (UCB)

MDPs - Monte-Carlo Tree Search - UCT %

o using bandits in sequential decision making: MCTS

Repaated X 1imes

Selection + Expansion « Simulation -+ Backpropagation

Q O

O

Foae Tom Cragt (008

« UCB — selection function (UCB applied on trees — UCT)

MDPs - Monte-Carlo Tree Search - UCT

o UCB — selection function (UCB applied on trees — UCT)

« for each action a; applicable in s UCB selects the one that
maximizes

logn

C
\

e N — times the state is visited

+ z T(s,a;,s")[R(s,a;,s") +yV(s')]

Tli -
S'ES

V(s) — average reward from the previous iterations

e C - exploration constant (linear to expected utility)

« exploration factor ensures to evaluate actions that are evaluated
rarely

MDPs - UCT in probabilistic planning %

« winner of IPPC 2011 — PROST

 uses a number of improvements

o vanilla UCT is not that fast

o MCTS/UCT requires large number of iterations to converge

 large state-space does not allow this

« depth-limited rollouts

reducing branching factor

e Some actions are dominated, we can remove them

MDPs - UCT (2) %%%

e UCT can also benefit from heuristics

 Vvalues after expansion can be set better

o PROST uses Q-value initialization on most-probable determinization

e also random rollouts can be driven with some heuristic

o different update mechanism
o Rapid Action Value Estimation (RAVE)

« many, many others ...

MDPs - Beyond UCT %

« UCT is far from optimal algorithm
 there exist simple examples where vanilla UCT performs extremely
bad
« number of reasons

 learning the best action is different from learning the best
(contingency) plan

o situation that occur in states does not exactly correspond to multi-
armed bandit (mathematically)

 there are modifications that improve these drawbacks
« BRUE (Feldman & Domshlak, 201 3)

