
Markov Decision Processes

and
Probabilistic Planning

PAH 2013/2014

 main formal model

 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 horizon – finite/infinite set of time steps (1,2,…)

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 × 𝐷 → [0,1]

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 × 𝐷 → ℝ

Markov Decision Processes

 history-dependent policy

 𝜋:𝐻 × 𝐴 × 𝐷 → 0,1

 for simple cases we do not need history and randomization

 Markovian assumption

 finite-horizon MDPs

 infinite-horizon MDPs with reward discount factor 0 ≤ 𝛾 < 1

 stochastic shortest path

 (… and some others)

 from now on, policy is an assignment of an action in each state and

time

MDPs – policy

 Markov policy

 𝜋: 𝑆 × 𝐷 → 𝐴

 when the policy is same in every time-step – stationary policy

 𝜋 𝑠, 𝑡 = 𝜋 𝑠, 𝑡′ ∀𝑡, 𝑡′ ∈ 𝐷; 𝑡 ≠ 𝑡′

 otherwise – nonstationary policy

 Q: for which problems is the stationary policy sufficient?

MDPs – policy (2)

 we can express an expected reward for every state and time-step

when specific policy is followed

 𝑉𝜋
𝑘 𝑠 = 𝔼 𝑡=0

𝑘 𝛾𝑡 ⋅ 𝑅𝑡(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑠0 = 𝑠, 𝑎𝑡 = 𝜋(𝑠𝑡)

 for large (infinite) 𝑘 we can approximate the value by dynamic

programming

 𝑉𝜋
0 𝑠 = 0

 𝑉𝜋
𝑘 𝑠 = 𝑡=0

𝑘 𝑇𝑡(𝑠, 𝑎, 𝑠′) 𝑅𝑡 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋
𝑘−1 𝑠′ 𝑎 = 𝜋(𝑠)

MDPs – value of a policy

 we can exploit the concept of dynamic programming to find an

optimal policy

 basic algorithm for solving MDPs based on Bellman’s equation

 value iteration

 𝑉0 𝑠 = 0 ∀𝑠 ∈ 𝑆

 𝑉𝑘 𝑠 = max
𝑎∈𝐴
 𝑠′∈𝑆𝑇

𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1 𝑠′

 Q-function (Q(s,a))

 for 𝑘 → ∞ values converges to optimum 𝑉𝑘 → 𝑉∗

MDPs – towards finding optimal policy

 value iteration calculates only values

 the optimal policy can be extracted by using a greedy approach

 𝜋𝑘 𝑠 = argmax
𝑎∈𝐴
 𝑠′∈𝑆𝑇

𝑘(𝑠, 𝑎, 𝑠′) 𝑅𝑘 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′

 alternative algorithm – policy iteration

 starts with an arbitrary policy

 updates using the same equations

MDPs – extracting policy

 value iteration converges

 for finite-horizon MDPs: |𝐷| steps

 for infinite-horizon: asymptotically

 we can measure residual r and stop if it is small enough (≤ 𝜀)

 𝑟 = max
𝑠∈𝑆
|𝑉𝑖+1 𝑠 − 𝑉𝑖 𝑠 |

 convergence depends on 𝛾, …

MDPs – value iteration – convergence

 value iteration is very simple

 updates all states during each iteration

 curse of dimensionality (huge state space)

 asynchronous VI

 select a single state to be updated in each iteration separately

 each state must be updated infinitely often to guarantee convergence

 lower memory requirements

 Q: Can we use some heuristics to improve the convergence?

MDPs – value iteration – improvements

 initial values can be assigned better

 we can use a heuristic function instead of 0

 Q: Can you think of any admissible heuristic function?

 e.g., remember FFReplan/Robust FF?

 we can use a single run of a planner on the determinized version

 but, values are still updated regardless on the current values

 consider a typical probabilistic planning problem

 finite-horizon MDP with some goal states

MDPs – Heuristics

 updates the values only on the path from the starting state to the

goal

 during one iteration updates one rollout/trial:

 start with s = 𝑠0

 evaluate all actions using Bellman’s Q-functions 𝑄(𝑠, 𝑎)

 select action that maximizes current value: argmax 𝑎∈𝐴𝑄(𝑠, 𝑎)

 set 𝑉 𝑠 ← 𝑄 𝑠, 𝑎

 get resulting state 𝑠′

 if 𝑠′ is not goal, then 𝑠 ← 𝑠′ and go to step 2

 can be further improved with labeling (LRTDP) to identify solved

states

MDPs – Real-Time Dynamic Programming

 we can further combine selective updates with heuristic search

 starts with admissible 𝑉 𝑠 ≥ 𝑉∗(𝑠) for all states

 select next state 𝑠′ that is:

 reachable from 𝑠0 using current greedy policy 𝜋𝑉 , and

 residual 𝑟 𝑠′ > 𝜀

 update 𝑠′

 repeat until such states exist

 many further improvements and algorithms …

MDPs – Find and Revise

 Monte-Carlo sampling is a well known method for searching through

large state space

 exploiting MC in sequential decision making has first been successfully

designed in 2006 (Kocsis, Szepesvari)

 foundations in mathematical theory

 multi-armed bandit problem

 exploration/exploitation

 Upper Confidence Bounds (UCB)

MDPs – Using Monte-Carlo Methods

 using bandits in sequential decision making: MCTS

 UCB – selection function (UCB applied on trees – UCT)

MDPs – Monte-Carlo Tree Search – UCT

 UCB – selection function (UCB applied on trees – UCT)

 for each action 𝑎𝑖 applicable in 𝑠 UCB selects the one that

maximizes

𝑐
log 𝑛

𝑛𝑖
+

𝑠′∈𝑆

𝑇 𝑠, 𝑎𝑖 , 𝑠
′ [𝑅 𝑠, 𝑎𝑖 , 𝑠

′ + 𝛾𝑉 𝑠′]

 𝑛 – times the state is visited

 𝑉(𝑠) – average reward from the previous iterations

 𝑐 - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated

rarely

MDPs – Monte-Carlo Tree Search – UCT

 winner of IPPC 2011 – PROST

 uses a number of improvements

 vanilla UCT is not that fast

 MCTS/UCT requires large number of iterations to converge

 large state-space does not allow this

 depth-limited rollouts

 reducing branching factor

 some actions are dominated, we can remove them

MDPs – UCT in probabilistic planning

 UCT can also benefit from heuristics

 values after expansion can be set better

 PROST uses Q-value initialization on most-probable determinization

 also random rollouts can be driven with some heuristic

 different update mechanism

 Rapid Action Value Estimation (RAVE)

 many, many others …

MDPs – UCT (2)

 UCT is far from optimal algorithm

 there exist simple examples where vanilla UCT performs extremely

bad

 number of reasons

 learning the best action is different from learning the best

(contingency) plan

 situation that occur in states does not exactly correspond to multi-

armed bandit (mathematically)

 there are modifications that improve these drawbacks

 BRUE (Feldman & Domshlak, 2013)

MDPs – Beyond UCT

