
Journal of Artificial Intelligence Research 12 (2000) 271-315 Submitted 2/00; published 5/00

On the Compilability and Expressive Power
of Propositional Planning Formalisms

Bernhard Nebel NEBEL@INFORMATIK .UNI-FREIBURG.DE

Institut für Informatik, Albert-Ludwigs-Universität, Georges-K̈ohler-Allee, D-79110 Freiburg, Germany

Abstract

The recent approaches of extending theGRAPHPLAN algorithm to handle more expressive
planning formalisms raise the question of what the formal meaning of “expressive power” is. We
formalize the intuition that expressive power is a measure of how concisely planning domains
and plans can be expressed in a particular formalism by introducing the notion of “compilation
schemes” between planning formalisms. Using this notion, we analyze theexpressiveness of a
large family of propositional planning formalisms, ranging from basicSTRIPSto a formalism with
conditional effects, partial state specifications, and propositional formulae in the preconditions.
One of the results is that conditional effects cannot be compiled away if plan size should grow
only linearly but can be compiled away if we allow for polynomial growthof the resulting plans.
This result confirms that the recently proposed extensions to theGRAPHPLANalgorithm concerning
conditional effects are optimal with respect to the “compilability” framework. Another result is that
general propositional formulae cannot be compiled into conditional effects if the plan size should
be preserved linearly. This implies that allowing general propositionalformulae in preconditions
and effect conditions adds another level of difficulty in generating a plan.

1. Introduction

GRAPHPLAN (Blum & Furst, 1997) andSATPLAN (Kautz & Selman, 1996) are among the most
efficient planning systems nowadays. However, it is generally felt that the planning formalism
supported by these systems, namely, propositional basicSTRIPS (Fikes & Nilsson, 1971), is not
expressiveenough. For this reason, much research effort (Anderson, Smith, & Weld, 1998; Gazen
& Knoblock, 1997; Kambhampati, Parker, & Lambrecht, 1997; Koehler, Nebel, Hoffmann, & Di-
mopoulos, 1997) has been devoted in extendingGRAPHPLAN in order to handle more powerful
planning formalisms such asADL (Pednault, 1989).

There appears to be a consensus on how muchexpressive poweris added by a particular lan-
guage feature. For example, everybody seems to agree that adding negative preconditions does not
add very much to the expressive power of basicSTRIPS, whereas conditional effects are considered
as a significant increase in expressive power (Anderson et al., 1998; Gazen & Knoblock, 1997;
Kambhampati et al., 1997; Koehler et al., 1997). However, itis unclear how to measure the expres-
sive power in a more formal way. Related to this problem is thequestion of whether “compilation”
approaches to extend the expressiveness of a planning formalism are optimal. For example, Gazen
and Knoblock (1997) propose a particular method of compiling operators with conditional effects
into basicSTRIPS operators. This method, however, results in exponentiallylarger operator sets.
While most people (Anderson et al., 1998; Kambhampati et al., 1997; Koehler et al., 1997) agree
that we cannot do better than that, nobody has proven yet thata more space-efficient method is
impossible.

c
2000 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

NEBEL

In order to address the problem of measuring the relative expressive power of planning for-
malisms, we start with the intuition that a formalismX is at least as expressiveas another formal-
ismY if planning domainsand the correspondingplansin formalismY can beconcisely expressed
in the formalismX . This, at least, seems to be the underlying intuition when expressive power is
discussed in the planning literature.

Bäckström (1995) proposed to measure the expressivenessof planning formalisms using his
ESP-reductions. These reductions are, roughly speaking, polynomial many-one reductions1 on
planning instances thatdo not change the plan length. Using this notion, he showed that all of
the propositional variants of basicSTRIPS not containing conditional effects or arbitrary logical
formulae can be considered as expressively equivalent. However, taking our point of view, ESP-
reductions are too restrictive for two reasons. Firstly, plans must have identical size, while we might
want to allow a moderate growth. Secondly, requiring that the transformation can be computed
in polynomial time is overly restrictive. If we ask for how concisely something can beexpressed,
this does not necessarily imply that there exists a polynomial-time transformation. In fact, one
formalism might be as expressive as another one, but the mapping between the formalisms might
not be computable at all. This, at least, seems to be the usualassumption made when the term
expressive poweris discussed (Baader, 1990; Cadoli, Donini, Liberatore, & Schaerf, 1996; Erol,
Hendler, & Nau, 1996; Gogic, Kautz, Papadimitriou, & Selman, 1995).

Inspired by recent approaches to measure the expressiveness of knowledge representation for-
malisms (Cadoli et al., 1996; Gogic et al., 1995), we proposeto address the questions of how
expressive a planning formalism is by using the notion ofcompilingone planning formalism into
another one. A compilation scheme from one planning formalism to another differs from a polyno-
mial many-one reduction in that it is not required that the compilation is carried out in polynomial
time. However, the result should be expressible in polynomial space. Furthermore, it is required
that the operators of the planning instance can be translated without considering the initial state
and the goal. While this restriction might sound unnecessarily restrictive, it turns out that existing
practical approaches to compilation (Gazen & Knoblock, 1997) as well as theoretical approaches
(Bäckström, 1995) consider onlystructuredtransformations where the operators can be transformed
independently from the initial state and the goal description. From a technical point of view this
restriction guarantees that compilations are non-trivial. If the entire instance could be transformed,
a compilation scheme could decide the existence of a plan forthe source instance and then generate
a small solution-preserving instance in the target formalism, which would lead to the unintuitive
conclusion that all planning formalisms have the same expressive power.

As mentioned in the beginning, not only the space taken up by the domain structure is important,
but also the space used by the plans. For this reason, we distinguish between compilation schemes
in whether they preserve plan sizeexactly, linearly, or polynomially.

Using the notion ofcompilability, we analyze a wide range of propositional planning for-
malisms, ranging from basicSTRIPS to a planning formalism containingconditional effects, ar-
bitrary boolean formulae, andpartial state specifications. As one of the results, we identify two
equivalence classes of planning formalisms with respect topolynomial-timecompilability preserv-
ing plan size exactly. This means that adding a language feature to a formalism without leaving
the class does not increase the expressive power and should not affect the principal efficiency of

1. We assume that the reader has a basic knowledge of complexity theory (Garey & Johnson, 1979; Papadimitriou,
1994), and is familiar with the notion ofpolynomial many-one reductionsand thecomplexity classesP, NP, coNP,
andPSPACE. All other notions will be introduced in the paper when needed.

272

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

the planning method. However, we also provide results thatseparateplanning formalisms using
results from computational complexity theory on circuit complexity and non-uniform complexity
classes. Such separation results indicate that adding a particular language feature adds to the ex-
pressive power and to the difficulty of integrating the feature into an existing planning algorithm.
For example, we prove that conditional effects cannot be compiled away and that boolean formulae
cannot be compiled into conditional effects—provided the plans in the target formalism are allowed
to grow only linearly.

This answers the question posed in the beginning. The compilation approach proposed by Gazen
and Knoblock (1997) cannot be more space efficient, even if weallow for linear growth of the plans
in the target formalism.2 Allowing for polynomial growth of the plans, however, the compilation
scheme can be more space efficient. Interestingly, it seems to be the case that a compilation scheme
that allows for polynomially larger plans is similar to the implementation of conditional effects in
the IPP system (Koehler et al., 1997), Kambhampati and colleagues'(1997) planning system, and
Anderson and colleagues' (1998) planning system.

The rest of the paper is structured as follows. In Section 2, we introduce the range of proposi-
tional planning formalisms analyzed in this paper togetherwith general terminology and definitions.
Based on that, we introduce the notion of compilability between planning formalisms in Section 3.
In Section 4 we present polynomial-time compilation schemes between different formalisms that
preserve the plan size exactly, demonstrating that these formalisms are of identical expressiveness.
For all of the remaining cases, we prove in Section 5 that there cannot be any compilation scheme
preserving plan size linearly, even if there are no bounds onthe computational resources of the
compilation process. In Section 6 we reconsider the question of identical expressiveness by us-
ing compilation schemes that allow for polynomial growth ofthe plans. Finally, in Section 7 we
summarize and discuss the results.

2. Propositional Planning Formalisms

First, we will define a very general propositional planning formalism, which appears almost as
expressive as the propositional variant ofADL (Pednault, 1989). This formalism allows for arbitrary
boolean formulae as preconditions, conditional effects and partial state specifications. Subsequently,
we will specialize this formalism by imposing different syntactic restrictions.

2.1 A General Propositional Planning Formalism

Let � be the countably infinite set ofpropositional atoms or propositional variables. Finite
subsets of� are denoted by�. Further,b� is defined to be the set consisting of the constants>
(denoting truth) and? (denoting falsity) as well as atoms and negated atoms, i.e.,the literals,
over�. The language of propositional logicover the logical connectiveŝ;_, and: and the
propositional atoms� is denoted byL�. A clauseis a disjunction of literals. Further, we say that
a formula' 2 L� is in conjunctive normal form (CNF) if it is a conjunction of clauses. It is in
disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.

Given a set of literalsL, by pos(L) we refer to thepositive literals in L, byneg(L) we refer to
thenegative literals in L, and by�(L) to the atoms used inL, i.e.,�(L) = fp 2 � j p 2 L or :p 2

2. Note that Gazen and Knoblock's (1997) translation schemealso generates planning operators that depend on the
initial state and the goal description. However, these operators simply code the initial state and the goal description
and do nothing else. For this reason, we can ignore them here.

273

NEBELLg. Further, we define:L to be theelement-wise negationof L, i.e.,:L = fp j :p 2 Lg [f:p j p 2 Lg:
A states is atruth-assignmentfor the atoms in�. In the following, we also identify a state with

the set of atoms that are true in this state. Astate specificationS is a subset ofb�, i.e., it is alogical
theoryconsisting of literals only. It is calledconsistentiff it does not contain complementary literals
or?. In general, a state specification describes many states, namely all those that satisfyS, which
are denoted byMod(S). Only in case thatS is complete, i.e., for eachp 2 � we have eitherp 2 S
or :p 2 S, S has precisely one model, namelypos(S). By abusing notation, we will refer to the
inconsistentstate specification by?, which is the“illegal” state specification.

Operators are pairso = hpre;posti. We use the notationpre(o) andpost(o) to refer to the first
and second part of an operatoro, respectively. Theprecondition pre is an element of2L� , i.e.,
it is a set of propositional formulae. The setpost, which is the set ofpostconditions, consists of
conditional effects, each having the form �) L;
where the elements of� � L� are calledeffect conditionsand the elements ofL � b� are called
effects. If � or L are singleton sets, e.g.,fpg) fqg, we often omit the curly brackets and writep) q.
Example 1 In order to illustrate the various notions, we will use as a running example planning
problems connected with the production of camera-ready manuscripts from LATEX source files—
somewhat simplified, of course. As the set of atoms�, we choose the following set:� = f tex; aux; dvi; log; ps; bib; bbl; blg; ind; idx; ilgdvi ind ok; dvi cite okg:
These propositional atoms have the following intended meaning. The atoms in the first line represent
the presence of the corresponding files, and the atoms in the second line signify that the index and
citations are correct in the dvi-file. Based on that, we definethe following operators:bibtex, latex,makeindex. The first of these operators is very simple. The precondition for its execution is that
a bib- and anaux-file exist. After the successful execution, abbl- and ablg-file will have been
produced: bibtex = Dnaux; bibo;n>) fbbl; blggoE:
Themakeindex operator is similar:makeindex =Dnidxo;n>) find; ilggoE:
Finally, thelatex operator is a bit more complicated. As a precondition it needs the presence of thetex-file and it produces as its effectaux-, idx-, dvi, and log-files unconditionally. In addition, we
know that the citations will be correct if abbl-file is present and that the index will be correct if an

274

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMSind-file is present: latex = Dntexo;n>) faux; idx; dvi; logg;bbl) dvi cite ok;:bbl) :dvi cite ok;ind) dvi ind ok;:ind) :dvi ind okoE:
The semantics of operators is given bystate-transition functions, i.e., mappings from states to

states. Given a states and a set of postconditionspost,A(s;post) denotes theactive effectsin s:A(s;post) =[fL j (�) L) 2 post; s j= �g:
Thestate-transition function �o induced by the operatoro is defined as follows:�o: 2� ! 2��o(s) = 8><>: s� :neg(A(s;post(o))) [pos(A(s;post(o))) if s j= pre(o) andA(s;post(o)) 6j= ?

undefined otherwise

In words, if the precondition of the operator is satisfied in states and the active effects are consistent,
then states is mapped to the states0 which differs froms in that the truth values ofactive effects
are forced to become true for positive effects and forced to become false for negative effects. If the
precondition is not satisfied or the set of active effects is inconsistent, the result of the function is
undefined.

In the planning formalism itself, we do not work on states butonstate specifications. In general,
this can lead to semantic problems. By restricting ourselves to state specifications that are sets of
literals, however, the syntactic manipulations of the state specifications can be defined in a way such
that they aresoundin Lifschitz' (1986) sense.

Similarly to the active effects with respect to states, we define a corresponding function with
respect to state specifications:A(S;post) =[fL j (�) L) 2 post; S j= �g:
Further, we define thepotentially active effectsas follows:P(S;post) = [sj=SA(s;post):
If for a state specificationS and an operatoro = hpre;posti, we haveA(S;post) 6= P(S;post),3
it means that the state specification resulting from the application of the state-transition functions
might not be representable as a theory consisting of literals only. For this reason, we consider such
an operator application as illegal, resulting in the illegal state specification?. We could be more
liberal at this point and consider an operator application to a state specification only as illegal if the
set of states resulting from applying the state-transitionfunctions could definitely not be represented

3. Note that this can only happen if the state specification isincomplete.

275

NEBEL

as a theory consisting of literals only. Alternatively, we could consider all atoms mentioned inP(S;post) � A(S;post) as “unsafe” after the application of the operator and deletethe literals:(P(S;post)�A(S;post)) from the state specification, but consider the resulting state specification
still as “legal” if P(S;post) is consistent. Since there does not seem to exist a standard model for
the execution of conditional effects in the presence of partial state specifications, we adopt the first
alternative as one arbitrary choice. It should be noted, however, that this decision influences some
of the results we present below.

Similarly to the rule thatA(S;post) 6= P(S;post) leads to an illegal state specification, we
require that if the precondition is not satisfied by all states inMod(S) or if the state specification
is already inconsistent, the result of applyingo to S results in?. This leads to the definition of the
functionR, which defines the outcome of applying an operatoro from the set of operatorsO to a
state specification:R: 2b� �O! 2b�R(S; o) = 8>>>>>>><>>>>>>>:

S � :A(S;post(o)) [A(S;post(o)) if S 6j= ? andS j= pre(o) andA(S;post(o)) 6j= ? andA(S;post(o))=P(S;post(o))? otherwise

Example 2 Using the propositional atoms and operators from Example 1,we assume the following
two state specificationsS1 = ftex; indg, and S2 = ftex; ind; bbl; blgg. If we try to apply the
operatorlatex to S1, we notice that this results in? becauseA(S1;post(latex)) = faux; idx; dvi; log; dvi ind okg;P(S1;post(latex)) = A(S1;post(latex)) [fdvi cite ok;:dvi cite okg;
i.e., we haveA(S1;post(latex)) 6= P(S1;post(latex)): On the other hand, we can applybibtex
successfully toS1: R(S1; bibtex) = S2:

It is easily verified that the syntactic operation on a state specification using the functionR
corresponds to state transitions on the states described bythe specification.

Proposition 1 LetS be a state specification,o be an operator, and�o be the induced state-transition
function. IfR(S; o) 6j= ?, thenMod(R(S; o)) = fs0 j s0 = �o(s); s j= Sg:
If R(S; o) j= ?, then either

1. Mod(S) = ;, or

2. there are two statess1; s2 2 Mod(S) such thatA(s1;post(o)) 6= A(s2;post(o)), or

3. there exists a states 2 Mod(S) such that�o(s) is undefined.

276

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

In other words, wheneverR(S; o) results in a “legal” specification, this specification describes the
states that result from the application of the state-transition function�o to the states that satisfy the
original state specificationS. Further, ifR(S; o) is illegal, there are good reasons for it.

A planning instanceis a tuple � = h�; I;Gi;
where� � = h�;Oi is thedomain structure consisting of a finite set of propositional atoms� and a

finite set of operatorsO,� I � b� is theinitial state specification, and� G � b� is thegoal specification.4
When we talk about thesize of an instance, symbolicallyjj�jj, in the following, we mean the size
of a (reasonable) encoding of the instance.

In the following, we use the notationO? to refer to theset of finite sequencesof operators.
Elements� of O? are calledplans. Then jj�jj denotes the size of the plan, i.e., the number of
operators in�. We say that� is a c-step plan if jj�jj � c. The result of applying� to a state
specificationS is recursively defined as follows:Res : 2b� �O? ! 2b�Res(S; hi) = SRes(S; ho1; o2; : : : ; oni) = Res(R(S; o1); ho2; : : : ; oni)
A sequence of operators� is said to be aplan for � or asolution of� iff

1. Res(I;�) 6j= ? and

2. Res(I;�) j= G.

Example 3 Let� andO be the propositional atoms and operators introduced in Example 1 and
consider the following planning instance:� = hh�;Oi; ftex; bib;:indg; fdvi; dvi cite okgi: In
words, given a latex source file (tex) and a bibliography database (bib), we want to generate a dvi
file (dvi) such that the citations in this file are correct (dvi cite ok). Furthermore, we do not know
anything about the existence of a bbl-file or aux-file etc., but we know that there is no index file yet
(:ind). The plan� = hbibtex; latexi is a solution of� because the plan does not result in an illegal
state specification and the resulting state specification entails dvi anddvi cite ok.

Plans satisfying (1) and (2) above are “sound.” In order to state this more precisely, we extend
the notion of state transition functions for operators to state transition functions for plans. Let�� be
the state transition function corresponding to the composition of primitive state-transition functions
induced by the operators in� = ho1; : : : ; oni, i.e.,�ho1;:::;oni = �o1 � : : : � �on ;

4. We could have been more liberal requiring thatG � L�. We have not done that in order to allow for a “fair”
comparison with restricted planning formalisms.

277

NEBEL

such that�ho1;:::;oni(s) is defined iff�ho1;:::;oii(s) is defined for everyi, 1 � i � n. Using this
notion, one can easily prove—using induction over the plan length—that any plan for an instance�
is sound in Lifschitz' (1986) sense, i.e., corresponds to the application of state transition functions
to the initial states.

Proposition 2 Let� = h�; I;Gi be a planning instance and� = ho1; : : : ; oni be an element ofO?. If Res(I;�) is consistent, thenMod(Res(I;�)) = fs0 j s0 = ��(s); s j= Ig:
If Res(I;�) is inconsistent, then either

1. Mod(I) = ;, or

2. there exists a (possibly empty) prefixho1; : : : ; oii (0 � i � n � 1) of � such thatS =Res(I; ho1; : : : ; oii) and either

(a) there are two statess1; s2 2 Mod(S) such thatA(s1;post(oi+1)) 6= A(s2;post(oi+1)),
or

(b) there exists a states 2 Mod(S) such that�oi+1(s) is undefined.

2.2 A Family of Propositional Planning Formalisms

The propositional variant of standardSTRIPS (Fikes & Nilsson, 1971), which we will also callS
in what follows, is a planning formalism that requirescomplete state specifications, unconditional
effects, and propositional atomsas formulae in the precondition lists. Less restrictive planning
formalisms can have the following additional features:

Incomplete state specifications (I): The state specifications may not be complete.

Conditional Effects (C): Effects can be conditional.

Literals as formulae (L): The formulae in preconditions and effect conditions can be literals.

Boolean formulae (B): The formulae in preconditions and effect conditions can be arbitrary
boolean formulae.

These extensions can also be combined. We will use combinations of letters to refer to such multiple
extensions. For instance,SL refers to the formalismS extended by literals in the precondition lists,SIC refers to the formalism allowing for incomplete state specifications and conditional effects, andSBIC, finally, refers to the general planning formalism introduced in Section 2.1.

Example 4 When we consider the planning instance� from Example 3, it becomes quickly obvious
that this instance has been expressed usingSLIC . The initial state specification isincomplete, the
operatorlatex containsconditional effectsand negativeliterals in some effect conditions. However,
we do not need generalBoolean formulaeto express the instance.

278

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

SBICSBCSLC SLI SBSIC
SC SI SL
SLIC SBI

S
Figure 1: Planning formalisms partially ordered by syntactic restrictions

Figure 1 displays the partial order on propositional planning formalisms defined in this way. In
the sequel we say thatX is a specializationof Y, writtenX v Y, iff X is identical toY or belowY in the diagram depicting the partial order.

Comparing this set of planning formalisms with the one Bäckström (1995) analyzed,5 one no-
tices that despite small differences in the presentation ofthe planning formalisms:� S is the same ascommon propositional strips(CPS),� SL is the same aspropositional strips with negative goals(PSN), and� SLI is the same asground Tweak(GT).

2.3 The Computational Complexity of Planning in theS-Family

While one would expect that planning inS is much easier than planning inSBIC, it turns out that
this is not the case, provided one takes a computational complexity perspective.

In analyzing the computational complexity of planning in different formalisms, we consider, as
usual, the problem of deciding whether thereexists a planfor a given instance—theplan existence
problem (PLANEX). We will use a prefix referring to the planning formalism if we consider the
existence problem in a particular planning formalism.

Theorem 3 X -PLANEX is PSPACE-complete for allX with S v X v SBIC .

5. We do not consider planning formalisms identical to theSAS+ formalism (Bäckström & Nebel, 1995), since we do
not allow for multi-valued state variables.

279

NEBEL

Proof. PSPACE-hardness ofS-PLANEX follows from a result by Bylander (1994, Corollary 3.2).
Membership ofSBIC-PLANEX in PSPACE follows because we could, step by step, guess a

sequence of operators, verifying at each step that the operator application leads to a legal follow up
state specification and that the last operator application leads to a state specification that entails the
goal specification. For each step, this verification can be carried out in polynomial space. The reason
for this is that all the conditions in the definition ofR are verified by polynomially many calls to an
NP-oracle. Therefore,SBIC can be decided on a non-deterministic machine in polynomialspace,
hence it is a member ofPSPACE.

From that it follows that the plan existence problem for all formalisms that are in expressiveness
betweenS andSBIC—including both formalisms—isPSPACE-complete.

3. Expressiveness and Compilability between Planning Formalisms

Although there is no difference in the computational complexity between the formalisms in theSBIC-family, there might nevertheless be a difference in how concisely planning domains and plans
can be expressed. In order to investigate this question, we introduce the notion ofcompiling plan-
ning formalisms.

3.1 Compiling Planning Formalisms

As mentioned in the Introduction, we will consider a planning formalismX as expressive asanother
formalismY if planning domains and plans formulated in formalismY areconcisely expressible
in X . We formalize this intuition by making use of what we callcompilation schemes, which
aresolution preserving mappingswith polynomially sized resultsfrom Y domain structures toX
domain structures. While we restrict the size of the result of a compilation scheme, we do not
require any bounds on the computational resources for the compilation. In fact, for measuring the
expressibility, it is irrelevant whether the mapping is polynomial-time computable, exponential-time
computable, or even non-recursive. At least, this seems to be the idea when the notion ofexpressive
power is discussed in similar contexts (Baader, 1990; Erol et al.,1996; Gogic et al., 1995; Cadoli
et al., 1996). If we want to use such compilation schemes in practice, they should be reasonably
efficient, of course. However, if we want to prove that one formalism isstrictly more expressive
than another one, we have to prove that there is no compilation scheme regardless of how many
computational resources such a compilation scheme might use.

So far, compilation schemes restrict only the size of domainstructures. However, when mea-
suring expressive power, the size of the generated plans should also play a role. In Bäckström's
ESP-reductions (1995), the plan size must be identical. Similarly, the translation fromSLC to SL
proposed by Gazen and Knoblock (1997) seems to have as an implicit prerequisite that the plan
length in the target formalism should be almost the same. When comparing the expressiveness of
different planning formalisms, we might, however, be prepared to accept some growth of the plans
in the target formalism. For instance, we may accept an additional constant number of operators, or
we may even be satisfied if the plan in the target formalism is linearly or polynomially larger. This
leads to the schematic picture of compilation schemes as displayed in Figure 2.

Although Figure 2 gives a good picture of thecompilation framework, it is not completely
accurate. First of all, a compilation scheme may introduce some auxiliary propositional atoms that
are used to control the execution of newly introduced operators. These atoms should most likely
have an initial value and may appear in the goal specificationof planning instances in the target

280

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

GIcompi-
lation

Y
Planning

X
Planning

�
�0

�
�0

Figure 2: The compilation framework

formalism. We will assume that the compilation scheme takescare of this and adds some literals to
the initial state and goal specifications.

Additionally, some translations of the initial state and goal specifications may be necessary. If
we want to compile a formalism that permits for literals in preconditions and goals to one that re-
quires atoms, some trivial translations are necessary. Similarly, if we want to compile a formalism
that permits us to use partial state specification to a formalism that requires complete state specifi-
cations, a translation of the initial state specification isnecessary. However, suchstate translation
functionsshould be very limited. They should depend only on the set of symbols in the source
formalism, should be “context-independent,” i.e., the translation of a literal in a state specification
should not depend on the whole specification, and they shouldbe efficiently computable.

While the compilation framework is a theoretical tool to measure expressiveness, it has, of
course, practical relevance. Let us assume that we have a reasonably fast planning system for a
planning formalismX and we want to add a new feature toX resulting in formalismY. If we
can come up with anefficientcompilation scheme fromY toX , this means we can easily integrate
the new feature—either by using the compilation scheme or bymodifying the planning algorithm
minimally. If no compilation scheme exists, we probably would have problems integrating this fea-
ture. Finally, if only computationally expensive compilation schemes exist, we have an interesting
situation. In this case, the off-line compilation costs maybe high. However, since the compiled
domain structure can be used for different initial and goal state specifications, the high off-line costs
may be compensated by the efficiency gain resulting from using theX planning algorithm.6 As
it turns, however, this situation does not arise in analyzing compilability between theSBIC for-
malisms. Either we can identify a polynomial-time compilation scheme or we are able to prove that
no compilation scheme exists.

6. This means that compilation schemes between planning formalisms are similar to knowledge compilations (Cadoli &
Donini, 1997), where the fixed part of a computational problem is the domain structure and the variable part consists
of the initial state and goal specifications. The main difference to the knowledge compilation framework is that we
also take the (size of the) result into account. In other words we compile function problems instead of decision
problems.

281

NEBEL

3.2 Compilation Schemes

Assume a tuple of functionsf = hf�; fi; fg; ti; tgi that induce a functionF from X -instances� =h�; I;Gi toY-instancesF (�) as follows:F (�) =hf�(�); fi(�) [ti(�; I); fg(�) [tg(�;G)i:
If the following three conditions are satisfied, we callf acompilation scheme fromX to Y:

1. there exists a plan for� iff there exists a plan forF (�);
2. thestate-translation functions ti andtg aremodular, i.e., for� = �1 [�2, S � b�, andS 6j= ?, the functionstx (for x = i; g) satisfytx(�; S) = tx(�1; S \ c�1) [tx(�2; S \ c�2);

and they are polynomial-time computable;

3. and the size of the results off�; fi, andfg is polynomial in the size of the arguments.

Condition (1) states that the functionF induced by the compilation schemef is solution-
preserving. Condition (2) states requirements on theon-line state-translation functions. The result
of these functions should be computableelement-wise, provided the state specification is consis-
tent. Considering the fact that these functions depend onlyon the original set of symbols and the
state specification, this requirement does not seem to be very restrictive. Since the state-translation
functions are on-line functions, we also require that the result should be efficiently computable.7
Finally, condition (3) formalizes the idea thatf is a compilation. For acompilationit is much more
important that the result can beconcisely represented, i.e., in polynomial space, than that the compi-
lation process is fast. Nevertheless, we are also interested in efficient compilation schemes. We say
thatf is apolynomial-time compilation schemeif f�; fi, andfg are polynomial-time computable
functions.

In addition to the resource requirements on the compilationprocess, we will distinguish be-
tween different compilation schemes according to the effects on the size of the plans solving the
instance in the target formalism. If a compilation schemef has the property that for every plan�
solving an instance� there exists a plan�0 solvingF (�) such thatjj�0jj � jj�jj + k for some
positive integer constantk, f is acompilation scheme preserving plan size exactly(up to additive
constants). Ifjj�0jj � c � jj�jj + k for positive integer constantsc andk, thenf is acompilation
scheme preserving plan size linearly, and if jj�0jj � p(jj�jj; jj�jj) for some polynomialp, thenf
is acompilation scheme preserving plan size polynomially. More generally, we say that a plan-
ning formalismX is compilable to formalismY (in polynomial time, preserving plan size exactly,
linearly, or polynomially), if there exists a compilation scheme with the appropriate properties. We
write X �x Y in caseX is compilable toY or X �xp Y if the compilation can be done in polyno-
mial time. The super-scriptx can be1, c, or p depending on whether the scheme preserves plan size
exactly, linearly plan, or polynomially, respectively.

As is easy to see, all the notions of compilability introduced above are reflexive and transitive.

7. Although it is hard to imagine a modular state-translation function that is not polynomial time computable, some
pathological function could, e.g., output translations that have exponential size in theencodingof the symbols.

282

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Proposition 4 The relations�x and�xp are transitive and reflexive.

Furthermore, it is obvious that when moving upwards in the diagram displayed in Figure 1,
there is always a polynomial-time compilation scheme preserving plan size exactly. If�i denotes
the projection to thei-th argument and; the function that returns always the empty set, the generic
compilation scheme for moving upwards in the partial order is f = h�1; ;; ;; �2; �2i.
Proposition 5 If X v Y, thenX �1p Y.

4. Compilability Preserving Plan Size Exactly

Proposition 5 leads to the question of whether there exist other compilation schemes than those
implied by the specialization relation. Because of Proposition 5 and Proposition 4, we do not have
to find compilation schemes for every pair of formalisms. It suffices to prove thatX is compilable
to Y, in order to arrive at the conclusion that all formalisms that are belowX are compilable toY
and formalisms aboveY.

A preview of the results of this section is given in Figure 3. We will establish two equivalence
classes such that all members of each class are compilable toeach other preserving plan size exactly.
These two equivalence classes will be calledSLI- andSLIC-class, in symbols[SLI] and [SLIC],
naming them after their respective largest elements.SBICSBCSLC SBSIC

SC SI
SLIC SBI

S
SLI

SL
Figure 3: Equivalence classes of planning formalisms created by polynomial-time compilation

schemes preserving plan size exactly

283

NEBEL

4.1 Planning Formalisms without Conditional Effects and Boolean Formulae

First, we will show that the formalisms analyzed by Bäckström (1995), namely,SLI , SL, andS are
polynomial-time compilable into each other preserving plan size exactly. In fact, a fourth class can
be added to this set, namely,SI , which lies betweenSLI andS.

In other words, using the notion ofcompilability, we get the same equivalence class as with
Bäckström's ESP-reductions. Having a closer look at the proofs in Bäckström's (1995) paper re-
veals that this is not surprising at all because the ESP-reductions he used could be reformulated as
compilation schemes. Since he used a quite different notation, we will nevertheless prove this claim
from first principles.

The key idea in compiling planning formalisms with literalsto formalisms that allow for atoms
only is to considerp and:p as different atoms in the new formalism. For this purpose, weintroducee� = fep j p 2 �g, i.e., a disjoint copy of�. Further, ifL � b�, then�L is a set where each negative
literal :p in L is replaced byep, i.e.,�L = (fp 2 � j p 2 Lg [fep 2 e� j :p 2 Lg if L 6j= ?;? otherwise.

Using� [e� as the new set of atoms, one can translate state specifications and preconditions eas-
ily. In the postconditions we have to make sure that the intended semantics is taken care of, i.e.,
wheneverp is added,ep must be deleted andvice versa.

Finally, we have to deal with the problem of partial state specifications. However, this not
a problem when all effects are unconditional and the preconditions contain only atoms. In this
case, we can safely assume that all atoms with unknown truth-value are false without changing the
outcome of the application of an operator. LetCWA�(L) denote thecompletion of L with respect
to�, i.e., CWA�(L) = f:p j p 2 �; p 62 Lg [L:
Using this function, we can transform a partial state specification into a complete specification
without changing the outcome, i.e., we get the same plans.

Theorem 6 SLI , SI , SL, andS are polynomial-time compilable to each other preserving plan size
exactly.

Proof. SinceS v SIv SLI andS v SL v SLI , it follows from Propositions 4 and 5 that we only
have to show thatSLI �1p S in order to prove the claim.

Let � = h�; I;Gi be aSLI-instance with� = h�;Oi. We translate each operatoro 2 O into
the operator eo = h�pre(o);�post(o) [: �:post(o)i:
The set of all such operators is denoted byeO. Now we can define the compilation schemef =hf�; fi; fg; ti; tgi as follows: f�(�) = h� [e�; eOi;fi(�) = ;;fg(�) = ;;ti(�; I) = CWA�[e�(�I);tg(�;G) = �G:

284

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

The schemef obviously satisfies conditions (2) and (3), all the functions can be computed in poly-
nomial time, andF (�) is aS-instance.

Let S � b�. Then it is obvious thatti(�;R(S; o)) = R(ti(�; S); eo):
Let e� = hfo1; : : : ;foni denote a sequence of operators corresponding to a sequence of operators� = ho1; : : : ; oni. Using induction on plan length, it is easy to show that� is a plan for� iff e� is a plan forF (�),
i.e., condition (1) on compilation schemes is also satisfied. This means,f is in fact a compilation
scheme. Further, since the plan size does not change, the compilation scheme preserves plan size
exactly. Finally, because all functions inf can be computed in time polynomial in their arguments,f is a polynomial-time compilation scheme.

One view on this result is that it does not matter whether, from an expressivity point of view, we
allow for atoms only or for literals and it does not matter whether we have complete or partial state
specification—provided propositional formulae and conditional effects are not allowed.

4.2 Planning Formalisms with Conditional Effects but without Boolean Formulae

Interestingly, the view spelled out above generalizes to the case where conditional effects are al-
lowed. Also in this case it does not matter whether only atomsor also literals are allowed and
whether we have partial or complete state specifications. Inproving that, however, there are two
additional complications. Firstly, one must compile conditional effects over partial state specifi-
cations to conditional effects over complete state specifications. This is a problem because the
conditionA(S;post(o)) = P(S;post(o)) in the definition of the functionR must be tested. Sec-
ondly, when compiling a formalism with literals into a formalism that allows for atoms only, the
conditionA(S;post(o)) 6j= ? in the definition ofR must be taken care of. For this reason, we will
prove this result in two steps.

As a first step, we show thatSLIC can be compiled toSLC . The problem in specifying such a
compilation scheme is that the execution of an operatoro on a partial state specification leads to the
illegal state ifA(S;post(o)) 6= P(S;post(o)).

When considering our running example (Ex. 1), things are quite obvious. When a state spec-
ification does not contain the literal or the negation of the literal that is mentioned in the effect
condition, then the illegal state specification results. For example, if a state specification does nei-
ther containbbl nor :bbl, then the result of executinglatex is ?. In the general case, however,
things are less straightforward because effect literals can be produced by more than one conditional
rule and an effect condition can consist of more than one literal.

Assuming without loss of generality (using a polynomial transformation) that the effects are
all singleton sets, we have to check the following condition. Either one of the conditional effects
with the same effect literal is activated—i.e., the effect condition is entailed by the partial state—
or all of the conditional effects with the same effect literal are blocked, i.e., each effect condition
contains a literal that is inconsistent with the state specification. If this is true, the original operator
satisfiesA(S;post(o)) = P(S;post(o)), otherwise the resulting state specification is inconsistent.
For example, consider the followingSLIC operator:oi = h>; ffp;:qg) f:pg; fu; vg) f:pggi:

285

NEBEL

The application of this operator satisfiesA(S;post(o)) = P(S;post(o)) iff either

1. p and:q are true in the state specification, or

2. u andv are true in the state specification, or

3. one ofp and:q is falseandone ofu andv is false.

In all other cases, we getA(S;post(o)) 6= P(S;post(o)) and the result is the illegal state. In order
to test for this condition in a formalism with complete states we introduce four new sets of atoms:�0 = fp0 j p 2 �g;�+ = fp+ j p 2 �g;�� = fp� j p 2 �g;� = fxi;j j for thejth conditional effect ofoig:

The atomp0 is true if eitherp or :p is part of the original partial state specification. The atomp+ is set true by an operator if one of the conditional effects addsp or if p does not appear as an
effect in the operator. The atomp� is set true by an operator if one of the conditional effects deletesp or if :p does not appear as an effect in the operator. Finally, atoms of the formxi;j are added by
an action if thejth conditional effect in theith operator is blocked by some effect condition. Using
these new atoms, we could translate the above operator toeoi = h>; ffp0; q0; p;:qg) fp0; p�;:pg;fu0; v0; u; vg) fp0; p�;:pg;fp0;:pg) fxi;1g;fq0; qg) fxi;1g;fu0;:ug) fxi;2g;fv0;:vg) fxi;2g;>) �+ [�� � fp�g;>) fxm;j 2 � jm 6= iggi:
Let �(i; j) be a function that returnsp+ or p�, if p or :p, respectively, is the effect of thejth
conditional effect in theith operator. Assuming now that the atoms from�0 are set according to
their intended semantics and that the previous operator deleted all atoms from�+ [�� [�, the
following testoperator checks whether the original operator would have led to an inconsistent result:

test = �>;�f:xi;j;:�(i; j)g) ? j xi;j 2 ���:
Whenever we have:xi;j, it means thejth conditional effect in theith operator (which must be the
previously executed operator) was not blocked. If in addition to that the effect of this conditional
effect was not activated, i.e.,:�(i; j) is true, we would haveA(S;post(o)) 6= P(S;post(o)) in the
original formalism. For this reason, we force the illegal state. Conversely, if eitherxi;j is true for alli andj or if it is false for onej, but �(i; j) is true, we would haveA(S;post(o)) = P(S;post(o))
in the original formalism and do not need to force the illegalstate.

We now could force, by using some extra literals, that after each operatoreoi the testoperator is
applied. This would result in a compilation scheme that preserves plan size onlylinearly. However,
it is possible to do better than that. The key idea is to merge the test operator for theith step into the
operator of stepi+ 1.

286

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Lemma 7 SLIC is polynomial-time compilable toSLC preserving plan size exactly.

Proof. Let � = h�; I;Gi be aSLIC-instance with� = h�;Oi. Without loss of generality, we
assume that the postconditions of operatorsoi 2 O have the following form:

post(oi) = fLi;1) li;1; : : : ; Li;mi) li;mig;
with Li;j � b� andli;j 2 b�.

First, we introduce a number of new sets of symbols that are pairwise disjoint and disjoint from�: �0 = fp0 j p 2 �g;�0+ = fp0+ j p 2 �g;�1+ = fp1+ j p 2 �g;�0� = fp0� j p 2 �g;�1� = fp1� j p 2 �g;�0 = fx0i;j j for thejth conditional effect ofoig;�1 = fx1i;j j for thejth conditional effect ofoig:
For a given set of literalsL � b�, L0 denotes the set of primed literals, i.e.,L0 = fp0 j p 2 Lg [f:p0 j (:p) 2 Lg and the functions(�) denotes the successor function modulo 2, i.e.,s(k) =(k + 1) mod 2. Further, the functions�k for k = 0; 1 shall be functions from�k to�k+ [�k� such
that �k(i; j) = (qk+ 2 �k+ if (Li;j) q) 2 post(oi);qk� 2 �k� if (Li;j) :q) 2 post(oi):
Now let postk(oi) for k = 0; 1 be defined as follows

postk(oi) = fL [�(L0)) fp; p0; pk+g j p 2 �; (L) p) 2 post(oi)g [fL [�(L0)) f:p; p0; pk�g j p 2 �; (L) :p) 2 post(oi)g;
let blockk(oi) for k = 0; 1 be defined as

blockk(oi) = ffq; q0g) xki;j j (Li;j) li;j) 2 post(oi); (:q) 2 Li;jg [ff:q; q0g) xki;j j (Li;j) li;j) 2 post(oi); q 2 Li;jg;
and lettestk be defined astestk = ff:xs(k)i;j ;:�s(k)(i; j)g) ? j xs(k)i;j 2 �s(k)g:
Further, letc1, c2, andg be fresh symbols not appearing in� [�0 [�k+ [�k� [�k. Now we can
define the pair of compiled operatorsoki (k = 0; 1) corresponding to the original operatoroi 2 O:oki = hpre(oi) [fckg;postk(oi) [blockk(oi) [testk [f>) f:ck;:g; cs(k)gg [f>) �k+ [�k� � f�k(i; j)gg [f>) fxkm;j 2 �k jm 6= igg [f>) :�s(k)+ [:�s(k)� [:�s(k)g:

287

NEBEL

This pair of compiled operators achieves the intended effects and keeps track of fully known
atoms usingpostk, checks which conditional effects are blocked usingblockk, tests whether the
execution of the previous operator satisfied the conditionA(S;post(o)) = P(S;post(o)) using
testk, and setup the bookkeeping atoms for the next step. Using theatomsck, it is enforced that
executing and testing is merged by parallelizing the test onstepi and execution of stepi + 1. In
order to check the execution of the last step, we need an extrachecking step:okg = hfckg; testk [f>) fg;:ckggi:

Now we can specify a compilation schemef from SLIC to SLC as follows:f�(�) = h� [�0 [�0+ [�1+ [�0� [�1� [�0 [�1 [fg; c0; c1g;S fo0i ; o1i j oi 2 Og [fo0g; o1ggi;fi(�) = f:g; c0;:c1g [:�0+ [:�1+ [:�0� [:�1� [:�0 [:�1;fg(�) = fgg;ti(�; I) = CWA�(I) [CWA�0(fp0 j p 2 �; fp;:pg \ I 6= ;g);tg(�;G) = G:
The schemef obviously satisfies conditions (2), i.e., that the state-translation functions are modular,
and (3), i.e., that the compilation functions have polynomially sized results. Further, all the functions
can be computed in polynomial time, andF (�) is aSLC-instance.

AssumeS � b�. Then it is obvious thatti(�;Res(S; hoii)) \ (b� [c�0) = Res(ti(�; S) [fi(�); ho0i i) \ (b� [c�0);
providedRes(S; hoii) 6j= ?. In caseRes(S; hoii) j= ?, eitherRes(ti(�; S) [fi(�); ho0i i) j=? or A(S;post(oi)) 6= P(S;post(oi)). In the latter case, the application of any operator toRes(ti(�; S); ho0i i) leads to an inconsistent state because of the conditional effects intest1, which
is part of all postconditions of operators applicable in this state. Additionally, the same is true for
the relation betweenti(�;Res(S; hoi; oj)) andRes(ti(�; S) [fi(�); ho0i ; o1j i).

Let�0 = ho01; : : : ; o0ni denote a sequence of operators corresponding to a sequence of operators� = ho1; : : : ; oni. Using induction on the plan length, it can be easily shown that� is a plan for� iff �0; okg is a plan forF (�).
Further, since any plan solving the instanceF (�) must haveokg as the last operator, it follows that

there exists a plan for� iff there exists a plan forF (�).
From that it follows immediately thatf is a polynomial-time compilation scheme fromSLIC toSLC
preserving plan size exactly, which proves the claim.

Having proved thatSLIC can be compiled toSLC preserving plan size exactly, it seems worth
noting that this result depends on the semantics chosen for executing conditional operators on par-
tial state specifications. For example, if we use an alternative semantics that deletes all the literals
in :(P(S;post(o)) � A(S;post(o)) providedP(S;post(o)) is consistent, then there exists proba-
bly only a compilation scheme that preserves plan size linearly. If we use a semantics where the

288

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

resulting state specification is legal when the applicationof all state-transformation functions leads
to a theory that can be represented as a set of literals, it seems unlikely that there exists a scheme
that preserves plan size polynomially. The reason for this pessimistic conjecture is that under this
semantics it appears to becoNP-hard to determine whether the state specification resulting from
applying aSLIC-operator is legal.

As a second step in showing that partial state specificationsand literals can be compiled away,
we show that we can compileSLC to SC . The key idea in the proof is the same as in the proof of
Theorem 6. We replace each negative literal:p by a new atomep. In order to detect inconsistencies
introduced by conditional effects, we add to each postcondition conditional effects of the formfp; epg) ?. Further, to check that the last operator in a plan does not introduce any inconsistencies,
we force the application of a “checking” operator that contains the same conditional effects.

Lemma 8 SLC is polynomial-time compilable toSC preserving plan size exactly.

Proof. Let � = h�; I;Gi be aSLC-instance with� = h�;Oi. Since� is aSLC-instance, the
postconditions of all operatorso 2 O have the following form:

post(o) = fL1) K1; : : : ; Lm) Kmg;
with Lj ;Kj � b�.

As in the proof of Theorem 6,e� shall be a disjoint copy of�, and�L is the set of atoms where
each negative literal:p is replaced by the atomep. Now let gpost(o) be the following setgpost(o) = f�Lj) (�Kj [: �:Kj) j (Lj) Kj) 2 post(o)g:
Further, letconsbe the set of conditional effects

cons= ffp; epg) ? j p 2 �g;
let g be an atom not appearing in�, let eo beeo = h�pre(o); gpost(o) [cons[f>) :ggi;
let eO = feo j o 2 Og, and let the operatorog beog = h>; cons[f>) ggi:
Then we can specify a compilation schemef from SLC to SC as follows:f�(�) = h� [e� [fgg; eO [foggi;fi(�) = f:gg;fg(�) = fgg;ti(�; I) = �I [: �:I;tg(�;G) = �G:
The schemef obviously satisfies conditions (2) and (3), all the functions can be computed in poly-
nomial time, andF (�) is aSC-instance.

289

NEBEL

AssumeS � b�. Then it is obvious thatti(�;R(S; o)) = R(ti(�; S); eo); providedR(S; o) 6j= ?:
In caseR(S; o) j= ?, eitherR(ti(�; S); eo) j= ? or fp; epg � R(ti(�; S); eo) for somep 2 �. In the
latter case, the application of any operator toR(ti(�; S); eo) leads to an inconsistent state because
of the conditional effects incons, which is part of all postconditions.

Let e� = hfo1; : : : ;foni denote a sequence of operators corresponding to a sequence of operators� = ho1; : : : ; oni. Using induction on the plan length, it can be easily shown that� is a plan for� iff e�; og is a plan forF (�).
Further, since any plan solving the instanceF (�) must haveog as the last operator, it follows that

there exists a plan for� iff there exists a plan forF (�).
It follows thatf is polynomial-time compilation scheme fromSLC toSC preserving plan size exactly,
which proves the claim.

This result is, of course, not dependent on the semantics because both formalisms deal only with
complete state specifications, and hence we always haveA(S;post(o)) = P(S;post(o)).
Theorem 9 SLIC , SLC , SIC, andSC are polynomial-time compilable to each other preserving plan
size exactly.

Proof. SLIC �1p SC follows from Lemma 8, Lemma 7 and Proposition 4. Using Propositions 4
and 5 and the fact thatSC v SLC v SLIC andSC v SICv SLIC, the claim follows.

5. The Limits of Compilation when Preserving Plan Size Linearly

The interesting question is, of course, whether there are other compilation schemes preserving plan
size exactly than those we have identified so far. As it turns out, this is not the case. We will prove
that for all pairs of formalisms for which we have not identified a compilation scheme preserving
plan size exactly, such a compilation scheme is impossible even if we allow for a linear increase of
the plan size. For some pairs of formalisms we are even able toprove that a polynomial increase
of the plan size would not help in establishing a compilationscheme. These results are, however,
conditional based on an assumption that is slightly stronger than theP 6= NP assumption. A preview
of the results of this section is given in Table 1. The symbolvmeans that there exists a compilation
scheme because the first formalism is a specialization of thesecond one. In all the other cases, we
specify the separation and give the theorem number for this result.

5.1 Conditional Effects Cannot be Compiled Away

First of all, we will prove that conditional effects cannot be compiled away. The deeper reason
for this is that with conditional effects, one can independently do a number of things in parallel,
which is impossible in formalisms without conditional effects. If we consider, for example, the
operatorlatex from Example 1, it is clear that it ”`propagates”' the truth value ofbbl and ind todvi cite ok anddvi ind ok, respectively—provided the state specification satisfies the precondition.

290

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

�x SBIC [SLIC] SBC SBI SB [SLI]6�p 6�p 6�c 6�p 6�pSBIC =
Cor. 15 Cor. 15 Cor. 12 Cor. 15 Cor. 156�c 6�c 6�c[SLIC] v = v

Theo. 11 Cor. 12 Cor. 126�c 6�c 6�c 6�cSBC v
Cor. 19

=
Cor. 12 Cor. 12 Cor. 196�p 6�p 6�p 6�pSBI v

Cor. 15 Theo. 14
=

Cor. 15 Cor. 156�c 6�cSB v
Theo. 18

v v =
Cor. 19[SLI] v v v v v =

Table 1: Separation Results

It is obviously possible to come up with a set of exponentially many operators that can do the same
thing in one step. However, it is unclear how to do that with less than exponentially many operators.
In fact, we will show that this is impossible.

In order to illustrate this point, let us generalize the above example. We start with a set ofn
propositional atoms�n = fp1; : : : ; png and a disjoint copy of this set:�#n = fp#i j pi 2 �ng.
Further, ifS � c�n, thenS# shall denote the corresponding set of literals over

d�#n , i.e.,S# = fp#i j pi 2 Sg [f:p#i j :pi 2 Sg:
Consider now the followingSLIC domain structure:�2n = �n [�#n ;O2n = �h>; fpi) p#i ;:pi) :p#i j pi 2 �ngi�;�2n = h�2n; O2ni:
From the construction it follows that for all pairs(I;G) such thatI is a consistent and complete set
over c�n andG � I#, the instance� = h�2n; I;Gi has a one-step plan. Conversely, for all pairs(I;G) withG \d�# 6� I#, there does not exist a solution.

Trying to define aSBI domain structure polynomially sized injj�2njj with the same property
seems to be impossible, even if we allow forc-step plans. However, in trying to prove this, it turns
out that an additional condition on the state-translation function is needed.

We say that the state-translation functions arelocal iff for all state specificationsS and for�1 \ �2 = ; we have ti(�1; S \ c�1) \ tg(�2; S \ c�2) = ;:
291

NEBEL

With locality as an additional condition on state-translation functions we could easily prove that
conditional effects cannot be compiled away. Instead of doing so we will show, however, that it
is possible to derive a weaker condition from the definition of compilation schemes that will be
enough to prove the impossibility result. This weaker condition isquasi-localityof state-translation
functions relative to a given set of symbols�, which in turn is based on the notion ofuniversal
literals. A literal l is called auniversal literal for given state-translation functions on� iff one of
the following conditions is satisfied:

1. for all p 2 �: l 2 ti(fpg; fpg), or

2. for all p 2 �: l 2 ti(fpg; f:pg), or

3. for all p 2 �: l 2 ti(fpg; ;), or

4. for all p 2 �: l 2 tg(fpg; fpg), or

5. for all p 2 �: l 2 tg(fpg; f:pg), or

6. for all p 2 �: l 2 tg(fpg; ;).
LetU denote the set of universal literals. Now we definequasi-locality of state-translation func-
tions relative to a set of propositional atoms� and the induced set of universal literalsU as follows.
For eachS � b� such thatS 6j= ? and for all pairs�1;�2 � � with �1 \ �2 = ;, we haveti(�1; S \ c�1) \ tg(�2; S \ c�2) � U:
In words, the onlynon-localliterals in quasi-local state-translation functions are the universal liter-
als.

Lemma 10 For a given compilation schemef = hf�; fi; fg; ti; tgi and natural numbern, there
exists a set of atoms� � � such thatj�j � n andti andtg are quasi-local on�.

Proof. Let t:� ! 2� be a function that has as the result the union of all results for all possible
translations of a literal returned by the state-translation functions, i.e.,t(p) = ti(fpg; fpg) [ti(fpg; f:pg) [ti(fpg; ;)[tg(fpg; fpg) [tg(fpg; f:pg) [tg(fpg; ;):
SetS = � andU = ;. Now we choose an infinite subsetS0 of S such that either

1. for allp 2 S0, there are only finitely many other atomsq 2 S0 such that(t(p)\t(q))�U 6= ;,
or if such an infinite subset ofS does not exist,

2. S0 has a universal literall 62 U and we setU0 = U [flg.
Note that such an infinite subsetS0 must exist. The reason is that some literall 62 U must
occur for infinitely many atoms int over S because we could not find an infinite subset
satisfying condition (1). Because for a single atom there are only six possible ways to generatel, there must exist an infinite subset such that this literal occurs in all of eithertx(fpg; fpg),tx(fpg; f:pg), or tx(fpg; ;) (for x = i; g) and in this subsetl is a universal literal.

292

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

If we can pick a subset satisfying the first condition, we can choose from it a finite subset� with
any desired cardinality such that the state-translation functions are quasi-local with respect to� andU.

Otherwise we repeat the selection process withS0 andU0 until condition (1) is satisfied. This
selection process can only be repeated finitely often because otherwise there are some atomsp
such thatt(p) has an infinite result, which is impossible because the state-translation functions are
polynomial-time computable and can therefore have only finite results.

This demonstrates that there alwaysexistsa set of propositional atoms such that the state-
translation functions are quasi-local. However, we might not be able to effectively determine this
set.

Using this result, we are finally able to prove the non-existence of compilation schemes for
compiling conditional effects away when preserving plan size linearly.

Theorem 11 SLIC cannot be compiled toSBI preserving plan size linearly.

Proof. Assume for contradiction that there exists a compilation schemef from SLIC to SBI pre-
serving plan size linearly, which compiles the domain structure �2n defined above into theSBI
domain structure f�(�2n) = �02n = h�02n;O02ni:
Because of Lemma 10 we can assume that the set of atoms�2n is chosen such that the translation
functions are quasi-local on this set.

Let us now consider all initial state specificationsI that are consistent and complete over�n
and do not contain only positive or only negative literals:I 2 2c�n � f�n;:�ng:
Obviously, there are2n � 2 such state specifications. By assumption, eachSBI instance of the
following form h�02n; ti(�2n; I) [fi(�2n); tg(�n; I#) [fg(�2n)i
has ac-step plan. Since there are onlyO(jO02njc) differentc-step plans, which is a number polyno-
mial in the size of�2n, the same plan� is used for different initial states—providedn is sufficiently
large.

Suppose that the plan� is used for the pairs(I01;G01); (I02;G02), which result fromI1 andI2:I01 = ti(�n; I1) [fi(�2n)G01 = tg(�n; I#1) [fg(�2n)I02 = ti(�n; I2) [fi(�2n)G02 = tg(�n; I#2) [fg(�2n)
SinceI1 6= I2, I1 andI2 must differ on at least one atom, sayp. Without loss of generality we
assumep 2 I1 and:p 2 I2. Since� is a successful plan fromI01 toG01 and becausetg is modular,
it follows that Res(I01;�) � G01 � tg(fp#g; fp#g):

293

NEBEL

Some of the literals intg(fp#g; fp#g) may be added by operators in� but none of the literals
in tg(fp#g; fp#g) can be deleted by an operator in� without reestablishing this literal by another
operator after its deletion. Because� contains only operators with unconditional effects, it adds
and deletes the same literals regardless of the initial state.

Let us now assume that there exists a literall 2 tg(fp#g; fp#g) that is not added by�. This
implies thatl 2 I01 and we have to distinguish three cases:

1. l 2 fi(�2n), from which we conclude thatl 2 I02.
2. l 2 ti(fp#g; ;) � I01, which also implies thatl 2 I02.
3. l 2 ti(fqg; L) with q 6= p# andL 2 ffqg; f:qg; ;g. Because we assumed that the state-

translation functions are quasi-local on�2n, l must be a universal literal. Ifl is universal forti, then we will havel 2 I02 because the possible initial states contain positive and negative
literals as well as no literal for some elements from�2n. If l is universal fortg, it is present
in G01 and inG02 for the same reason. Further, becausel is not added by� and� is a valid
plan fromI02 toG02, it must also be part of ofI02.

In other words, all literalsl 2 tg(fp#g; fp#g) that are not added by� are already inI01 andI02.
From that we conclude that Res(I02;�) � tg(fp#g; fp#g):

Now let G002 = tg(�2n � fp#g; I#2 � f:p#g) [fg(�2n);G0002 = G002 [tg(fp#g; fp#g)= tg(�2n; I#2 � f:p#g [fp#g) [fg(�2n):
Becausetg is modular, it is clear thatG02 � G002 and thereforeRes(I02;�) � G002. Because�
achievesG002 as well astg(fp#g; fp#g), it follows that (again becausetg is modular),� achieves
alsoG0002 .

Sinceh�2n; I2; I#2 � f:p#g [fp#gi does not have any plan, there should not be any plan forh�02n; I02;G0002 i. The fact that� is a plan for this instance implies thatf cannot be a compilation
scheme, which is the desired contradiction.

Using Propositions 4 and 5 as well as Theorem 9, this result can be generalized as follows (see
also Table 1).

Corollary 12 SBIC , SBC , and[SLIC] cannot be compiled toSBI or any formalism specializingSBI
preserving plan size linearly.

This answers the question of whether more space efficient compilation schemes fromSLC toS than the one proposed by Gazen and Knoblock (1997) are possible. Even assuming unbounded
computational resources for the compilation process, a more space efficient compilation scheme is
impossible—provided that the compilation should preserveplan size linearly.8 If we allow polyno-
mially larger plans, then efficient compilation schemes arepossible (see Section 6).

8. This result demonstrates that the choice of the semanticscan be very important. If we interpret conditional effects
sequentially as Brewka and Hertzberg (1993) do, then there exists an straightforward compilation scheme preserving
plan size exactly.

294

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

5.2 Non-Uniform Complexity Classes

In the next section we make use of so-callednon-uniform complexity classes, which are defined
using advice-taking machines, in order to prove the impossibility of a compilation scheme. An
advice-taking Turing machine is a Turing machine with anadvice oracle, which is a (not neces-
sarily recursive) functiona from positive integers to bit strings. On inputI, the machine loads the
bit stringa(jjIjj) and then continues as usual. Note that the oracle derives itsbit string only from the
length of the input and not from the contents of the input. An advice is said to bepolynomial if the
oracle string is polynomially bounded by the instance size.Further, ifX is a complexity class de-
fined in terms of resource-bounded machines, e.g.,P or NP, thenX=poly (also callednon-uniform
X) is the class of problems that can be decided on machines withthe same resource bounds and
polynomial advice.

Because of the advice oracle, the classP/poly appears to be much more powerful thanP. How-
ever, it seems unlikely thatP/poly contains all ofNP. In fact, one can prove thatNP � P=poly
implies certain relationships between uniform complexityclasses that are believed to be very un-
likely. For stating this result, we first have to introduce the polynomial hierarchy.

Let X be a class of decision problems. ThenPX denotes the class of decision problemsP
that can be decided in polynomial time by a deterministic Turing machine that is allowed to use a
procedure—a so-calledoracle—for deciding a problemQ 2 X, whereby executing the procedure
does only cost constant time. Similarly,NPX denotes the class of decision problemsP such that
there is a nondeterministic Turing-machine that solves allinstances ofP in polynomial time using
an oracle forQ 2 X. Based on these notions, the sets�pk, �pk, and�pk are defined as follows:9�p0 = �p0 = �p0 = P;�pk+1 = P�pk ;�pk+1 = NP�pk ;�pk+1 = coNP�pk :
Thus,�p1 = NP and�p1 = coNP. The set of all classes defined in this way is called thepolynomial
hierarchy, denoted byPH. Note thatPH = [k�0�pk = [k�0�pk = [k�0�pk � PSPACE:
Further we have,�pk � �pk \�pk and�pk;�pk � �k+1. As with other classes, it is unknown whether
the inclusions between the classes are proper. However, it is strongly believed that this is the case,
i.e., that the hierarchy is truly infinite.

Based on the firm belief that the polynomial hierarchy is proper, the above mentioned question
of whetherNP � P=poly can be answered. It has been shown thatNP � P=poly would imply that
thepolynomial hierarchycollapses on the second level (Karp & Lipton, 1982), i.e.,�p2 = �p2. This,
however, is considered to be quite unlikely. Further, it hasbeen shown thatNP � coNP=poly orcoNP � NP=poly implies that the polynomial hierarchy collapses at the third level (Yap, 1983),
i.e.,�p3 = �p3, which again is considered to be very unlikely. We will use these result for proving
that for some pairs of formalisms it is very unlikely that oneformalism can be compiled into the
other one.

9. The super-scriptp is only used to distinguish these sets from the analogous sets in the Kleene hierarchy.

295

NEBEL

5.3 On the Expressive Power of Partial State Specifications and Boolean Formulae

In all the cases considered so far, operators over partial state specifications could be compiled to
operators over complete state specifications, i.e., partial state specifications did not add any ex-
pressiveness. This is no longer true, however, if we also allow for arbitrary boolean formulae in
preconditions and effect conditions. In this case, we can decide thecoNP-complete problem of
whether a formula is a tautology by deciding whether a one-step plan exists. Asking, for example,
if the SBI-instanceh�; fh'; gig; ;; fggi has a plan is equivalent to asking whether' is a tautology.

Let theone-step plan existence problem(1-PLANEX) be thePLANEX problem restricted to
plans of size one. From the above it is evident thatSBIC-1-PLANEX and SBI-1-PLANEX are
coNP-hard. Letp be some fixed polynomial, then thepolynomial step plan-existence problem
(p-PLANEX) is thePLANEX problem restricted to plans that have length bounded byp(n), if n is
the size of the planning instance. As is easy to see, this problem is inNP for all formalisms exceptSBIC andSBI . The reason is that after guessing a sequence of operators and state specifications of
polynomial size, one can verify for each step in polynomial time that the precondition is satisfied
by the current state specification and produces the next state specification. Since there are only
polynomially many steps, the overall verification takes only polynomial time.

Proposition 13 X -p-PLANEX can be solved in polynomial time on a nondeterministic Turing ma-
chine for all formalisms different fromSBIC andSBI .

From the fact thatSBI-1-PLANEX is coNP-hard and, e.g.,SBC-p-PLANEX is in NP, it follows
almost immediately that there is nopolynomial-timecompilation scheme fromSBI to SBC that
preserves plan length polynomially (ifNP 6= coNP). However, even if we allow for unbounded
computational resources of the compilation process, a proof technique first used by Kautz and Sel-
man (1992) can be used to show that such a compilation scheme cannot exist (provided�p3 6= �p3).
Theorem 14 SBI cannot be compiled toSBC preserving plan size polynomially, unless�p3 = �p3.
Proof. Let' be a propositional formula of sizen in conjunctive normal form with three literals per
clause. As a first step, we construct for eachn aSBI domain structure�n with size polynomial inn
and the following properties. Unsatisfiability of an arbitrary 3CNF formula' of sizen is equivalent
to 1-step plan existence for theSBI-1-PLANEX instanceh�n; I'; fggi, whereI' can be computed
in polynomial time from'.

Given a set ofn atoms, denoted byPn, we define the set of clausesAn to be the set containing
all clauses with three literals that can be built using theseatoms. The size ofAn is O(n3), i.e.,
polynomial inn. LetDn be a set of new atomspfl1;l2;l3g corresponding one-to-one to the clauses
inAn. Further, let �n =^� (l1 _ l2 _ l3 _ pfl1;l2;l3g) j fl1; l2; l3g 2 An�:

We now construct aSBI domain structure�n = h�n;Oni for all formulae of sizen as follows:�n = Pn [Dn [fgg;On = fhf:�ng; fggig:
296

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

LetC be a function that determines for all 3CNF formulae', which atoms inDn correspond to the
clauses in the formula , i.e.,C(') = fpfl1;l2;l3g j fl1; l2; l3g 2 'g:
Now, the initial state for any particular formula' of sizen is computed as follows:I' = :C(') [(Dn �C(')) [f:gg:

From the construction, it follows that there exists a one-step plan forh�n;On; I'; fggi iff ' is
unsatisfiable.

Let us now assume that there exists a compilation schemef from SBI to SBC preserving plan
size polynomially. Further, let us assume that theSBI domain structure�n is compiled to theSBC
domain structure�0n = h�0n;O0ni. Using this compiled domain structure, we can construct the
following advice-taking Turing machine.

On input of a formula' of sizen, we load the adviceh�0n; fi(�n;On); fg(�n;On)i. This
advice is polynomial because�n is polynomial in the size of' and a compilation scheme generates
only polynomially larger domain structures. Becauseti is a polynomial-time function andI' can
be computed from' in polynomial time, we can computeI0 = ti(�n; I') [fi(�n;On)
in polynomial time. Also the goal specificationG0 = tg(�n; fgg) [fg(�n;On)
can be computed in polynomial time. Finally, we decide thep-PLANEX problem on the resultingSBC-instanceh�0n; I0;G0i. From Proposition 13 we know that this can be done in polynomial time
on a nondeterministic Turing machine.

Because decidingp-PLANEX for h�0n; I0;G0i is equivalent to deciding1-PLANEX forh�n; I'; fggi, which is in turn equivalent to deciding unsatisfiability of', it follows that we can
decide acoNP-complete problem on a nondeterministic, polynomial advice-taking Turing machine
in polynomial time. From that it follows thatcoNP � NP=poly. Using Yap's (1983) result, the
claim follows.

Using Proposition 4 and Proposition 5, the above result generalizes as follows (see also Table 1).

Corollary 15 SBIC andSBI cannot be compiled to any of the other planning formalisms preserving
plan size polynomially, unless�p3 = �p3.

If we restrict the form of the formulae, however, we may be able to devise compilation schemes
from SBI to, e.g.,SB. Reconsidering the proof of the last theorem, it turns out that it is essential
to use the negation of a CNF formula as a precondition. If we restrict ourselves to CNF formulae
in preconditions, it seems possible to move from partial to complete state descriptions using ideas
similar to the ones used in the proof of Lemma 7.

However, no such compilation scheme will work forSBIC. The reason is the conditionA(S;post(o)) = P(S;post(o)) in the definition of the functionR. If this condition is not satis-
fied, the result of the operator is inconsistent. This condition could be easily employed to reduce
unsatisfiabilityof CNF formulae to 1-step plan existence, which enables us touse the same tech-
nique as in the proof of the above theorem.

297

NEBEL

5.4 Circuit Complexity

For the next impossibility result we need the notions ofboolean circuitsand families of circuits.
A boolean circuit is a directed, acyclic graphC = (V;E), where the nodesV are calledgates.
Each gatev 2 V has a typetype(v) 2 f:;_;^; 1; 0g [fx1; x2; : : :g. The gates withtype(v) 2f1; 0; x1; x2; : : :g have in-degree zero, the gates withtype(v) 2 f:g have in-degree one, and the
gates withtype(v) 2 f^;_g have in-degree two. All gates except one have at least one outgoing
edge. The gate with no outgoing edge is called theoutput gate. The gates with no incoming edges
are called theinput gates. Thedepth of a circuit is the length of the longest path from an input gate
to the output gate. Thesizeof a circuit is the number of gates in the circuit.

Given avalue assignmentto the variablesfx1; x2; : : :g, the circuit computes the value of the
output gate in the obvious way. For example, forx1 = 1 andx2 = 0 we get the value 1 at the output
gate of the circuit shown in Figure 4. ^ :x2x1

Figure 4: Example of a boolean circuit

Instead of using circuits for computing boolean functions,we can also use them for accepting
words of lengthn in f0; 1g?. A word w = x1 : : : xn 2 f0; 1gn is now interpreted as a value
assignment to then input variablesx1; : : : ; xn of a circuit. The word isacceptediff the output gate
has value 1 for this word. In order to deal with words of different length, we need one circuit for
each possible length. Afamily of circuits is an infinite sequenceC = (C0; C1; : : :), whereCn hasn input variables. The language accepted by such a family of circuits is the set of wordsw such thatCjjwjj acceptsw.

Usually, one considers so-calleduniform families of circuits, i.e., circuits that can be generated
on a Turing machine with alogn-space bound. Sometimes, however, also non-uniform families are
interesting. For example, the class of languages accepted by non-uniform families of polynomially-
sized circuits is just the classP/poly introduced in Section 5.2.

Using restrictions on the size and depth of the circuits, we can now define new complexity
classes, which in their uniform variants are all subsets ofP. One class that is important in the
following is the class of languages accepted by uniform families of circuits with polynomial size
and logarithmic depth, namedNC1. Another class which proves to be important for us is defined
in terms of non-standard circuits, namely circuits with gates that haveunbounded fan-in. Instead of
restricting the in-degree of each gate to be two at maximum, we now allow an unbounded in-degree.
The class of languages accepted by families of polynomiallysized circuits with unbounded fan-in
and constant depth is calledAC0.

298

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

From the definition, it follows almost immediately thatAC0 � NC1. Moreover, it has been
shown that there are some languages inNC1 that are not in the non-uniform variant ofAC0, which
implies thatAC0 6= NC1 (Furst, Saxe, & Sipser, 1984).

5.5 Boolean Formulae Cannot be Compiled to Conditional Effects

As we have seen in Section 5.3, Boolean formulae are quite expressive if they are used in combi-
nation with partial state specifications. However, what if all state specifications are complete? In
this case, it seems to be possible to simulate the evaluationof CNF formulae by using conditional
effects. In fact, it is possible to compile in polynomial-time, for example,SB toSLC preserving plan
size linearly, provided all formulae are in conjunctive normal form. Each operator would have to
be split into two operators, one that evaluates the clauses of all the formulae in the original operator
and one that combines these evaluations and takes the appropriate actions, e.g., asserting? if the
precondition is not satisfied. Sequencing of these pairs of operators can be achieved by introducing
some extra literals.

What can we say about the general case, however? When trying to simulate the evaluation of
an arbitrary logical formula using conditional effects, itseems to be the case that we need as many
operators as the nesting depth of the formula, which means that we would need plans that cannot be
bounded to be only linearly longer than the original plans.

We will use the results sketched in Section 5.4 to separateSB andSLC. In order to do so, let us
view domain structures with fixed size plans as “machines” that accept languages. For all wordsw
consisting ofn bits, let �n = h�n [fgg;Oni:
Assume that the atoms in�n are numbered from 1 ton. Then a wordw consisting ofn bits could
be encoded by the set of literalsIw = fpi j if the ith bit ofw is 1g [f:pi j if the ith bit ofw is 0g:
Conversely, for a consistent state specificationS 2 c�n, letwS be a word such that theith bit is 1 iffpi 2 S.

We now say that then-bit wordw is accepted with a one-step orc-step planby �n iff there
exists a one-step orc-step plan, respectively, for the instance�n = hh�n [fgg;Oni; Iw [f:gg; fggi:
Similarly to families of circuits, we also define families ofdomain structures,� = (�0;�1; : : :).
The language accepted by such a family with a one-step (orc-step) plan is the set of words accepted
using the domain structure�n for words of lengthn. Borrowing the notion of uniformity as well,
we say that a family of domain structures isuniform if it can be generated by alog n-space Turing
machine.

Papadimitriou has pointed out that the languages accepted by uniform polynomially-sized
boolean expressionsis identical toNC1 (Papadimitriou, 1994, p. 386). As is easy to see, a fam-
ily of SB domain structures is nothing more than a family of boolean expressions, provided we use
one-step plans for acceptance.

Proposition 16 The class of languages accepted by uniform families ofSB domain structures using
one-step plan acceptance is identical toNC1.

299

NEBEL

If we now have a closer look at what the power ofc-step plan acceptance for families ofSLC
domain structures is, it turns out that it is less powerful thanNC1. In order to show that, we will first
prove the following lemma that relatesc-stepSLC plans to circuits with gates of unbounded fan-in.

Lemma 17 Let� = h�;Oi be aSLC domain structure, letG � b�, and let� be ac-step plan over�. Then there exists a polynomially sized boolean circuitC with unbounded fan-in and depth7c+2
such that� is a plan forh�; I;Gi iff the circuitC has value 1 for the inputwI.
Proof. The general structure of a circuit for ac-stepSLC plan is displayed in Figure 5. For each

.

.

.

.

.

.

.

.

.

.

.

.

^ _
.
.
.

: :
.

.p01 p02 p03 p0npcnpc3pc2pc1 . . .?1 ?m
Figure 5: Circuit structure and goal testing for ac-stepSLC plan

plan step (or level)j and each atompi, there is a connectionpji . The connections on level0 are
the input gates, i.e.,p0i = xi. The goal test is performed by an̂-gate that checks that all the goals
are true on levelc, in our caseG = fp1;:p2; png. Further, using the_-gate, it is checked that no
inconsistency was generated when executing the plan.

For each plan stepj, it must be computed whether the precondition is satisfied and what the
result of the conditional effects are. Figure 6 (a) displaysthe precondition test for the preconditionfp1; p2;:p3g. If the conjunction of the precondition literals is not true, ?k becomes true, which is
connected to the_-gate in Figure 5.

Without loss of generality (using a polynomial transformation), we assume that all conditional
effects have the formL) l. Whether the effectl is activated on levelj is computed by a circuit as
displayed in Figure 6 (b), which shows the circuit forfp1;:p3g) :pi.

Finally, all activated effects are combined by the circuit shown in Figure 6 (c). For all atomspi,
we check whether bothpi and:pi have been activated, which would set?r true. This is again one
of the inputs of the_-gate in Figure 5. If neitherpi nor:pi have been activated, the value ofpi on
level j + 1 is determined by the value ofpi on levelj. Otherwise the value ofpi on levelj + 1 is
determined by the value ofpe;ji , i.e., the activation value of the positive effectpi on levelj.

The depths of the circuits in Figure 6 (b) and (c) dominate thedepth of the circuit necessary to
represent one plan step leading to the conclusion that a planstep can be represented using a circuit
of depth 7. Adding the depth of the goal testing circuit, the claim follows.

The lemma implies thatSLC c-step plan acceptance is indeed less powerful thanSB 1-step plan
acceptance, which means that a compilation scheme fromSB toSLC preserving plan size linearly is
impossible.

300

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

:̂
:pj1 pj2 pj3

?k

(c)

pj1 pj2 pj3
(b)(a)

. . . ?r
:pe;ji pj+1i

pe;ji :pe;ji pji
^ :
_

^ _ :^^ _

Figure 6: Circuit structure for precondition testing (a), conditional effects (b), and the computation
of effects (c) forSLC operators

Theorem 18 SB 6�c X , for all membersX of theSLIC-class.

Proof. We show thatSB 6�c SLC , from which by Theorem 9 and Proposition 4 the claim follows.
Assume for contradiction thatSB �c SLC . Let � = (�0;�1; : : :) be a uniform family ofSB

domain structures and�0 = (�00;�01; : : :) be theSLC domain structures generated by a compilation
schemef that preserves plan size linearly. By Lemma 17 we know that for eachSLC domain
structure�0n = h�0n;O0ni and given goalG0 we can generate a polynomially sized, unbounded fan-
in circuit with depth7c+ 2 that tests whether a particularc-step plan achieves the goal. In order to
decidec-step plan existence, we must testO(jO0njc) different plans, which is polynomial in the size
of �n becausef is a compilation scheme. For each plan, we can generate one test circuit, and by
adding another_-gate we can decidec-step plan existence using a circuit with depth7c+3 and size
polynomial in the size of�n. Further, since the state-translation functions are modular, the results
of ti for fixed � can be computed using an additional level of gates. Since by Proposition 16 all
languages inNC1 are accepted by uniform families ofSB domain structures using one-step plan
acceptance, our assumptionSB �c SLC implies that we can accept all language inNC1 by (possibly
non-uniform)AC0 circuits, which is impossible by the result of Furst and colleagues (1984).

Using the Propositions 4 and 5 again, we can generalize the above theorem as follows.

Corollary 19 SBC andSB cannot be compiled to[SLIC] or [SLI] preserving plan size linearly.

6. Compilability Preserving Plan Size Polynomially

As has been shown in the previous section, only the compilation schemes induced by Propositions 4
and 5 and the ones identified in Section 4 allow for compilation schemes preserving plan size ex-
actly. For all other pairs of formalisms we were able to rule out such compilation schemes—even

301

NEBEL

if we allow linear growth of the resulting plans. Nevertheless, there might still be a chance for
compilation schemes preserving plan size polynomially. Having shown thatSBIC andSBI cannot
be compiled to the other formalisms even if the plan can grow polynomially, we may still be able
to find compilation schemes preserving plan size polynomially for the SBIC /SBI pair and for the
remaining formalisms.

A preview of the results of this section is given in Figure 7. As it can be seen, we are ableSBICSBCSLC SLI SBSIC
SC SI SL
SLIC SBI

S
Figure 7: Equivalence classes of planning formalisms created by polynomial-time compilation

schemes preserving plan size polynomially. Compilation schemes constructed in this
section are indicated by dashed lines

to establish compilation schemes preserving plan size polynomially for all pairs of formalisms for
which we have not proved the impossibility of such compilation schemes.

6.1 Compiling Conditional Effects Away for Partial State Specifications

The first compilation scheme we will develop is one fromSBIC to SBI . As before, we assume that
the conditional effects have only singleton effect sets. Further, since we can use arbitrary boolean
formulae in the effect conditions inSBIC, we assume that there is only one rule for each effect literal.
Using a simple polynomial transformation, arbitrary sets of operators can be brought into this form.
This simplifies checking the conditionA(S;post(o)) = P(S;post(o)) considerably, because now
only one rule can activate a particular literal.

302

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

In order to simulate the parallel behavior of conditional effects, we have to break them up into
individual operators that are executed sequentially. Thismeans that for each conditional effect of
an operator we introduce two new operators. One simulates the successful application of the rule,
the other one simulates the “blocking” situation of the rule. At least one of these operators must
be executed for each conditional effect in the original operator. This is something we can force
by additional literals that are added to control the execution of operators. All in all this leads to a
sequence of operators that has length bounded by the number of conditional effects in the original
operator.

If we want to simulate the parallel behavior by a sequence of unconditional operators, the effects
of the unconditional operators should not directly influence the state description, but the effect
should be deferred until all operators corresponding to theset of conditional effects have been
executed. For this reason, we will use a sequence of “copyingoperators” which copy the activated
effects to the state description after all “conditional operators” have been executed. These “copying
operators” can also be used to check that the set of activatedeffects is consistent.

Theorem 20 SBIC can be compiled toSBI in polynomial time preserving plan size polynomially.

Proof. Assume that� = h�;Oi is theSBIC source domain structure and assume further, without
loss of generality (using a polynomial transformation), that all operators have the formoi = hpre(oi); f'i;1) li;1; : : : ; 'i;mi) li;migi;
with 'i;j 2 L�, li;j 2 b�, andli;j 6= li;k for i 6= k.

Let�+ and�� be disjoint copies of�, which are used to record the active effects of conditional
effects, and let�# be another disjoint copy, which is used to record that an active effect has not
been copied yet. Further, let�O = fpo j o 2 Og be a new set of atoms corresponding one-to-one to
the operators inO and let� be a set of symbols corresponding one-to-one to all conditional effects
inO, i.e., � = fxi;jj('i;j) li;j) 2 post(oi); oi 2 Og:
Finally, let c be a fresh atom not appearing in� [�+ [�� [�# [�O that signals that copying
the active effects to the state specification is in progress.The set of symbols�0 for the compiled
domain structure is then �0 = � [�+ [�� [�# [�O [� [fcg:

For each operatoroi 2 O, the compilation scheme introduces a number of new operators. The
first operator we introduce is one which checks whether the conditional effects of the previous
operators have all been executed, no copying is in progress and the precondition is satisfied. If this
is the case, the execution of the conditional effects for this operator is started:oprei = hpre(oi) [:�O [f:cg; fpoig [:�+ [:�� [:� [:�#i:
This operator enables all the “conditional effect operators.” For the activated effects, we introduce
the following operators:o);i;ji = hfpoi ^ 'i;jg; fxi;jg [fp+; p# j p = li;jg [fp�; p# j :p = li;jgi:

303

NEBEL

In words, if the effect condition is entailed, then the activated positive or negative effect as well as
the fact that the rule has been tried is recorded.

Since there is at most one effect literal for each conditional effect, a conditional effect is
“blocked” if the negation of the effect condition is entailed by the state specification. For all
“blocked conditional effects” we introduce the following operators:o:;i;ji = hfpoi ^ :'i;jg; fxi;jgi:

In order to check that all conditional effects have been tried (activating the corresponding effect
or not activating it because the conditional effect is blocked), the following operator is used:oei = hfpoig [fxi;j 2 � j ('i;j) li;j) 2 post(oi)g; fcg [f:poigi:
This operator enables copying of the activated effects to the state specification, which is achieved
with the following set of operators for each atomp 2 �:op+ = hfc; p+;:p�; p#g; fp;:p#gi;op� = hfc;:p+; p�; p#g; f:p;:p#gi;op? = hfc; p+; p�; p#g;?i:
Finally, we need an operator that checks that all possible effects have been copied. This operator
also starts the “execution cycle” again by enabling the execution of another “precondition operator:”oc = hfcg [:�#; f:cgi:
Using these definitions, we can now specify the set of compiled operators:O0 = foprei ; oei j oi 2 Og [fo);i;j j oi 2 O; ('i;j) li;j) 2 post(oi)g [fo:;i;j j oi 2 O; ('i;j) li;j) 2 post(oi)g [fop+; op�; op? j p 2 �g [focg:
Based on that, we specify a compilation schemef = hf�; fi; fg; ti; tgi as follows:f�(�) = h�0;O0ifi(�) = :�+ [:�� [:�# [:�O [:� [f:cg;fg(�) = :�O [f:cg;ti(�; I) = I;tg(�;G) = G:
The schemef obviously satisfies conditions (2) and (3) for compilation schemes and all the func-
tions can be computed in polynomial time. Further,F (�) is aSBI-instance if� is aSBIC-instance.

Let nowS 2 b� be a legalSBIC state specification and letS0 = R(S; oi) for some operatoroi 2 O. From the above discussion, it is clear that ifS0 6j= ?, then there exists a sequence�0 of
operators fromO0 consisting ofoprei , followed by operators of the formo);i;ji ando:;i;ji followed
by the operatoroei , followed in turn by operatorsopx, followed finally by the operatoroc, such thatS0 = Res(S [fi(�);�0) \ b�:

304

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Conversely, ifS0 j= ?, then there does not exist any plan that transformsR(S [fi(�); oprei)
into a legal state specification that contains:c and:poi .

Using induction on the plan length, it follows from the arguments above that there exists a plan� for � iff there exists a plan�0 for F (�) and for every such plan we havejj�0jj � jj�jj � (3 +2m), with m being the maximum number of conditional effects in operators ofO. Hencef is a
polynomial-time compilation scheme preserving plan size polynomially.

An immediate consequence of this theorem is thatSBIC andSBI form an equivalence class with
respect to compilability preserving plan size polynomially.

Corollary 21 SBIC and SBI are polynomial-time compilable to each other preserving plan size
polynomially.

Further, we know from Corollary 15 that this class cannot become larger.
As in the case of compilingSLIC to SLC, however, the result depends on the semantics chosen

for executing conditional effects over partial state specifications. If we use the alternative seman-
tics where the resulting state specification is legal when the application of all state-transformation
functions leads to a theory that can be represented as a set ofliterals, it seems likely that there exists
another scheme that preserves plan size polynomially. However, if we use the alternative semantics
that deletes all the literals in:(P(S;post(o)) � A(S;post(o)) if P(S;post(o) is consistent, then it
appears to be very unlikely that we are able to identify a compilation scheme that preserves plan
size polynomially.

6.2 Compiling Conditional Effects Away for Complete State Specifications

The next compilation scheme compilesSBC toSB andSLC toSL. Since we deal with complete state
specification, we do not have to take care of the conditionA(S;post(o)) = P(S;post(o)), which
is always true for complete states. This makes the compilation scheme somewhat simpler. SinceSL does not allow for general boolean formulae, the scheme becomes a little bit more difficult. In
general, however, the compilation scheme we will specify isvery similar to the one given in the
proof of Theorem 20.

Theorem 22 SBC can be compiled toSB andSLC can be compiled toSL in polynomial time pre-
serving plan size polynomially.

Proof. As in the proof of Theorem 20, we assume that� = h�;Oi is the (SBC or SLC) source
domain structure. Further, we assume that all operators have the formoi = hpre(oi); f�i;1) li;1; : : : ;�i;mi) li;migi;
with li;j 2 b� and�i;j � L� if � is aSBC structure or�i;j � b� if � is aSLC structure. This means
that we do not assume the effects to be unique for each conditional effect.

In addition, we assume the same set symbols for the compiled domain structure as in the proof
of Theorem 20: �0 = � [�+ [�� [�# [�O [� [fcg:

305

NEBEL

For each operatoroi 2 O, we introduce the operatorsoprei , oei , op+, op�, op?, andoc as in the proof of
Theorem 20. In addition, the following operators are needed:o);i;ji = hfpoig [�i;j; fxi;jg [fp+; p# j p = li;jg [fp�; p# j :p = li;jgi;o:;i;j;mi = hfpoig [f:'i;j;m j 'i;j;m 2 �i;jg; fxi;jgi:
The compiled set of operatorsO0 contains all of the above operators and the compilation scheme is
identical to the scheme presented in the proof of Theorem 20.This means that the only significant
difference to the compilation scheme presented in the proofof Theorem 20 is the operator schemeo:;i;j;mi which tests for each rule whether it contains an effect condition that blocks the rule. Since
we have complete state specifications, every conditional effect is either activated or blocked, and
thexi;j 's are used to record that the execution of each conditional effect has been tried.

Using now similar arguments as in the proof of Theorem 20, it follows that this compilation
scheme is indeed a scheme that leads to the claim made in the theorem.

It follows thatSBC andSB are equivalent with respect to�pp and all formalisms in[SLIC] and[SLI] are equivalent with respect to�pp. These two sets could be merged into one equivalence class,
provided we are able to prove that, e.g.,SB can be compiled toSL.

6.3 Compiling Boolean Formulae Away

In Section 5.5 we showed that it is impossible to compile boolean formulae to conditional effects if
plans are only allowed to grow linearly. However, we also sketched already the idea of a compilation
scheme that preserves plan size polynomially. Here we will now show that we can compile boolean
formulae toSL, which is expressively equivalent to basicSTRIPS, i.e., we can compile boolean
formulae away completely.

Theorem 23 SB is polynomial-time compilable toSL preserving plan size polynomially.

Proof. Assume that� = h�;Oi is aSB domain structure. Further assume without loss of generality
that all operatorsoi 2 O are of the formoi = h'i; Lii, with Li � b� and'i 2 L� (i.e., we have just
one formula as the precondition instead of a set of formulae).

Let �	 and�0	 be two new sets of atoms corresponding one-to-one to all sub-formulae oc-
curring in preconditions of operators inO. These new atoms are denoted byq and q0 for the
sub-formula . Atoms of the formq0 are used to record that the truth-value of the sub-formula
has been computed and the atoms of the formq are used to store the computed truth-value.

For each operatoroi = h'i; Lii, we will have in the target operator set the following operator:o0i = hfq'i ; q0'ig; Li [:�0	i:
The set of all operators generated in this way is denoted byO0.

Further, for each atomp 2 �, we introduce the following two operators:o+p = hfpg; fq0p; qpgi;o�p = hf:pg; fq0p;:qpgi:
The set of operators generated in this way is denoted byO�.

306

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

For each sub-formula occurring in preconditions ofO of the form = 1 ^ 2 the following
operators are introduced: o+ = hfq0 1 ; q0 2 ; q 1 ; q 2g; fq0 ; q gi;o�1 = hfq0 1 ;:q 1g; fq0 ;:q gi;o�2 = hfq0 2 ;:q 2g; fq0 ;:q gi:
For sub-formulae = 1 _ 2, the following operators are introduced:o+1 = hfq0 1 ; q 1g; fq0 ; q gi;o+2 = hfq0 2 ; q 2g; fq0 ; q gi;o� = hfq0 1 ; q0 2 ;:q 1 ;:q 2g; fq0 ;:q gi:
Finally, for = :
, we have the following operators:o+ = hfq0
 ;:q
g; fq0 ; q gi;o� = hfq0
 ; q
g; fq0 ;:q gi:
The set of operators generated by sub-formulae is denoted byO	.

Now we can specify the compilation schemef :f�(�) = h� [�	 [�0	; O0 [O� [O	i;fi(�) = :�0	;fg(�) = :�0	;ti(�; I) = I;tg(�;G) = G:
From the construction it is obvious that all the functions are polynomial-time computable, that

the state-translation functions are modular, that the induced functionF is a reduction, and that for
every plan� for a source planning instance� there exists a plan�0 for F (�) such thatjj�0jj �jj�jj � (m+1), withm being the maximum number of sub-formulae of preconditions inO. From
that, the claim follows.

There might be the question whether compiling boolean formulae away could be done more
efficiently. Using the result that boolean expressions can be evaluated by circuits with logarithmic
depth, this should be indeed possible. However, we are satisfied here with the result that there is
a compilation scheme preserving plan size polynomially at all. This result together with Theo-
rem 22 settles the question for compilation schemes preserving plan size polynomially for all pairs
of formalisms.

Corollary 24 All formalismsX with X v SLIC or X v SBC are polynomial-time compilable to
each other preserving plan size polynomially.

307

NEBEL

6.4 Parallel Execution Models and the Feasibility of Compilation Schemes Preserving Plan
Size Polynomially

While compilation schemes that preserve plan size exactly or linearly seem to be of immediate use,
a polynomial growth of the plan appears to be of little practical interest. Considering the practical
experience that planning algorithms can roughly be characterized by their property of how many
steps they can plan without getting caught by the combinatorial explosion and the fact that this
number is significantly smaller than 100, polynomial growthdoes not seem to make much sense.

If we takeGRAPHPLAN (Blum & Furst, 1997) into consideration again—the planningsystem
that motivated our investigation in the first place—it turnsout that this system allows for theparallel
executionof actions. Although parallel execution might seem to add tothe power of the planning
system considerably, it does not affect our results at all. If a sequential plan can solve a planning
instance withn steps, a parallel plan will also need at leastn actions. Nevertheless, although the size
of a plan (measured in the number of operations) might be the same, the number of time steps may
be considerably smaller—which might allow for a more efficient generation of the plan. Having a
look at the compilation scheme that compiles conditional effects away, it seems to be the case that
a large number of generated actions could be executed in parallel—in particular those actions that
simulate the conditional effects.

However, the semantics of parallel execution inGRAPHPLAN is quite restrictive. If one action
adds or deletes an atom that a second action adds or deletes orif one action deletes an atom that
a second action has in its precondition, then these two actions cannot be executed in parallel in
GRAPHPLAN. With this restriction, it seems to be impossible to compileconditional effects away
preserving the number of time steps in a plan. However, a compilation scheme that preserves the
number of time steps linearly seems to be possible. Instead of such a compilation scheme, the
approaches so far either used an exponential translation (Gazen & Knoblock, 1997) or modified the
GRAPHPLAN-algorithm in order to handle conditional effects (Anderson et al., 1998; Koehler et al.,
1997; Kambhampati et al., 1997). These modifications involve changes in the semantics of parallel
execution as well as changes in the search procedure. While all these implementations are compared
with the straightforward translation Gazen and Knoblock (1997) used, it would also be interesting
to compare them with a compilation scheme based on the ideas spelled out in Theorem 22 as the
base line.

7. Summary and Discussion

Motivated by the recent approaches to extend theGRAPHPLAN algorithm (Blum & Furst, 1997) to
deal withmore expressive planning formalisms(Anderson et al., 1998; Gazen & Knoblock, 1997;
Kambhampati et al., 1997; Koehler et al., 1997), we asked what the termexpressive powercould
mean in this context. One reasonable intuition seems to be that the termexpressive powerrefers
to how concisely domain structures and the corresponding plans can be expressed. Based on this
intuition and inspired by recent approaches in the area of knowledge compilation (Gogic et al., 1995;
Cadoli et al., 1996; Cadoli & Donini, 1997), we introduced the notion ofcompilability in order to
measure the relative expressiveness of planning formalisms. The basic idea is that acompilation
schemecan only transform the domain structure, i.e., the symbol set and the operators, while the
initial state and the goal specification are not transformed—modulo some small changes necessary
for technical reasons. Further, we distinguish compilation schemes according to whether the plan
in the target formalism has the same size (up to an additive constant), a size bounded linearly by the

308

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

size of the plan in the source formalism, or a size bounded polynomially by the original planning
instance and the original plan.

Although the compilability framework appears to be a straightforward and intuitive tool for
measuring the expressiveness of planning formalisms, it ispossible to come up with alternative
measures. Bäckström (1995), for instance, proposed to use ESP-reductions, which are polynomial
many-one reductions on planning problems that preserve theplan size exactly. However, requiring
that the transformation should be polynomial-time computable seems to be overly restrictive. In
particular, if we want to prove that one formalism isnotas expressive as another one, we had better
proven that there exists no compilation scheme regardless of how much computational resources
the compilation process may need. Furthermore, there appear to be severe technical problems to
using Bäckström's (1995) framework for proving negativeresults. On the other hand, all of the
positive results reported by Bäckström are achievable inthe compilation framework because the
transformations he used are in fact compilation schemes. Taking all this together, it appears to be
the case that the compilation framework is superior from an intuitive and technical point of view.

Another approach to judging the expressiveness of planningformalisms has been proposed by
Erol and colleagues (1994, 1996). They measure the expressiveness of planning formalisms accord-
ing to the set of plans a planning instance can have. While this approach contrastshierarchical task
networkplanning nicely withSTRIPS-planning, it does not help us in making distinctions between
the formalisms in theS-family.

The compilability framework is mainly a theoretical tool tomeasure how concisely domain
structures and plans can be expressed. However, it also appears to be a good measure of how
difficult planning becomes when a new language feature is added. Polynomial-timecompilation
schemes that preserve the plan size linearly indicate that it is easy to integrate the feature that is
compiled away. One can either use the compilation scheme as is or mimic the compilation scheme
by extending the planning algorithm. If only a polynomial-time compilation scheme leading to a
polynomial growth of the plan is possible, then this is an indication that adding the new feature
requires most probably a significant extension of the planning algorithm. If even a compilation
scheme preserving plan size polynomially can be ruled out, then there is most probably a serious
problem integrating the new feature.

Using this framework, we analyzed a large family of planningformalisms ranging from basic
STRIPS to formalisms with conditional effects, boolean formulae,and incomplete state specifica-
tions. The most surprising result of this analysis is that weare able to come up with a complete
classification. For each pair of formalisms, we were either able to construct apolynomial-time
compilation schemewith the required size bound on the resulting plans or we could prove that com-
pilation schemes are impossible—even if the computationalresources for the compilation process
are unbounded. In particular, we showed for the formalisms considered in this paper:� incomplete state specifications and literals in preconditions can be compiled to basicSTRIPS

preserving plan size exactly,� incomplete state specifications and literals in preconditions and effect conditions can be com-
piled away preserving plan size exactly, if we have already conditional effects,� and there are no other compilation schemes preserving plan size linearly except those implied
by the specialization relationship and those described above.

309

NEBEL

If we allow for polynomial growth of the plans in the target formalism, then all formalisms not
containing incomplete state specifications and boolean formulae are compilable to each other. In-
complete state specifications together with boolean formulae, however, seem to add significantly
to the expressiveness of a planning formalism, since these cannot be compiled away even when
allowing for polynomial growth of the plan and unbounded resources in the compilation process.

It should be noted, however, that some of these results hold only if we use the semantics for
conditional effects over partial state specifications as spelled out in Section 2.1. For other semantics,
we may get slightly different results concerning the compilability of conditional effects over partial
states.

One question one may ask is what happens if we consider formalisms with boolean formulae
that are syntactically restricted. As indicated at variousplaces in the paper, restricted formulae,
such as CNF or DNF formulae, can sometimes be easily compiledaway. However, there are also
cases when this is impossible. For example, it can be shown that CNF formulae cannot be compiled
to basicSTRIPS preserving plan size linearly (Nebel, 1999), which confirmsBäckström's (1995)
conjecture that CNF-formulae in preconditions add to the expressive power of basicSTRIPS.

Another question is how reasonable our restrictions on a compilation scheme are. In particular,
one may want to know whethernon-modularstate-translation functions could lead to more powerful
compilation schemes. First of all, requiring that the state-translation functions are modular seems
to be quite weak considering the fact that a compilation scheme should only be concerned with
the domain structure and that the initial state and goal specification should not be transformed at
all. Secondly, considering the fact that the state-translation functions do not depend on the operator
set, more complicated functions seem to be useless. From a more technical point of view, we need
modularity in order to prove that conditional effects and boolean formulae cannot be compiled away
preserving plan size linearly. For the conditional effects, modularity or a similar condition seems
to be crucial. For the case of boolean formulae, we could weaken the condition to the point that
we require only that state-translation functions are computable by circuits of constant depth—or
something similar. In any case, the additional freedom one gets from non-modular state-translation
functions does not seem to be of any help because these functions do not take the operators into
account. Nevertheless, it seems to be an interesting theoretical problem to prove that more powerful
state-translation functions do not add to the power of compilation schemes.

Although the paper is mainly theoretical, it was inspired bythe recent approaches to extend
the GRAPHPLAN algorithm to handle more powerful planning formalisms containing conditional
effects. So, what are the answers we can give to open problemsin the field of planning algorithm
design? First of all, Gazen and Knoblock's (1997) approach to compiling conditional effects away
is optimal if we do not want to allow plan growth more than by a constant factor. Secondly, all of
the other approaches (Anderson et al., 1998; Kambhampati etal., 1997; Koehler et al., 1997) that
modify the GRAPHPLAN algorithm are using a strategy similar to a polynomial-timecompilation
scheme preserving plan size polynomially. For this reason,these approaches should be compared
to a “pure compilation approach” using the ideas from the compilation scheme developed in the
proof of Theorem 22 as the base line. Thirdly, allowing for unrestricted boolean formulae adds
again a level of expressivity because they cannot be compiled away with linear growth of the plan
size. In fact, approaches such as the one by Anderson and colleagues (1998) simply expand the
formulae to DNF accepting an exponential blow-up. Again, wecannot do better than that if plan
size should be preserved linearly. Fourthly, if we want to add partial state specifications on top of
general boolean formulae, this would amount to an increase of expressivity that is much larger than

310

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

adding conditional effects or general formulae to basicSTRIPS, because in this case there is no way
to compile this away even if we allow for polynomial plan growth.

Finally, one may wonder how our results apply to planning approaches that are based on translat-
ing (bounded) planning problems to propositional logic such asSATPLAN (Kautz & Selman, 1996)
or BLACKBOX (Kautz & Selman, 1998). Since the entire analysis of the relative expressiveness of
planning formalisms uses the assumption that we compile from one planning formalism to another
planning formalism, the results do not tell us anything about the size of representations if we switch
to another formalism. In particular, it seems possible to find an encoding of (bounded) planning
problems with conditional operators in propositional logic which is as concise as an encoding of
unconditional operators. The only advice our results give is that such a concise encoding will not
be found by first translating conditional actions to unconditional actions and then using the “stan-
dard” encoding for unconditional actions (Kautz, McAllester, & Selman, 1996) to generate boolean
formulae. However, addressing the problem of determining the conciseness of representation in this
context appears to be an interesting and relevant topic for future research.

Acknowledgments

The research reported in this paper was started and partly carried out while the author enjoyed being
a visitor at the AI department of the University of New South Wales. Many thanks go to Norman
Foo, Maurice Pagnucco, and Abhaya Nayak and the rest of the AIdepartment for the discussions
and cappuccinos. I would also like to thank Birgitt Jenner and Jacobo Toran for some clarifications
concerning circuit complexity.

Appendix A: Symbol Index

Symbol Page Explanationj � j 292 cardinality of a setjj � jj 277 size of an instance) 274 symbol used in conditional effectsv 279 syntactic specialization relation�xy 282 compilability relation with restrictionx andy? 273 boolean constant denoting falsity, also denoting
the illegal state specification> 273 boolean constant denoting trutha(�) 295 advice functionA(�; �) 275, 275active effects of an operator in a state or state specification

AC0 298 complexity classC 298 boolean circuitC 298 family of boolean circuits
coNP 272 complexity class
coNP/poly295 non-uniformcoNPCWA�(�) 284 closing a set of literals w.r.t.�� 277 plan, i.e., sequence of operators�pi 295 complexity class in the polynomial hierarchyI 295 instance of a problem

311

NEBELI 277 initial state descriptionf 282 compilation scheme (= hf�; fi; fg; ti; tgi)F (�) 282 transformation induced by compilation schemef�; fi; fg 282 components of a compilation schemeG 277 goal of a planning task� 274 set of boolean formulae
; '; 273 boolean formulael 287 literalL;K 273 sets of literalsL� 273 all boolean formulae that use atoms from�Mod(�) 274 set of all models of a theory
NC1 298 complexity classneg(�) 273 negative literals in a set of literals
NP 272 complexity class
NP/poly 295 non-uniformNPo 274 operator (= hpre;posti)O 276 set of operatorsO? 277 set of finite sequences of operatorsp; q; u; v; x 274 propositional atomsP(�; �) 275 potentially active effects of an operator

for a given state specification
P 272 complexity class
P/poly 295 non-uniformP
PH 295 the polynomial hierarchypos(�) 273 positive literals in a set of literals
PLANEX 279 plan existence problem
post 274 postconditions of an operator
pre 274 preconditions of an operator
PSPACE 272 complexity class� 277 planning instance (= h�; I;Gi)�pi 295 complexity class in the polynomial hierarchyR(�; �) 276 maps a state specification and an operator to a new stateRes(�; �) 277 extension ofR(�; �) to planss 274 state (or truth assignment)S 274 state specificationS 278 theSTRIPSplanning formalismSL 278 STRIPSwith literals in preconditionsSB 278 STRIPSwith boolean formulae in preconditionsSI 278 STRIPSwith incomplete state descriptionsSC 278 STRIPSwith conditional effectsS ::: 278 STRIPSwith combinations of the above extensions[SLIC] 283 equivalence classes induced by�1p[SLI] 283 equivalence classes induced by�1p�(�) 273 all propositional atoms used in a set of literals� 273 countably infinite set of propositional atoms

312

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS� 273 finite subset of�b� 273 set of literals overs��pi 295 complexity class in the polynomial hierarchyti; tg 282 state-translation functions in a compilation schemeU 292 universal literalsw 298 a word overf0; 1g?
X 295 some complexity classX , Y 272 some planning formalisms� 277 domain structure (= h�;Oi)� 299 family of domain structures

References

Anderson, C. R., Smith, D. E., & Weld, D. S. (1998). Conditional effects in Graphplan. InProceed-
ings of the 4th International Conference on Artificial Intelligence Planning Systems (AIPS-
98), pp. 44–53. AAAI Press, Menlo Park.

Baader, F. (1990). A formal definition for expressive power of knowledge representation languages.
In Proceedings of the 9th European Conference on Artificial Intelligence (ECAI-90)Stock-
holm, Sweden. Pitman.

Bäckström, C. (1995). Expressive equivalence of planning formalisms.Artificial Intelligence, 76(1–
2), 17–34.

Bäckström, C., & Nebel, B. (1995). Complexity results forSAS+ planning.Computational Intelli-
gence, 11(4), 625–655.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis.Artificial
Intelligence, 90(1-2), 279–298.

Brewka, G., & Hertzberg, J. (1993). How to do things with worlds: On formalizing actions and
plans..Journal Logic and Computation, 3(5), 517–532.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.Artificial
Intelligence, 69(1–2), 165–204.

Cadoli, M., & Donini, F. M. (1997). A survey on knowledge compilation. AI Communications,
10(3,4), 137–150.

Cadoli, M., Donini, F. M., Liberatore, P., & Schaerf, M. (1996). Comparing space efficiency of
propositional knowledge representation formalism. In Aiello, L. C., Doyle, J., & Shapiro,
S. (Eds.),Principles of Knowledge Representation and Reasoning: Proceedings of the 5th
International Conference (KR-96), pp. 364–373 Cambridge, MA. Morgan Kaufmann.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proceedings of the 12th National Conference of the AmericanAssociation for Artificial Intel-
ligence (AAAI-94), pp. 1123–1129 Seattle, WA. MIT Press.

313

NEBEL

Erol, K., Hendler, J. A., & Nau, D. S. (1996). Complexity results for hierarchical task-network
planning.Annals of Mathematics and Artificial Intelligence, 18, 69–93.

Fikes, R. E., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem proving
to problem solving.Artificial Intelligence, 2, 189–208.

Furst, M., Saxe, J. B., & Sipser, M. (1984). Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1), 13–27.

Garey, M. R., & Johnson, D. S. (1979).Computers and Intractability—A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA.

Gazen, B. C., & Knoblock, C. (1997). Combining the expressiveness of UCPOP with the efficiency
of Graphplan. In Steel, S., & Alami, R. (Eds.),Recent Advances in AI Planning. 4th European
Conference on Planning (ECP'97), Vol. 1348 ofLecture Notes in Artificial Intelligence, pp.
221–233 Toulouse, France. Springer-Verlag.

Gogic, G., Kautz, H. A., Papadimitriou, C. H., & Selman, B. (1995). The comparative linguistics
of knowledge representation. InProceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI-95), pp. 862–869 Montreal, Canada. Morgan Kaufmann.

Kambhampati, S., Parker, E., & Lambrecht, E. (1997). Understanding and extending Graphplan.
In Steel, S., & Alami, R. (Eds.),Recent Advances in AI Planning. 4th European Conference
on Planning (ECP'97), Vol. 1348 of Lecture Notes in Artificial Intelligence, pp. 260–272
Toulouse, France. Springer-Verlag.

Karp, R. M., & Lipton, R. J. (1982). Turing machines that takeadvice. L' Ensignement
Mathématique, 28, 191–210.

Kautz, H. A., McAllester, D. A., & Selman, B. (1996). Encoding plans in propositional logic. In
Aiello, L. C., Doyle, J., & Shapiro, S. (Eds.),Principles of Knowledge Representation and
Reasoning: Proceedings of the 5th International Conference (KR-96), pp. 374–385 Cam-
bridge, MA. Morgan Kaufmann.

Kautz, H. A., & Selman, B. (1992). Forming concepts for fast inference.. InProceedings of the
10th National Conference of the American Association for Artificial Intelligence (AAAI-92),
pp. 786–793 San Jose, CA. MIT Press.

Kautz, H. A., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and
stochastic search. InProceedings of the 13th National Conference of the AmericanAssocia-
tion for Artificial Intelligence (AAAI-96), pp. 1194–1201. MIT Press.

Kautz, H. A., & Selman, B. (1998). BLACKBOX: A new approach tothe application of theorem
proving to problem solving. InWorking notes of the AIPS'98 Workshop on Planning as
Combinatorial SearchPittsburgh, PA.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extending planning graphs to an
ADL subset. In Steel, S., & Alami, R. (Eds.),Recent Advances in AI Planning. 4th European
Conference on Planning (ECP'97), Vol. 1348 ofLecture Notes in Artificial Intelligence, pp.
273–285 Toulouse, France. Springer-Verlag.

314

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Lifschitz, V. (1986). On the semantics of STRIPS. In Georgeff, M. P., & Lansky, A. (Eds.),Reason-
ing about Actions and Plans: Proceedings of the 1986 Workshop, pp. 1–9 Timberline, OR.
Morgan Kaufmann.

Nebel, B. (1999). What is the expressive power of disjunctive preconditions?. In Biundo, S., & Fox,
M. (Eds.),Recent Advances in AI Planning. 5th European Conference on Planning (ECP'99)
Durham, UK. Springer-Verlag. To appear.

Papadimitriou, C. H. (1994).Computational Complexity. Addison-Wesley, Reading, MA.

Pednault, E. P. (1989). ADL: Exploring the middle ground between STRIPS and the situation
calculus. In Brachman, R., Levesque, H. J., & Reiter, R. (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the 1st International Conference (KR-89),
pp. 324–331 Toronto, ON. Morgan Kaufmann.

Yap, C. K. (1983). Some consequences of non-uniform conditions on uniform classes.Theoretical
Computer Science, 26, 287–300.

315

