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Conformant Planning
First Step toward Planning Under Uncertainty
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Conformant Planning

✤ Basic assumption in classical planning: the initial state is fully known

✤ What if we don’t know everything about the initial state?

✤ Conformant planning -- like classical planning, but instead of a single possible initial state, a set of 
possible initial states

✤ Other forms of uncertainty:

✤ Uncertainty about the effect of actions (non-deterministic, stochastic)

✤ Some conformant planning algorithms can deal with non-deterministic effects

✤ Related issues:

✤ Observability: can we observe information about the current state?

✤ Conformant planning: no observations during plan execution
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Conformant Planning

✤ Conformant Planning problem 〈P,A,I,G〉

✤ I is an arbitrary formula, and any state s that satisfies I is a possible initial state

✤ A can be non-deterministic. Later we will focus on deterministic effects

✤ Model -- identical to classical planning (possibly non-deterministic) automaton with multiple 
initial states.

✤ Solution -- a plan that is guaranteed to take us from any initial state to some goal state, no matter 
what the effect of actions is. 

✤ Language -- like strips except:

✤ Initial state described by a formula -- any assignment satisfying it is a legal state

✤ Non-determinism can be captured by disjunctive effects: p v -p
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Belief States

✤ Central concept: belief state --- the set of possible (world) states

✤ Initial belief state: {s | s ⎮= I}

✤ If our current belief state is b and we apply action a, then we reach a new belief 
state b’={a(s) | s ⎮= b}
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Search in Belief Space

✤ Conformant planning can be viewed as the problem of finding a path in belief 
space

✤ Initial state: initial belief state

✤ Goal state: any belief state b such that s∈ b ⇒ s ⎮= g

✤ Actions: a(b)={a(s) | s ⎮= b}

✤ In general, a belief state could require an exponentially large (in # of state 
variables) description
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Complexity

✤ We can verify that a classical plan is true in time linear in plan length and # of 
propositions

✤ Verifying that a conformant plan is correct may be intractable 

✤ Initial state: initial belief state

✤ Goal state: any belief state b such that s∈ b ⇒ s ⎮= g

✤ Actions: a(b)={a(s) | s ⎮= b}

✤ In general, a belief state could require an exponentially large (in # of state 
variables) description
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Generating Conformant Plans 

✤ Two main issues:

✤ How do we represent belief states efficiently?

✤ Small size desirable

✤ Ability to quickly detect goal satisfaction

✤ Ability to quickly detect which action is applicable

✤ How can we generate good heuristic estimates?

10



Special Case

✤ Standard STRIPS actions 

✤ Initial state: the value of some propositions is known, the value of others is 
completely unknown (no constraints of the form p v q)

✤ Solution:???
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Representing Belief States

1. Explicit representation: Maintain a set of states

• All operations require time linear in number of possible states

• All operations are conceptually simple

• The number of possible states can be very large

• Does not work in practice

2. Symbolic representation: Maintain formula φ over state propositions

• s is a possible state iff it satisfies φ

• Key issue: how do we represent φ

• Different choices affect the computational and conceptual difficulty of different operations 
(update, verification of goal/preconditions) and the size of the formula
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Alternative Symbolic 
Representations
✤ Logical formula w/o constraints

✤ Conjunctive Normal Form: Conjunction of Disjunctions

✤ (pvqvr) & (-pvwvd) & (-wvqvs)

✤ Checking whether a precondition/goal holds require solving un-sat problem

✤ Disjunctive Normal Form: Disjunction of Conjunctions

✤ (p&q&r) v (-p&w&d) v (-w&qs&)

✤ Checking whether a condition holds is easy

✤ The number of conjuncts can grow rapidly 

✤ Binary Decision Diagrams
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Binary Decision Diagrams

✤ A data structure used for compactly representing boolean functions

✤ Made popular by work on program verification

✤ Based on recursive Shannon expansion

✤ ! ! ! f  =  x fx + x’ fx’

✤ Canonical representation

✤ reduced ordered BDDs (ROBDD) are canonical (= there is only one way to 
represent any function given a fixed variable order)
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Recursive Shannon Expansion for 
f= ac + bc
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BDD operations

✤ When the two outgoing edges of a node point to the same node, remove it

✤
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BDD Construction

✤ You can start with a decision tree and merge: example f=ac+bc

✤ Reduced, ordered, BDD:

✤ Reduced -- no additional reductions can be applied

✤ Ordered -- the order of variables in a path from the root to a leaf is fixed

18



BDD Construction

✤ You can start with a decision tree and merge: example f=ac+bc

✤ Reduced, ordered, BDD:

✤ Reduced -- no additional reductions can be applied

✤ Ordered -- the order of variables in a path from the root to a leaf is fixed
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BDD Construction (continued)
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BDDs Support Efficient Logical 
Manipulations

✤ Negating a function (very simple??)

✤ Conjoining two functions

✤ Disjoining two functions

✤ Others

✤ Operations utilize the recursive definition of the function
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Implicit Representation

✤ This is also a representation via a formula, but with different propositions

✤ Essentially, this is the same formula generated by a SAT-encoding

✤ A state s is possible currently if there is a satisfying assignment that assigns the 
propositions at time t the same values as s.

✤ Update is very easy

✤ Checking whether a condition holds now requires verifying that a formula is 
unsatisfiable

✤ The formula can be simplified during run-time
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Searching in Belief Space

✤ All current planners use forward search

✤ Main problem: heuristics are difficult to generate

✤ Size heuristic: hs(b) = -1 *  ⎮{s : s∈b}⎮

✤ Pushes toward belief states with more certainty

✤ That’s about it ... not strong enough.
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The Translation-Based Approach

✤ In classical planning, if we know the initial state, we know the current state simply from the description of the actions

✤ Basic idea: maintain a copy of each proposition for each possible initial state

✤ p/i1, p/i2, ... , p/ik

✤ And also a “general” copy: p

✤ Generate actions that update all copies

✤ If p --> q is an original effect of a, add p/ij --> q/ij  for every 1≤j≤k

✤ This way, we know what’s true now as a function of what was true initially

✤ We can also deduce that if p/ij  holds now for every 1≤j≤k, then p holds.

✤ This way, we can know whether some precondition or goal condition holds

✤ So far, pretty wasteful because we may have exponentially many initial states
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The Translation-Based Approach

✤ We can use this idea to generate a new classical planning problem

✤ Propositions: p, p/ij for every possible proposition p and every possible initial state ij 

✤ Actions: 

✤ the original actions, with effects modified as described before

✤ special inference actions: p/i1 ∧ p/i2 ∧ ... ∧ p/ik ➞ p  for every proposition p

✤ Initial state: p/ij  is true iff p holds in possible initial state ij 

✤ Goal state: g (as in the original problem)

✤ We get a classical planning problem, and we can solve it with a classical planner

✤ No need for special heuristics!
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The Translation-Based Approach

✤ Actually, in the literature:

✤ Propositions: Kp, Kp/ij is used

✤ Kp -- p is known

✤ Kp/ij -- p is known given ij

✤ More generally: Kp/t -- p is known given some condition t on the initial state

✤ K is used in logics of knowledge: Something is known if it holds in all possible states.

✤ This is captured by: Kp/i1 ∧ Kp/i2 ∧ ... ∧ Kp/ik ➞ Kp

✤ The planner is reasoning about our state of knowledge
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The Translation-Based Approach

✤ Main problem: many possible initial states

✤ Possible solution: use tags (conditions) that are more general

✤ This is not always possible, but in many problem it works

✤ When it doesn’t work, we’re in trouble -- why?

✤ Example: two variables: p1,p2,...,pk. Both unknown initially.

✤ 2k possible initial states

✤ Suppose that the goal is p1&...&pk, and ai has a conditional effect: -pi --> pi

✤ According to previous slides, we need 2k possible tags

✤ We can work with 2*k tags -- one for each value of each variable

✤ Reason -- the effect on tags is independent
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