Journal of Atrtificial Intelligence Research 12 (2000) 27153 Submitted 2/00; published 5/00

On the Compilability and Expressive Power
of Propositional Planning Formalisms

Bernhard Nebel NEBEL@INFORMATIK .UNI-FREIBURG.DE
Institut fur Informatik, Albert-Ludwigs-Universit, Georges-ihler-Allee, D-79110 Freiburg, Germany

Abstract

The recent approaches of extending ttreAPHPLAN algorithm to handle more expressive
planning formalisms raise the question of what the formal meaningxpirassive power” is. We
formalize the intuition that expressive power is a measure of how selycplanning domains
and plans can be expressed in a particular formalism by introducing tlenrad “compilation
schemes” between planning formalisms. Using this notion, we analyzexjiressiveness of a
large family of propositional planning formalisms, ranging froasteSTRIPSto a formalism with
conditional effects, partial state specifications, and propositionaluiaenin the preconditions.
One of the results is that conditional effects cannot be compiled awaiif gize should grow
only linearly but can be compiled away if we allow for polynomial growftthe resulting plans.
This result confirms that the recently proposed extensions tera@HPLANalgorithm concerning
conditional effects are optimal with respect to the “compilability” franoekv Another result is that
general propositional formulae cannot be compiled into conditional effetiie plan size should
be preserved linearly. This implies that allowing general propositiftmradulae in preconditions
and effect conditions adds another level of difficulty in generating a plan.

1. Introduction

GRAPHPLAN (Blum & Furst, 1997) ansATPLAN (Kautz & Selman, 1996) are among the most
efficient planning systems nowadays. However, it is gehefalt that the planning formalism
supported by these systems, namely, propositional tsasters (Fikes & Nilsson, 1971), is not
expressiveenough. For this reason, much research effort (AndersoithSénWeld, 1998; Gazen
& Knoblock, 1997; Kambhampati, Parker, & Lambrecht, 199@gHKler, Nebel, Hoffmann, & Di-
mopoulos, 1997) has been devoted in extendimgpPHPLAN in order to handle more powerful
planning formalisms such aoL (Pednault, 1989).

There appears to be a consensus on how nedphessive powes added by a particular lan-
guage feature. For example, everybody seems to agree ttiagatkegative preconditions does not
add very much to the expressive power of basieips whereas conditional effects are considered
as a significant increase in expressive power (Anderson.,e1298; Gazen & Knoblock, 1997,
Kambhampati et al., 1997; Koehler et al., 1997). Howevas, iinclear how to measure the expres-
sive power in a more formal way. Related to this problem isgivestion of whether “compilation”
approaches to extend the expressiveness of a planninglfemmere optimal. For example, Gazen
and Knoblock (1997) propose a particular method of compibiperators with conditional effects
into basicsTRIPSoperators. This method, however, results in exponentlatiyer operator sets.
While most people (Anderson et al., 1998; Kambhampati etl807; Koehler et al., 1997) agree
that we cannot do better than that, nobody has proven yettiabre space-efficient method is
impossible.

(©2000 Al Access Foundation and Morgan Kaufmann Publishellgights reserved.

NEBEL

In order to address the problem of measuring the relativeessjve power of planning for-
malisms, we start with the intuition that a formalisthis at least as expressivas another formal-
ism) if planning domainsnd the correspondingansin formalism)’ can beconcisely expressed
in the formalismX’. This, at least, seems to be the underlying intuition whesressive power is
discussed in the planning literature.

Backstrom (1995) proposed to measure the expressivarigdanning formalisms using his
ESP-reductions These reductions are, roughly speaking, polynomial nwagy+eduction's on
planning instances thato not change the plan lengthUsing this notion, he showed that all of
the propositional variants of basg&TrIPS not containing conditional effects or arbitrary logical
formulae can be considered as expressively equivalent. ekenytaking our point of view, ESP-
reductions are too restrictive for two reasons. Firstignsimust have identical size, while we might
want to allow a moderate growth. Secondly, requiring that tdansformation can be computed
in polynomial time is overly restrictive. If we ask for howrgisely something can bexpressed
this does not necessarily imply that there exists a polyabtithe transformation. In fact, one
formalism might be as expressive as another one, but theintapptween the formalisms might
not be computable at all. This, at least, seems to be the asgamption made when the term
expressive powes discussed (Baader, 1990; Cadoli, Donini, Liberatore, chrf, 1996; Erol,
Hendler, & Nau, 1996; Gogic, Kautz, Papadimitriou, & Selmh®05).

Inspired by recent approaches to measure the expressivehksowledge representation for-
malisms (Cadoli et al., 1996; Gogic et al., 1995), we propmsaddress the questions of how
expressive a planning formalism is by using the notiorahpiling one planning formalism into
another one. A compilation scheme from one planning foisnatio another differs from a polyno-
mial many-one reduction in that it is not required that thepiation is carried out in polynomial
time. However, the result should be expressible in polyabispace. Furthermore, it is required
that the operators of the planning instance can be tradsketbout considering the initial state
and the goal. While this restriction might sound unnecdgsaastrictive, it turns out that existing
practical approaches to compilation (Gazen & Knoblock, 7% well as theoretical approaches
(Backstrom, 1995) consider ondyructuredtransformations where the operators can be transformed
independently from the initial state and the goal desaiptiFrom a technical point of view this
restriction guarantees that compilations are non-trivfahe entire instance could be transformed,
a compilation scheme could decide the existence of a plahémsource instance and then generate
a small solution-preserving instance in the target forsmaliwhich would lead to the unintuitive
conclusion that all planning formalisms have the same espre power.

As mentioned in the beginning, not only the space taken updydmain structure is important,
but also the space used by the plans. For this reason, weglistih between compilation schemes
in whether they preserve plan siggactly linearly, or polynomially

Using the notion ofcompilability, we analyze a wide range of propositional planning for-
malisms, ranging from basisTRIPSto a planning formalism containingonditional effectsar-
bitrary boolean formulagandpartial state specificationsAs one of the results, we identify two
equivalence classes of planning formalisms with respepblgnomial-timecompilability preserv-
ing plan size exactly. This means that adding a languagerge&d a formalism without leaving
the class does not increase the expressive power and shatuddfect the principal efficiency of

1. We assume that the reader has a basic knowledge of cotyptlesory (Garey & Johnson, 1979; Papadimitriou,
1994), and is familiar with the notion ggolynomial many-one reductiomgd thecomplexity classeB, NP, coNP,
andPSPACE. All other notions will be introduced in the paper when nakde

272

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

the planning method. However, we also provide results sbparateplanning formalisms using
results from computational complexity theory on circuitrgaexity and non-uniform complexity
classes. Such separation results indicate that addingtiaytar language feature adds to the ex-
pressive power and to the difficulty of integrating the featinto an existing planning algorithm.
For example, we prove that conditional effects cannot bepilechaway and that boolean formulae
cannot be compiled into conditional effects—provided tlamg in the target formalism are allowed
to grow only linearly.

This answers the question posed in the beginning. The catigilapproach proposed by Gazen
and Knoblock (1997) cannot be more space efficient, even dl@es for linear growth of the plans
in the target formalism. Allowing for polynomial growth of the plans, however, thengpilation
scheme can be more space efficient. Interestingly, it seetesthe case that a compilation scheme
that allows for polynomially larger plans is similar to threplementation of conditional effects in
the PP system (Koehler et al., 1997), Kambhampati and colleag{i€97) planning system, and
Anderson and colleagues' (1998) planning system.

The rest of the paper is structured as follows. In Section€jntroduce the range of proposi-
tional planning formalisms analyzed in this paper togetvi#r general terminology and definitions.
Based on that, we introduce the notion of compilability bedw planning formalisms in Section 3.
In Section 4 we present polynomial-time compilation schetoetween different formalisms that
preserve the plan size exactly, demonstrating that thesgafisms are of identical expressiveness.
For all of the remaining cases, we prove in Section 5 thattkannot be any compilation scheme
preserving plan size linearly, even if there are no boundshencomputational resources of the
compilation process. In Section 6 we reconsider the questiadentical expressiveness by us-
ing compilation schemes that allow for polynomial growthtloé plans. Finally, in Section 7 we
summarize and discuss the results.

2. Propositional Planning Formalisms

First, we will define a very general propositional plannirgnfialism, which appears almost as
expressive as the propositional varianhof. (Pednault, 1989). This formalism allows for arbitrary
boolean formulae as preconditions, conditional effectsartial state specifications. Subsequently,
we will specialize this formalism by imposing different $satic restrictions.

2.1 A General Propositional Planning Formalism

Let X be the countably infinite set gdropositional atoms or propositional variables. Finite
subsets o are denoted by.. Further, is defined to be the set consisting of the constants
(denoting truth) andL (denoting falsity) as well as atoms and negated atoms,the ljterals,
over X. Thelanguage of propositional logicover the logical connectives, v, and— and the
propositional atom& is denoted byCs.. A clauseis a disjunction of literals. Further, we say that
a formulay € Ly is in conjunctive normal form (CNF) if it is a conjunction of clauses. Itis in
disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.

Given a set of literald., by pos(L) we refer to thepositive literals in L, by neg(L) we refer to
thenegative literalsin L, and byo (L) to the atoms used i, i.e.,o (L) ={p € X |pe Lor-p €

2. Note that Gazen and Knoblock's (1997) translation schels@ generates planning operators that depend on the
initial state and the goal description. However, these atpes simply code the initial state and the goal description
and do nothing else. For this reason, we can ignore them here.

273

NEBEL

L}. Further, we define L to be theelement-wise negatiorof L, i.e.,
~L={p[-peLiU{-p|peclL}

A state s is atruth-assignmenfor the atoms irk. In the following, we also identify a state with
the set of atoms that are true in this statestate specificationS is a subset of}, i.e., itis alogical
theoryconsisting of literals only. It is calleconsistentiff it does not contain complementary literals
or L. In general, a state specification describes many statemlpall those that satisf§, which
are denoted byod(S). Only in case thab is complete i.e., for eaclp € ¥ we have eithep € S
or —p € S, S has precisely one model, namelys(S). By abusing notation, we will refer to the
inconsistentstate specification by, which is the'illegal” state specification.

Operators are pairso = (pre, posh. We use the notatiopre(o) andposi(o) to refer to the first
and second part of an operatarrespectively. Therecondition pre is an element oR%=, i.e.,
it is a set of propositional formulae. The gmist which is the set opostconditions consists of
conditional effects each having the form

I'= L,

where the elements a@f C Ly, are calledeffect conditionsand the elements df C S are called
effects If I" or L are singleton sets, e.dp} = {¢}, we often omit the curly brackets and write
p=q.

Example 1 In order to illustrate the various notions, we will use as aning example planning
problems connected with the production of camera-readyusenipts from AIpX source files—
somewhat simplified, of course. As the set of atimse choose the following set:

¥ = {tex, aux,dvi, log, ps, bib, bbl, blg, ind, idx, ilg
dvi_ind_ok, dvi_cite_ok}.

These propositional atoms have the following intended ingai he atoms in the first line represent
the presence of the corresponding files, and the atoms irettend line signify that the index and
citations are correct in the dvi-file. Based on that, we defiveefollowing operatorsbibtex, latex,
makeindex. The first of these operators is very simple. The precondiio its execution is that
a bib- and anaux-file exist. After the successful executionb# and ablg-file will have been
produced:

bibtex = <{aux, bib}, {T = {bbl, blg}}>.
Themakeindex operator is similar:
makeindex =({idx}, { T = {ind, g} })
Finally, thelatex operator is a bit more complicated. As a precondition it rette presence of the

tex-file and it produces as its effestix-, idx-, dvi, and log-files unconditionally. In addition, we
know that the citations will be correct iflsbl-file is present and that the index will be correct if an

274

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

ind-file is present:
latex = < {tex}7
T = {aux, idx, dvi, log},
bbl = dvi_cite_ok,
—bbl = —dvi_cite_ok,
ind = dvi_ind_ok,

—ind = ﬂdvi_ind_ok}>.

The semantics of operators is given dtgte-transition functiond.e., mappings from states to
states. Given a stateand a set of postconditionmost A (s, pos) denotes thactive effectsin s:

A(s,posh = | J{L | (I'= L) € post s |=I'}.

The state-transition function 6, induced by the operateris defined as follows:

0,: 2% 5 2%
s — —neg(A(s,pos(0))) U pos(A(s,pos(o))) if s = pre(o) and
0,(s) = A(s,posto)) = L
undefined otherwise

In words, if the precondition of the operator is satisfiedtatiess and the active effects are consistent,
then states is mapped to the staté which differs froms in that the truth values ddctive effects
are forced to become true for positive effects and forcecetmime false for negative effects. If the
precondition is not satisfied or the set of active effectmé®nsistent, the result of the function is
undefined.

In the planning formalism itself, we do not work on statesdiustate specificationdn general,
this can lead to semantic problems. By restricting oursetoestate specifications that are sets of
literals, however, the syntactic manipulations of thesstgiecifications can be defined in a way such
that they aresoundin Lifschitz' (1986) sense.

Similarly to the active effects with respect to states, wingea corresponding function with
respect to state specifications:

A(S,posh = | J{L | (I'= L) € post S |=I'}.
Further, we define thpotentially active effectsas follows:

P(S,posh = | J A(s, pos).
sE=S

If for a state specificatiol and an operatos = (pre, pos), we haveA (S, pos) # P(S,posh,?

it means that the state specification resulting from theiegipbn of the state-transition functions
might not be representable as a theory consisting of I#emaly. For this reason, we consider such
an operator application as illegal, resulting in the illegfate specification.. We could be more
liberal at this point and consider an operator applicatma $tate specification only as illegal if the
set of states resulting from applying the state-transftimrctions could definitely not be represented

3. Note that this can only happen if the state specificatiamcismplete.

275

NEBEL

as a theory consisting of literals only. Alternatively, weutd consider all atoms mentioned in
P(S,posh) — A(S,posh as “unsafe” after the application of the operator and deleteliterals
—(P(S, posy — A(S, posh) from the state specification, but consider the resulting stecification
still as “legal” if P(S, posy is consistent. Since there does not seem to exist a standatel fior
the execution of conditional effects in the presence ofiglastate specifications, we adopt the first
alternative as one arbitrary choice. It should be noted,evew that this decision influences some
of the results we present below.

Similarly to the rule thatd (S, pos) # P(S,pos leads to an illegal state specification, we
require that if the precondition is not satisfied by all stateMod(S) or if the state specification
is already inconsistent, the result of applyimgp S results inL. This leads to the definition of the
function R, which defines the outcome of applying an operat@rom the set of operator® to a
state specification:

R: 2" x0— 2%

(S — —A(S,posio)) U A(S,posto)) if S~ L and

S = pre(o) and
A(S,posto)) = L and

R(S,0) = A(S, pos{0))=P(S, posto))

| L otherwise

Example 2 Using the propositional atoms and operators from Exampleelassume the following
two state specificationS; = {tex,ind}, andSy = {tex,ind, bbl, blg}. If we try to apply the
operatorlatex to S;, we notice that this results ih because

A(Sy,posflatex)) = {aux,idx,dvi, log,dvi_ind_ok},
P(Si,postlatex)) = A(Si,posilatex)) U {dvi_cite_ok, ~dvi_cite_ok},

i.e., we haveA(S;, posilatex)) # P(Si,posilatex)). On the other hand, we can applybtex
successfully t&1: R(Si, bibtex) = S,.

It is easily verified that the syntactic operation on a stgiecsication using the functio®
corresponds to state transitions on the states describtt Ispecification.

Proposition 1 LetS be a state specification,be an operator, ané, be the induced state-transition
function. IfR(S,0) = L, then

Mod(R(S,0)) = {s"| s’ = 0,(s),s = S}
If R(S,0) = L, then either
1. Mod(S) =0, or
2. there are two states;, so € Mod(S) such thatA (s, posto)) # A(s2,pos{o)), or

3. there exists a statec Mod(.S) such that,(s) is undefined.

276

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

In other words, whenevek (.S, o) results in a “legal” specification, this specification déses the
states that result from the application of the state-ttemmsfunctiond, to the states that satisfy the
original state specificatiof. Further, ifR(S, o) is illegal, there are good reasons for it.
A planning instanceis a tuple
1= (5,IG),

where

e = = (X, O) is thedomain structure consisting of a finite set of propositional atosnd a
finite set of operator®,

e IC 53 is theinitial state specification, and
e GCYis thegoal specification®

When we talk about theize of an instancesymbolically||II
of a (reasonable) encoding of the instance.

In the following, we use the notatio®* to refer to theset of finite sequence®f operators.
ElementsA of O* are calledplans. Then||A|| denotes the size of the plan, i.e., the number of
operators inA. We say thatA is ac-step planif ||A|| < ¢. The result of applying) to a state
specificationS is recursively defined as follows:

, in the following, we mean the size

Res: 2§ x O* = 2§
Res(S,()) = S
Res(S, (01,02,...,0,)) = Res(R(S,01),(02,...,0n))

A sequence of operators is said to be glan for IT or asolution of IT iff
1. Res(I,A) = L and
2. Res(I,A) = G.

Example 3 Let ¥ and O be the propositional atoms and operators introduced in Exanl and
consider the following planning instancdl = ((X, O), {tex, bib, —ind}, {dvi, dvi_cite_ok}). In
words, given a latex source fileeg) and a bibliography databaséip), we want to generate a dvi
file (dvi) such that the citations in this file are correav{_cite_ok). Furthermore, we do not know
anything about the existence of a bbl-file or aux-file etct viieiknow that there is no index file yet
(—ind). The planA = (bibtex, latex) is a solution ofilI because the plan does not result in an illegal
state specification and the resulting state specificatidailsdvi anddvi_cite_ok.

Plans satisfying (1) and (2) above are “sound.” In order atesthis more precisely, we extend
the notion of state transition functions for operators &destransition functions for plans. L&t be
the state transition function corresponding to the comiawsof primitive state-transition functions
induced by the operators ik = {0y, ...,0,), i.e.,

9(01,...,on) = 901 0...0 907”

4. We could have been more liberal requiring tatC Lx. We have not done that in order to allow for a “fair”
comparison with restricted planning formalisms.

277

NEBEL

such thatf,, . ,.)(s) is defined iff0, .. (s) is defined for every, 1 < i < n. Using this
notion, one can easily prove—using induction over the pdagth—that any plan for an instane
is soundin Lifschitz' (1986) sense, i.e., corresponds to the appba of state transition functions
to the initial states.

Proposition 2 LetIl = (£,1I, G) be a planning instance and = (oy,...,0,) be an element of
O*. If Res(I, A) is consistent, then

Mod(Res(I,A)) = {s' | s' = 0a(s),s = I}.
If Res(I,A) is inconsistent, then either
1. Mod(I) =0, or

2. there exists a (possibly empty) prefig,...,0;) (0 < ¢ < n — 1) of A such thatS =
Res(1, (o1, . ..,0;)) and either

(a) there are two states;, sy € Mod(S) such thatA (s, pos(o;+1)) # A(s2, pos(0;+1)),
or
(b) there exists a statec Mod(S) such thatd,, ., (s) is undefined.

2.2 A Family of Propositional Planning Formalisms

The propositional variant of standastRIPs (Fikes & Nilsson, 1971), which we will also cafi
in what follows, is a planning formalism that requiresmplete state specificatignsnconditional
effects and propositional atomsas formulae in the precondition lists. Less restrictivenplag
formalisms can have the following additional features:

Incomplete state specifications®): The state specifications may not be complete.
Conditional Effects (C): Effects can be conditional.
Literals as formulae (£): The formulae in preconditions and effect conditions caritkedls.

Boolean formulae 8): The formulae in preconditions and effect conditions can Hstrary
boolean formulae.

These extensions can also be combined. We will use comdirsadif Ietters to refer to such multiple
extensions. For instanc8, refers to the formalisn$ extended by literals in the precondition lists,
Szc refers to the formalism allowing for incomplete state sfieaiions and conditional effects, and
Spze, finally, refers to the general planning formalism introedén Section 2.1.

Example 4 When we consider the planning instaiéé&om Example 3, it becomes quickly obvious
that this instance has been expressed usipg-. The initial state specification iscomplete the
operatorlatex containsconditional effect@and negativditeralsin some effect conditions. However,
we do not need gener8loolean formula¢o express the instance.

278

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Spzc
Srzc Sne Spz
Szc Sce Scz Sg

Figure 1: Planning formalisms partially ordered by syntastrictions

Figure 1 displays the partial order on propositional plagrformalisms defined in this way. In
the sequel we say thaf is a specializationof), written X C Y, iff X is identical to)’ or below
Y in the diagram depicting the partial order.

Comparing this set of planning formalisms with the one Bi#ickm (1995) analyzetipne no-
tices that despite small differences in the presentatidheplanning formalisms:

e S is the same asommon propositional strip&cpPy),
e S, is the same apropositional strips with negative goalssn), and

e S,z is the same aground TweaKGT).

2.3 The Computational Complexity of Planning in theS-Family

While one would expect that planning &is much easier than planning &kz¢, it turns out that
this is not the case, provided one takes a computational lexitypperspective.

In analyzing the computational complexity of planning iffetient formalisms, we consider, as
usual, the problem of deciding whether therists a plarfor a given instance—thplan existence
problem (PLANEX). We will use a prefix referring to the planning formalism iewonsider the
existence problem in a particular planning formalism.

Theorem 3 X-PLANEX is PSPACE-complete for all¥ withS C X C Sizc.

5. We do not consider planning formalisms identical to st formalism (Backstrom & Nebel, 1995), since we do
not allow for multi-valued state variables.

279

NEBEL

Proof. PSPACE-hardness of-PLANEX follows from a result by Bylander (1994, Corollary 3.2).

Membership ofSzz¢-PLANEX in PSPACE follows because we could, step by step, guess a
sequence of operators, verifying at each step that the topenaplication leads to a legal follow up
state specification and that the last operator applicagiadd to a state specification that entails the
goal specification. For each step, this verification can b@schout in polynomial space. The reason
for this is that all the conditions in the definition &fare verified by polynomially many calls to an
NP-oracle. ThereforeSzz¢ can be decided on a non-deterministic machine in polynospate,
hence it is a member 6*SPACE.

From that it follows that the plan existence problem for athfialisms that are in expressiveness
betweenS andSzz¢—including both formalisms—i® SPACE-complete. u

3. Expressiveness and Compilability between Planning Formalisms

Although there is no difference in the computational comipfebetween the formalisms in the
Snzc-family, there might nevertheless be a difference in howcg®ly planning domains and plans
can be expressed. In order to investigate this questionptneduce the notion aompiling plan-
ning formalisms.

3.1 Compiling Planning Formalisms

As mentioned in the Introduction, we will consider a plamgfarmalismX’ as expressive amnother
formalism) if planning domains and plans formulated in formali3ihare concisely expressible
in X. We formalize this intuition by making use of what we catimpilation schemesvhich
aresolution preserving mappingsith polynomially sized resultsom) domain structures t&’
domain structures. While we restrict the size of the restit compilation scheme, we do not
require any bounds on the computational resources for tipitation. In fact, for measuring the
expressibility it is irrelevant whether the mapping is polynomial-timemutable, exponential-time
computable, or even non-recursive. At least, this seems tbébidea when the notion ekpressive
poweris discussed in similar contexts (Baader, 1990; Erol etl@96; Gogic et al., 1995; Cadoli
et al., 1996). If we want to use such compilation schemesaotjme, they should be reasonably
efficient, of course. However, if we want to prove that onerfalism isstrictly more expressive
than another one, we have to prove that there is no compilattbheme regardless of how many
computational resources such a compilation scheme might us

So far, compilation schemes restrict only the size of dors#&inctures. However, when mea-
suring expressive power, the size of the generated planddshtso play a role. In Backstrom's
ESP-reductions (1995), the plan size must be identical.il&iy the translation fronS ¢ to S
proposed by Gazen and Knoblock (1997) seems to have as aiitmppérequisite that the plan
length in the target formalism should be almost the same. Ndbenparing the expressiveness of
different planning formalisms, we might, however, be prepao accept some growth of the plans
in the target formalism. For instance, we may accept aniadditconstant number of operators, or
we may even be satisfied if the plan in the target formalisrimé&akly or polynomially larger. This
leads to the schematic picture of compilation schemes atagied in Figure 2.

Although Figure 2 gives a good picture of teempilation frameworkit is not completely
accurate. First of all, a compilation scheme may introdwraesauxiliary propositional atoms that
are used to control the execution of newly introduced opesatThese atoms should most likely
have an initial value and may appear in the goal specificaifgplanning instances in the target

280

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

= Y A
‘ / Planning
compi- I G } \
lation \ 1 |
=/ X - A/ \
Planning | |

Figure 2: The compilation framework

formalism. We will assume that the compilation scheme takes of this and adds some literals to
the initial state and goal specifications.

Additionally, some translations of the initial state andbspecifications may be necessary. If
we want to compile a formalism that permits for literals irrgonditions and goals to one that re-
quires atoms, some trivial translations are necessaryile8iynif we want to compile a formalism
that permits us to use partial state specification to a fasmathat requires complete state specifi-
cations, a translation of the initial state specificationésessary. However, sushate translation
functionsshould be very limited. They should depend only on the setyofl®ls in the source
formalism, should be “context-independent,” i.e., th@station of a literal in a state specification
should not depend on the whole specification, and they shmugfficiently computable.

While the compilation framework is a theoretical tool to @@ expressiveness, it has, of
course, practical relevance. Let us assume that we havesanadaly fast planning system for a
planning formalismX and we want to add a new feature Abresulting in formalism). If we
can come up with aefficientcompilation scheme frory to X, this means we can easily integrate
the new feature—either by using the compilation scheme anbglifying the planning algorithm
minimally. If no compilation scheme exists, we probably Veblbave problems integrating this fea-
ture. Finally, if only computationally expensive compitet schemes exist, we have an interesting
situation. In this case, the off-line compilation costs nii@yhigh. However, since the compiled
domain structure can be used for different initial and gtatesspecifications, the high off-line costs
may be compensated by the efficiency gain resulting fromgugie X planning algorithn?. As
it turns, however, this situation does not arise in anatyzompilability between th&pzz¢ for-

malisms. Either we can identify a polynomial-time compdatscheme or we are able to prove that
no compilation scheme exists.

6. This means that compilation schemes between planningal@ms are similar to knowledge compilations (Cadoli &
Donini, 1997), where the fixed part of a computational probis the domain structure and the variable part consists
of the initial state and goal specifications. The main diffee to the knowledge compilation framework is that we

also take the (size of the) result into account. In other wawg compile function problems instead of decision
problems.

281

NEBEL

3.2 Compilation Schemes

Assume a tuple of function = (f¢, fi, fg,t:, tg) that induce a functio#” from X'-instancedl =
(2,1, G) to Y-instances'(11) as follows:

F(H) :<ff(E)7 fl(E) U ti(za I)a fg(E) U tg(za G)>
If the following three conditions are satisfied, we da#l compilation scheme fromX to :
1. there exists a plan faf iff there exists a plan foF'(II);

2. thestate-translation functionst; andt, aremodular, i.e., for¥X = X; U ¥y, § C 3, and
S [~ L, the functiong, (for z = 4, g) satisfy

t2(5,8) = t(51,5 N 1) Uty (Se, 8 N 5y),
and they are polynomial-time computable;
3. and the size of the results #f, f;, andf, is polynomial in the size of the arguments.

Condition (1) states that the functiafi induced by the compilation schenfeis solution-
preserving. Condition (2) states requirements orotiidine state-translation functiong he result
of these functions should be computaklement-wiseprovided the state specification is consis-
tent. Considering the fact that these functions depend @mlthe original set of symbols and the
state specification, this requirement does not seem to lyaesirictive. Since the state-translation
functions are on-line functions, we also require that trseilteshould be efficiently computable.
Finally, condition (3) formalizes the idea thiats a compilation. For @ompilationit is much more
important that the result can bencisely representede., in polynomial space, than that the compi-
lation process is fast. Nevertheless, we are also intet@stefficient compilation schemed/e say
thatf is apolynomial-time compilation schemeif f¢, f;, andf, are polynomial-time computable
functions.

In addition to the resource requirements on the compilgpimtess, we will distinguish be-
tween different compilation schemes according to the &ffea the size of the plans solving the
instance in the target formalism. If a compilation schefhtms the property that for every plaxa
solving an instancél there exists a plad\’ solving F'(II) such thaf|A’|| < ||A|| + k for some
positive integer constarit, f is acompilation scheme preserving plan size exactlgup to additive
constants). If|A’|| < ¢ x ||A]| + k for positive integer constantsandk, thenf is acompilation
scheme preserving plan size linearlyand if||A'|| < p(]|A]], ||II]|) for some polynomiap, thenf
is acompilation scheme preserving plan size polynomiallyMore generally, we say that a plan-
ning formalismX is compilable to formalism)’ (in polynomial time, preserving plan size exactly,
linearly, or polynomially), if there exists a compilatiooleme with the appropriate properties. We
write X <*) in caseX is compilable tqy or X =Y if the compilation can be done in polyno-
mial time. The super-script can bel, ¢, or p depending on whether the scheme preserves plan size
exactly, linearly plan, or polynomially, respectively.

As is easy to see, all the notions of compilability introdiliedove are reflexive and transitive.

7. Although it is hard to imagine a modular state-transkafienction that is not polynomial time computable, some
pathological function could, e.g., output translatioret thave exponential size in tieacodingof the symbols.

282

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Proposition 4 The relations<* and = are transitive and reflexive.

Furthermore, it is obvious that when moving upwards in thegdim displayed in Figure 1,
there is always a polynomial-time compilation scheme pr@sg plan size exactly. lir; denotes
the projection to thé-th argument ané the function that returns always the empty set, the generic
compilation scheme for moving upwards in the partial orddr+ (71,0, 0, w2, 72).

Proposition 5 If X C Y, thenX <} V.

4. Compilability Preserving Plan Size Exactly

Proposition 5 leads to the question of whether there exigratompilation schemes than those
implied by the specialization relation. Because of Prapmsis and Proposition 4, we do not have
to find compilation schemes for every pair of formalisms.ulfises to prove tha#&” is compilable

to), in order to arrive at the conclusion that all formalisms thi&@ belowX” are compilable tQ/
and formalisms abov@.

A preview of the results of this section is given in Figure 3e Wil establish two equivalence
classes such that all members of each class are compiladdehaother preserving plan size exactly.
These two equivalence classes will be called- and S;z¢-class, in symbol$S,z] and [S,zc],
naming them after their respective largest elements.

Figure 3: Equivalence classes of planning formalisms eckdly polynomial-time compilation
schemes preserving plan size exactly

283

NEBEL

4.1 Planning Formalisms without Conditional Effects and Bmlean Formulae

First, we will show that the formalisms analyzed by Baakstr(1995), namelyS,z, S, andS are
polynomial-time compilable into each other preservingh@ee exactly. In fact, a fourth class can
be added to this set, namely;, which lies betwees 7 andS.

In other words, using the notion abmpilability, we get the same equivalence class as with
Backstrom's ESP-reductions. Having a closer look at thefp in Backstrom's (1995) paper re-
veals that this is not surprising at all because the ESPetiehs he used could be reformulated as
compilation schemes. Since he used a quite different notatie will nevertheless prove this claim
from first principles.

The key idea in compiling planning formalisms with literédsformalisms that allow for atoms
only is to considep and—p as different atoms in the new formalism. For this purposeiniveduce
3= {p|p € X}, i.e., adisjoint copy ok. Further, if L C 3}, then~ L is a set where each negative
literal —p in L is replaced by, i.e.,

L {peX|pelyu{peS|-pel} fLI}L,
L otherwise.

Using X U T as the new set of atoms, one can translate state specifatimhpreconditions eas-
ily. In the postconditions we have to make sure that the gdednsemantics is taken care of, i.e.,
whenevep is addedp must be deleted andce versa

Finally, we have to deal with the problem of partial statec#fimations. However, this not
a problem when all effects are unconditional and the preitond contain only atoms. In this
case, we can safely assume that all atoms with unknown valtle are false without changing the
outcome of the application of an operator. W(&WAy, (L) denote thecompletion of L with respect
to Y, i.e.,

CWAs(L)={-p|peX,pg¢L}UL.

Using this function, we can transform a partial state spatifin into a complete specification
without changing the outcome, i.e., we get the same plans.

Theorem 6 S;7, Sz, S, andS are polynomial-time compilable to each other preservirapdize
exactly.

Proof. SinceS C SzC Sz andS C S C Si7, it follows from Propositions 4 and 5 that we only
have to show tha$ 7 5}9 S in order to prove the claim.
LetIl = (E,I, G) be aS.z-instance witte = (X, O). We translate each operatoe O into
the operator
0 = (~pre(o), ~posio) U= ~-pos(o)).
The set of all such operators is denoted®y Now we can define the compilation scheffhe=
(fes fis fgo tis ty) as follows:

fe(B) = (Bux, 0),
fi(g) = 0,
fg(E) = 0,
ti(8,I) = CWAy =(~I),
t,(2,G) = ~G.

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

The schemd obviously satisfies conditions (2) and (3), all the funcsi@an be computed in poly-
nomial time, and'(11) is aS-instance.
Let S C 3. Then it is obvious that

#(2, R(S,0)) = R(t;(%, S),).

Let A = (o1,...,0,) denote a sequence of operators corresponding to a sequieaperators
A = (o1,...,05). Using induction on plan length, it is easy to show that

Ais a plan forII iff A is a plan forF (II),

i.e., condition (1) on compilation schemes is also satisfifiis meansf is in fact a compilation
scheme. Further, since the plan size does not change, thglatom scheme preserves plan size
exactly. Finally, because all functionsfircan be computed in time polynomial in their arguments,
f is a polynomial-time compilation scheme. u

One view on this result is that it does not matter whethemfam expressivity point of view, we
allow for atoms only or for literals and it does not matter tiee we have complete or partial state
specification—provided propositional formulae and cdodéil effects are not allowed.

4.2 Planning Formalisms with Conditional Effects but withaut Boolean Formulae

Interestingly, the view spelled out above generalizes ¢ocdise where conditional effects are al-
lowed. Also in this case it does not matter whether only atomalso literals are allowed and
whether we have partial or complete state specificationgprdaing that, however, there are two
additional complications. Firstly, one must compile caiadial effects over partial state specifi-
cations to conditional effects over complete state spetifins. This is a problem because the
condition A(S, pos{(o)) = P(S,pos{o)) in the definition of the functionr? must be tested. Sec-
ondly, when compiling a formalism with literals into a forlism that allows for atoms only, the
condition A(S, pos{o)) #~ L in the definition of R must be taken care of. For this reason, we will
prove this result in two steps.

As a first step, we show th&i:z- can be compiled t&,¢. The problem in specifying such a
compilation scheme is that the execution of an operatar a partial state specification leads to the
illegal state ifA(S, pos{o)) # P(S, pos{o)).

When considering our running example (Ex. 1), things ar¢equibvious. When a state spec-
ification does not contain the literal or the negation of tiberdl that is mentioned in the effect
condition, then the illegal state specification results: &@mple, if a state specification does nei-
ther containbbl nor —bbl, then the result of executinigtex is 1. In the general case, however,
things are less straightforward because effect literalsbesproduced by more than one conditional
rule and an effect condition can consist of more than onglite

Assuming without loss of generality (using a polynomiahsformation) that the effects are
all singleton sets, we have to check the following conditi&ither one of the conditional effects
with the same effect literal is activated—i.e., the effeatdition is entailed by the partial state—
or all of the conditional effects with the same effect litemee blocked i.e., each effect condition
contains a literal that is inconsistent with the state djpation. If this is true, the original operator
satisfiesA (S, posio)) = P(S, post(o)), otherwise the resulting state specification is inconsiste
For example, consider the followir$y: 7 operator:

o, = (T,{{p,~q} = {-p} {u,v} = {-p}}).

285

NEBEL

The application of this operator satisfid$S, pos(o)) = P (S, posto)) iff either
1. p and—gq are true in the state specification, or
2. u andv are true in the state specification, or
3. one ofp and—yq is falseand one ofu andv is false.

In all other cases, we get(.S, posio)) # P(S, posto)) and the result is the illegal state. In order
to test for this condition in a formalism with complete statee introduce four new sets of atoms:

¥ = {plpex}
Xy = {p+lpeki}
¥ = {p-IpeXj

T = {x;;|forthe th conditional effect ob;}.

The atomyp’ is true if eitherp or —p is part of the original partial state specification. The atom
p+ IS set true by an operator if one of the conditional effectdsador if p does not appear as an
effect in the operator. The atom. is set true by an operator if one of the conditional effectetds
p or if =p does not appear as an effect in the operator. Finally, atéiedorm; ; are added by
an action if thejth conditional effect in théth operator is blocked by some effect condition. Using
these new atoms, we could translate the above operator to

o, = (T,{{r.dp,~q} = {p',p-, -},
{ulvvlvuvv} = {plvpfv_‘p}v
{p',=p} = {zi1},

{d',qt = {zir},

{u', wu} = {z;2},

{v', v} = {zi2},
T=3,UX_—{p_},

T = {zmj € T |m#£i}t}).

Let v(4,7) be a function that returns; or p_, if p or —p, respectively, is the effect of thgh
conditional effect in theth operator. Assuming now that the atoms frarhare set according to
their intended semantics and that the previous operatetatkhll atoms front, U X U T, the
following testoperator checks whether the original operator would hav&lan inconsistent result:

test = <T, {{—':Ci,j, —w(i,j)} = L|z;; € T}>

Whenever we haveu; ;, it means thegth conditional effect in théth operator (which must be the
previously executed operator) was not blocked. If in additio that the effect of this conditional
effect was not activated, i.e-w (3, j) is true, we would havel (S, posio)) # P(S, pos(o)) in the
original formalism. For this reason, we force the illegalst Conversely, if either; ; is true for all
i andj or if it is false for onej, butwv(z, 7) is true, we would havel (S, pos(o)) = P(S, pos{o))
in the original formalism and do not need to force the illegjate.

We now could force, by using some extra literals, that afeeheoperatod; thetestoperator is
applied. This would result in a compilation scheme thatgmess plan size onlinearly. However,
it is possible to do better than that. The key idea is to mdrgedst operator for th#h step into the
operator of step + 1.

286

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Lemma 7 S;z¢ is polynomial-time compilable t8.¢ preserving plan size exactly.

Proof. LetIl = (E,I, G) be aS z¢-instance withE = (X, O). Without loss of generality, we
assume that the postconditions of operatgrs O have the following form:

pOS(OZ’) = {Li,l = li,la ... aLi,mi = li,mi}a

with L; ; C £ andl; ; € 3.
First, we introduce a number of new sets of symbols that drevise disjoint and disjoint from

DI
¥ = {#lpex}
25 = Pllpes),
2L = {p}lpes},
2 = pllpesy
L= {pllpesy
Y’ = {7, |forthejth conditional effect ob;},
Y' = {z;;|forthejth conditional effect ob;}.

For a given set of literalé, C £, L’ denotes the set of primed literals, i.&/,= {p' | p € L} U
{-p"| (-p) € L} and the functions(-) denotes the successor function modulo 2, is€k) =
(k + 1) mod 2. Further, the functions” for k& = 0, 1 shall be functions fronT* to ©* U £* such
that

’Uk(’i j) = qﬁ S Z’i if (Li,j = q) € posto;),
’ ¢* e o i (L;; = —q) € posto;).

Now letpost (o;) for k = 0, 1 be defined as follows

post(o;) = {L Uo(L') = {p,p',p%} |p € =, (L = p) € pos{o;)} U
{LUo(L) = {-p,p/,pE} |p €2, (L= —p) € pos(o;)},

let blockt (0;) for k = 0,1 be defined as

blOCl(C(OZ) Ha.q } = xlj | (Li ij = Li]) € pos{o;), (—q) € LZ,]} U
{{_'Q7 } = xzy | (L ij = lZ,]) € pOS(OZ) qgc Li,j}7
and lettest be defined as

test® = {{-a]®, ~0*® (i,)} = L|2]P e W},

Further, letc!, ¢?, andg be fresh symbols not appearinginu X' U % U £* U T*. Now we can
define the pair of compiled operatars (k = 0, 1) corresponding to the original operatgre O:

= (pre(o;) U {cF}, post (o;) U blockt (0;) U test U
{T = {=c, ﬂg,cs(k)}} U
{T=3kusk — {vF(,5)} U
{T:>{x ETk|m7éz}}U
{T= -5 Sl g | et .

287

NEBEL

This pair of compiled operators achieves the intended &ffecd keeps track of fully known
atoms usingpost, checks which conditional effects are blocked usigck?, tests whether the
execution of the previous operator satisfied the conditids, pos{o)) = P(S, pos{o)) using
test, and setup the bookkeeping atoms for the next step. Usingttmsc”, it is enforced that
executing and testing is merged by parallelizing the tesstep: and execution of step+ 1. In
order to check the execution of the last step, we need an exteking step:

0]; = ({ck},tesfC uU{T = {9, —|ck}}>.
Now we can specify a compilation scheifirom S;.7¢ to S.¢ as follows:

fe(B) = (Tuyuxluzluxtust urdurtu{gd, '},
U{o},0; | 0; € O} U {0, 04}),

fi(E) = {~g,~cttu-x u-2Lu-x? u-st u-T U1t
fo(B) = {gh
t(3,I) = CWAx(I)U CWAs ({p' |p € S, {p,-p} NI #0}),
t,(3,G) = G.

The schemé obviously satisfies conditions (2), i.e., that the stagmdtation functions are modular,
and (3), i.e., that the compilation functions have polyraliyisized results. Further, all the functions
can be computed in polynomial time, ahdll) is aS ¢-instance.

AssumeS C . Then it is obvious that

(3, Res(S, (o)) N (EUT) = Res(t:(3,5) U fi(E), (02)) N (S U,

provided Res (S, (0;)) = L. In caseRes(S,{(0;)) E L, either Res(t;(%,S) U fi(2),(0?)) E
1 or A(S,posio;)) # P(S,posto;)). In the latter case, the application of any operator to
Res(t;(%,S), (0?)) leads to an inconsistent state because of the conditiofeatgintest, which
is part of all postconditions of operators applicable irs thiate. Additionally, the same is true for
the relation betweety (X, Res(S, (0;, 0;)) and Res(t;(2, S) U f3(Z), (0], 0}))-

Let A’ = (d},...,0,) denote a sequence of operators corresponding to a seqUeperators

rn

A = (o1,...,0,). Using induction on the plan length, it can be easily shovat th
A is a plan forll iff A'; o’gc is a plan forF'(II).
Further, since any plan solving the instaricdl) must have:)’gC as the last operator, it follows that
there exists a plan fdi iff there exists a plan fof'(II).

From that it follows immediately thdtis a polynomial-time compilation scheme frapz¢ to Szc
preserving plan size exactly, which proves the claim. u

Having proved thaS;z¢ can be compiled t& ¢ preserving plan size exactly, it seems worth
noting that this result depends on the semantics choserxéougng conditional operators on par-
tial state specifications. For example, if we use an altefaemantics that deletes all the literals
in =(P(S,posto)) — A(S, posto)) provided P (S, posto)) is consistent, then there exists proba-
bly only a compilation scheme that preserves plan size flije# we use a semantics where the

288

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

resulting state specification is legal when the applicatiball state-transformation functions leads
to a theory that can be represented as a set of literals,ritssaalikely that there exists a scheme
that preserves plan size polynomially. The reason for tbgsimnistic conjecture is that under this
semantics it appears to lweNP-hard to determine whether the state specification reguftiom
applying aS z¢-operator is legal.

As a second step in showing that partial state specificatiodditerals can be compiled away,
we show that we can compil8;¢ to S¢. The key idea in the proof is the same as in the proof of
Theorem 6. We replace each negative literalby a new atonp. In order to detect inconsistencies
introduced by conditional effects, we add to each postcmmdiconditional effects of the form
{p,p} = L. Further, to check that the last operator in a plan does toidace any inconsistencies,
we force the application of a “checking” operator that corgdhe same conditional effects.

Lemma 8 S.¢ is polynomial-time compilable i§; preserving plan size exactly.

Proof. LetIl = (=,1I,G) be aS,¢-instance withE = (X, 0). Sincell is aS,c-instance, the
postconditions of all operatorse O have the following form:

pos{o) ={L, = Ki,..., L, = K},
with L;, K; C 3. -
As in the proof of Theorem &; shall be a disjoint copy df, and~ L is the set of atoms where
each negative literahp is replaced by the atom Now letpos{o) be the following set
posto) = {~L; = (~K; U= ~-K;) | (L; = K;) € pos{o)}.
Further, letconsbe the set of conditional effects
cons= {{p,p} = L|pe€ X},
let ¢ be an atom not appearing i let o be
o = (~pre(o), pO,SYo) uconsU{T = —g}),
let O = {5] 0 € O}, and let the operatar, be
og = (T,consU{T = g}).

Then we can specify a compilation schefifieom S,¢ to S¢ as follows:

fe(B) = (BUTU{g}, OU{oz}),
fi(B) = {~g},
f4(E) = {g},
L(2,I) = ~IU-~-l,
t,(3,G) = ~G.

The schemd obviously satisfies conditions (2) and (3), all the funcsi@an be computed in poly-
nomial time, and¥' (1) is aSc-instance.

289

NEBEL

AssumeS C . Then it is obvious that
ti(X, R(S,0)) = R(t;(%,S),0), providedR(S,0) [~ L.

In caseR(S,0) = L, eitherR(¢;(X,5),0) = L or{p,p} C R(t:(X,S),0) for somep € X. In the
latter case, the application of any operato@;(%, S), o) leads to an inconsistent state because
of the conditional effects isons which is part of all postconditions.

LetA = (01,...,0,) denote a sequence of operators corresponding to a sequUesperators
A = (o1,...,0,). Using induction on the plan length, it can be easily shovat th

Ais a plan forlI iff A; o4 is a plan forF (II).
Further, since any plan solving the instaricdl) must havey, as the last operator, it follows that
there exists a plan fdi iff there exists a plan fof'(II).

It follows thatf is polynomial-time compilation scheme frafiz¢ to S¢ preserving plan size exactly,
which proves the claim. u

This result is, of course, not dependent on the semanti@isedoth formalisms deal only with
complete state specifications, and hence we always AéSgposto)) = P (S, pos{o)).

Theorem 9 S;7¢, See, Sze, andSe are polynomial-time compilable to each other preserviranpl
size exactly.

Proof. Sizc j}) Sc follows from Lemma 8, Lemma 7 and Proposition 4. Using Pramos 4
and 5 and the fact tha&l; C S;¢c C Syzc andS¢e C Sz¢cC Srzc, the claim follows. u

5. The Limits of Compilation when Preserving Plan Size Linearly

The interesting question is, of course, whether there drer @ompilation schemes preserving plan
size exactly than those we have identified so far. As it turistbis is not the case. We will prove
that for all pairs of formalisms for which we have not idemtifia compilation scheme preserving
plan size exactly, such a compilation scheme is impossilga & we allow for a linear increase of
the plan size. For some pairs of formalisms we are even alpeoie that a polynomial increase
of the plan size would not help in establishing a compilaicheme. These results are, however,
conditional based on an assumption that is slightly strotigen theP £ NP assumption. A preview
of the results of this section is given in Table 1. The syniboheans that there exists a compilation
scheme because the first formalism is a specialization adghend one. In all the other cases, we
specify the separation and give the theorem number for élsiglt.

5.1 Conditional Effects Cannot be Compiled Away

First of all, we will prove that conditional effects cannat bompiled away. The deeper reason
for this is that with conditional effects, one can indepenityjedo a number of things in parallel,
which is impossible in formalisms without conditional effe. If we consider, for example, the
operatorlatex from Example 1, it is clear that it "propagates™ the trutidue ofbbl andind to
dvi_cite_ok anddvi_ind_ok, respectively—provided the state specification satisfieptecondition.

290

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

=¥ | Spzc | [Sczc] Sae Sz Si [Scz]
2P ya 2° 2P 2P
Spzc =
Cor. 15 Cor. 15 Cor.12 | Cor. 15| Cor. 15
[Scze] | C = C
Theo. 11| Cor. 12| Cor. 12
Sne cC =
Cor. 19 Cor.12 | Cor. 12| Cor. 19
2P ya 2P 2P
SBT C =
Cor. 15 | Theo. 14 Cor. 15| Cor. 15
2° 2°
Si c c C =
Theo. 18 Cor. 19
[Scz] C C c C C =

Table 1: Separation Results

It is obviously possible to come up with a set of exponentiainy operators that can do the same
thing in one step. However, it is unclear how to do that wilslthan exponentially many operators.
In fact, we will show that this is impossible.

In order to illustrate this point, let us generalize the abexample. We start with a set of
propositional atom&,, = {pi,...,p,} and a disjoint copy of this setC/ = {pz# | pi € 3Bp}.

—

Further, ifS C £, then$# shall denote the corresponding set of literals vt i.e.,
S* = {p! |pi € S}U{-p] | -p; € S}.

Consider now the following .z domain structure:

Yon = %,UXF,
Oy, = {(T,{piﬁp?ﬁpiiﬁp?’élpiGZn}>},
E2n — (2277,7 02n>-

From the construction it follows that for all pai(, G) such thatl is a consistent and complete set
over¥, andG C I#, the instancdl = (E,,,I, G) has a one-step plan. Conversely, for all pairs

(I, G) with G N o# ¢ 1#, there does not exist a solution.

Trying to define aSgz domain structure polynomially sized |{E,, || with the same property
seems to be impossible, even if we allow éestep plans. However, in trying to prove this, it turns
out that an additional condition on the state-translatiorcfion is needed.

We say that the state-translation functions kel iff for all state specificationsS’ and for
Y1 N Xs = 0 we have

t:(31, SN E1) Nty (B2, SN Ey) = 0.

291

NEBEL

With locality as an additional condition on state-trariskatfunctions we could easily prove that
conditional effects cannot be compiled away. Instead ohgi@io we will show, however, that it
is possible to derive a weaker condition from the definitibrcampilation schemes that will be
enough to prove the impossibility result. This weaker ctadiis quasi-localityof state-translation
functions relative to a given set of symbals which in turn is based on the notion ohiversal
literals. A literal [is called auniversal literal for given state-translation functions ahiff one of
the following conditions is satisfied:

1. forallp € : 1 € t;({p}, {p}), or
2. forallpe Z: 1 € t;({p},{-p}), 0
3. forallp e ¥: 1 € t;({p},0), 0

4. forallp € ¥: 1 € ty({p},{p}), 0

5. forallp e ¥:1 e ty({p},{—p}), 0
6. forallp € X: 1 € t,({p},0).

Let U denote the set of universal literals. Now we defijuasi-locality of state-translation func-
tions relative to a set of propositional atodisind the induced set of universal liter&Jsas follows.
For eachS C X such thatS [~ L and for all pairs:;, Xy C X with 31 N 3 = 0, we have

ti(31, SN E1) Nt,(Se, SN Ty) C UL

In words, the onlynon-localliterals in quasi-local state-translation functions doe ainiversal liter-
als.

Lemma 10 For a given compilation schemi = (fe, fi, f4,ti,ty) and natural number., there
exists a set of atoms C X such tha¥| > n and¢; andt, are quasi-local ori.

Proof. Let#: X — 2% be a function that has as the result the union of all resuttsifgossible
translations of a literal returned by the state-transtafioctions, i.e.,

t(p) =t:({p}, {p}) Vt:({p}, {-p}) Ut:({p}, O)U
to({p}, {p}) U ts({r}, {-p}) Ut,({p},0).

SetS = X andU = (). Now we choose an infinite subsgtof S such that either

1. forallp € S', there are only finitely many other atom& S’ such tha(t(p) Nt(q)) —U # 0,
or if such an infinite subset & does not exist,

2. S' has a universal literdl¢ U and we seU’ = U U {i}.

Note that such an infinite subsgt must exist. The reason is that some litdrgf U must
occur for infinitely many atoms in over S because we could not find an infinite subset
satisfying condition (1). Because for a single atom theeealy six possible ways to generate
[, there must exist an infinite subset such that this literalin all of eithert, ({p}, {p}),
tz({p}, {-p}), ort,({p},0) (for z = 4, g) and in this subsédtis a universal literal.

292

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

If we can pick a subset satisfying the first condition, we choose from it a finite subsét with
any desired cardinality such that the state-translatioctfans are quasi-local with respectiaand
U.

Otherwise we repeat the selection process witand U’ until condition (1) is satisfied. This
selection process can only be repeated finitely often becatiserwise there are some atoms
such that(p) has an infinite result, which is impossible because the-statslation functions are
polynomial-time computable and can therefore have onlyefirgsults.

This demonstrates that there alwagisstsa set of propositional atoms such that the state-
translation functions are quasi-local. However, we mighitlve able to effectively determine this
set. n

Using this result, we are finally able to prove the non-eristeof compilation schemes for
compiling conditional effects away when preserving plae inearly.

Theorem 11 S;:z¢ cannot be compiled t§37 preserving plan size linearly.

Proof. Assume for contradiction that there exists a compilatidmeseef from S;z¢ to Sz pre-
serving plan size linearly, which compiles the domain dtmec=,,, defined above into th&zs
domain structure

Because of Lemma 10 we can assume that the set of 3lgjnis chosen such that the translation
functions are quasi-local on this set.

Let us now consider all initial state specificatiohthat are consistent and complete o¥gy
and do not contain only positive or only negative literals:

Iec2” —{%,,-%,}

Obviously, there ar@™ — 2 such state specifications. By assumption, edgh instance of the
following form

(E,ZTN ti(22n71) U fZ(EZTl)v tg(znvl#) U fg(EZn)>

has ac-step plan. Since there are ortl}(|O5,,|¢) differentc-step plans, which is a number polyno-
mial in the size oE,,,, the same plan is used for different initial states—provideds sufficiently
large.

Suppose that the plah is used for the pairél), G)), (I;, G%), which result fromI; andI,:

I, (S0, 11) U fi(Zan)
G] = tg(znv:[#) U fg(E2n)
I = ti(n,I2) U fi(E2)
Gy = 1g(Sn,IF) U fy(E2n)

Sincel;, # I, I andI, must differ on at least one atom, say Without loss of generality we
assume € I, and—p € I,. SinceA is a successful plan frodf to G} and becausg, is modular,
it follows that

Res(I1,A) 2 G} 2 ty({p™}, {p"}).

293

NEBEL

Some of the literals im, ({p*}, {p* }) may be added by operatorsAnbut none of the literals
in tg({p#}, {p#}) can be deleted by an operatorAnwithout reestablishing this literal by another
operator after its deletion. Becaugecontains only operators with unconditional effects, it add
and deletes the same literals regardless of the initiad.stat

Let us now assume that there exists a litéral t,({p*}, {p*}) that is not added byA. This
implies that! € I} and we have to distinguish three cases:

1. I € fi(Egy), from which we conclude thdte I,.
2. 1 € t;({p™},0) C I}, which also implies that € Ij.

3.1 € ti({q}, L) with ¢ # p* andL € {{q},{—q},0}. Because we assumed that the state-
translation functions are quasi-local dh,,, [must be a universal literal. Ifis universal for
t;, then we will have € I/, because the possible initial states contain positive agdtive
literals as well as no literal for some elements fray,. If [is universal fort,, it is present
in G} and inGY, for the same reason. Further, becalizenot added byA andA is a valid
plan fromI, to G4, it must also be part of df,.

In other words, all literal$ € ¢,({p*}, {p*}) that are not added kx are already i} andI.
From that we conclude that

Res(Iy, A) D t,({p*}, {p*}).
Now let

GIZI = tg(z}?n - {p#}vI;}L - {_'p#}) U fg(E2n)a
Gy = Gyut,({p"},{p"})
= 1y(Son, T — {-=p#} U{p¥}) U f,(Ean)-

Becauset, is modular, it is clear thaG), O G5 and thereforeRes (I, A) O Gj. BecauseA
achievesG} as well ast, ({p*}, {p}), it follows that (again becausg is modular),A achieves
alsoGY'.

Since(Zs,, I, If — {-p#} U {p*}) does not have any plan, there should not be any plan for
(55,,15, GY'). The fact thatA is a plan for this instance implies thitcannot be a compilation

scheme, which is the desired contradiction.]

Using Propositions 4 and 5 as well as Theorem 9, this resnlbeageneralized as follows (see
also Table 1).

Corollary 12 Spzc, Spe, and[Szz¢] cannot be compiled 5§57 or any formalism specializingzz
preserving plan size linearly.

This answers the question of whether more space efficienpitation schemes frons ¢ to
S than the one proposed by Gazen and Knoblock (1997) are pms&illen assuming unbounded
computational resources for the compilation process, &rspace efficient compilation scheme is
impossible—provided that the compilation should presgtae size linearly. If we allow polyno-
mially larger plans, then efficient compilation schemespargsible (see Section 6).

8. This result demonstrates that the choice of the semarditde very important. If we interpret conditional effects
sequentially as Brewka and Hertzberg (1993) do, then thésesean straightforward compilation scheme preserving
plan size exactly.

294

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

5.2 Non-Uniform Complexity Classes

In the next section we make use of so-caltemh-uniform complexity classewhich are defined
using advice-taking machingsn order to prove the impossibility of a compilation schem&én
advice-taking Turing machine is a Turing machine with aadvice oracle which is a (not neces-
sarily recursive) functior from positive integers to bit strings. On inpiitthe machine loads the
bit stringa(]|Z||) and then continues as usual. Note that the oracle derivieis #ising only from the
length of the input and not from the contents of the input. Awviee is said to b@olynomial if the
oracle string is polynomially bounded by the instance skerther, if X is a complexity class de-
fined in terms of resource-bounded machines, B.gr,NP, thenX/poly (also callechon-uniform

X) is the class of problems that can be decided on machinesthétlsame resource bounds and
polynomial advice.

Because of the advice oracle, the clR#soly appears to be much more powerful tHarHow-
ever, it seems unlikely tha@/poly contains all ofNP. In fact, one can prove th&P C P/poly
implies certain relationships between uniform complexigsses that are believed to be very un-
likely. For stating this result, we first have to introduce gimlynomial hierarchy

Let X be a class of decision problems. Thefi denotes the class of decision problefs
that can be decided in polynomial time by a deterministidridumachine that is allowed to use a
procedure—a so-callearacle—for deciding a problen®) € X, whereby executing the procedure
does only cost constant time. SimilarftP* denotes the class of decision problefsuch that
there is a nondeterministic Turing-machine that solvegatances of’ in polynomial time using
an oracle for) € X. Based on these notions, the sa§ >, andI1? are defined as follow$:

Al = TP =T =P,

P _ ¥
Ak+1 = P,
P
Sho = NP,
P
Hﬁﬂ = coNP>k,

Thus, X! = NP andIl} = coNP. The set of all classes defined in this way is calledtblynomial
hierarchy, denoted byPH. Note that

PH=|J A2 = |J =2 = |J II? C PSPACE.
k>0 k>0 k>0

Further we have)\] C X} NII} andX}, II} C Agy. As with other classes, it is unknown whether
the inclusions between the classes are proper. Howevsrsttangly believed that this is the case,
i.e., that the hierarchy is truly infinite.

Based on the firm belief that the polynomial hierarchy is prophe above mentioned question
of whetherNP C P/poly can be answered. It has been shown NRtC P/poly would imply that
the polynomial hierarchycollapses on the second level (Karp & Lipton, 1982), b#&. = I15. This,
however, is considered to be quite unlikely. Further, it basn shown thalP C coNP/poly or
coNP C NP/poly implies that the polynomial hierarchy collapses at thedtifevel (Yap, 1983),
i.e., X5 = I, which again is considered to be very unlikely. We will usesth result for proving
that for some pairs of formalisms it is very unlikely that dioemalism can be compiled into the
other one.

9. The super-scrigt is only used to distinguish these sets from the analogossrs#ie Kleene hierarchy.

295

NEBEL

5.3 On the Expressive Power of Partial State Specificationsxd Boolean Formulae

In all the cases considered so far, operators over partité specifications could be compiled to
operators over complete state specifications, i.e., patéde specifications did not add any ex-
pressiveness. This is no longer true, however, if we alsmwalbr arbitrary boolean formulae in
preconditions and effect conditions. In this case, we camnddethecoNP-complete problem of
whether a formula is a tautology by deciding whether a opp-ptan exists. Asking, for example,
if the Spz-instance(X, {(p, 9)}, 0, {g}) has a plan is equivalent to asking whethas a tautology.

Let the one-step plan existence problenfl-PLANEX) be thePLANEX problem restricted to
plans of size one. From the above it is evident tiafc-1-PLANEX and Szz-1-PLANEX are
coNP-hard. Letp be some fixed polynomial, then tiplynomial step plan-existence problem
(p-PLANEX) is the PLANEX problem restricted to plans that have length bounded(by, if . is
the size of the planning instance. As is easy to see, thidgrots in NP for all formalisms except
Spzc andSgz. The reason is that after guessing a sequence of operatbetada specifications of
polynomial size, one can verify for each step in polynomialet that the precondition is satisfied
by the current state specification and produces the nex spacification. Since there are only
polynomially many steps, the overall verification takesyqublynomial time.

Proposition 13 X-p-PLANEX can be solved in polynomial time on a nondeterministic Tarima-
chine for all formalisms different frorSzzc and Szz.

From the fact thaSzz-1-PLANEX is cONP-hard and, e.gSsc-p-PLANEX is in NP, it follows
almost immediately that there is mmlynomial-timecompilation scheme frondzz to Spe that
preserves plan length polynomially (P # coNP). However, even if we allow for unbounded
computational resources of the compilation process, &f pesbnique first used by Kautz and Sel-
man (1992) can be used to show that such a compilation schemnetcexist (provided%, # I1).

Theorem 14 Siz cannot be compiled tS¢ preserving plan size polynomially, unles§ = I15.

Proof. Let ¢ be a propositional formula of sizein conjunctive normal form with three literals per
clause. As a first step, we construct for eachSzz domain structur&,, with size polynomial im
and the following properties. Unsatisfiability of an arary 3SCNF formulap of sizen is equivalent
to 1-step plan existence for th§s7-1-PLANEX instance(=,, I, {g}), wherel,, can be computed
in polynomial time fromp.

Given a set oh, atoms, denoted b¥,,, we define the set of clausds, to be the set containing
all clauses with three literals that can be built using thesens. The size of\,, is O(n?), i.e.,
polynomial inn. Let D,, be a set of new atoms, ;, ;,; corresponding one-to-one to the clauses
in A,,. Further, let

d, = /\{ (ll Vip Vi \/p{ll,l2,l3}) | {11,12713} S An}

We now construct &zz domain structur&,, = (X, O,,) for all formulae of sizen as follows:

Zn = PnUDnU{g}7
On = {{=®a},{9})}.

296

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Let C be a function that determines for all 3SCNF formulaenhich atoms irD,, correspond to the
clauses in the formula , i.e.,

C(p) = P11 105y [{1, 12,13} € 0}
Now, the initial state for any particular formuaof sizen is computed as follows:

I, = 2C(p) U (D, — C(p)) U {~g}.

From the construction, it follows that there exists a ormpgilan for(%,,, 0,,1,,{g}) iff ¢is
unsatisfiable.

Let us now assume that there exists a compilation sciefrem Sz to Spe preserving plan
size polynomially. Further, let us assume that$ize domain structuré&,, is compiled to theSie
domain structures!, = (X!, 0!). Using this compiled domain structure, we can construct the
following advice-taking Turing machine.

On input of a formulay of sizen, we load the advicg=!,, fi(X,, 0,), f¢(Xn, 0y)). This
advice is polynomial becau&g, is polynomial in the size op and a compilation scheme generates
only polynomially larger domain structures. Becauses a polynomial-time function anfi, can
be computed fronp in polynomial time, we can compute

I = ti(Em I(p) U fi(Em On)
in polynomial time. Also the goal specification

G’ =t,(,,{g}) U f4(,,0,)

can be computed in polynomial time. Finally, we decide gheLANEX problem on the resulting
Sgc-instance(Z!,, I, G'). From Proposition 13 we know that this can be done in polyabtime
on a nondeterministic Turing machine.

Because decidingp-PLANEX for (Z!,I',G') is equivalent to decidingl-PLANEX for
(En,I,,{g}), which is in turn equivalent to deciding unsatisfiability jof it follows that we can
decide acoNP-complete problem on a nondeterministic, polynomial aghtatking Turing machine
in polynomial time. From that it follows thatoNP C NP /poly. Using Yap's (1983) result, the
claim follows. u

Using Proposition 4 and Proposition 5, the above resultigdimes as follows (see also Table 1).

Corollary 15 Spz¢ andSiz cannot be compiled to any of the other planning formalisres@nrving
plan size polynomially, unless; = 1.

If we restrict the form of the formulae, however, we may bedbldevise compilation schemes
from Spz to, e.g9.,S5. Reconsidering the proof of the last theorem, it turns oat this essential
to use the negation of a CNF formula as a precondition. If ve&rimt ourselves to CNF formulae
in preconditions, it seems possible to move from partialdimplete state descriptions using ideas
similar to the ones used in the proof of Lemma 7.

However, no such compilation scheme will work f6z¢. The reason is the condition
A(S,posto)) = P(S,posto)) in the definition of the function?. If this condition is not satis-
fied, the result of the operator is inconsistent. This camditould be easily employed to reduce
unsatisfiabilityof CNF formulae to 1-step plan existence, which enables wsé¢othe same tech-
nigue as in the proof of the above theorem.

297

NEBEL

5.4 Circuit Complexity

For the next impossibility result we need the notionsoblean circuitsand families of circuits

A boolean circuit is a directed, acyclic grapti = (V, E), where the node§™ are calledgates
Each gatey € V has a typeype(v) € {—,V,A,1,0} U {z,z2,...}. The gates withtype(v) €
{1,0,z1,x9,...} have in-degree zero, the gates wiilpe(v) € {—} have in-degree one, and the
gates withtype(v) € {A,V} have in-degree two. All gates except one have at least onmiogt
edge. The gate with no outgoing edge is calledahgput gate. The gates with no incoming edges
are called thénput gates Thedepth of a circuit is the length of the longest path from an inpuegat
to the output gate. Thaizeof a circuit is the number of gates in the circuit.

Given avalue assignmertb the variable§z;, z9, ...}, the circuit computes the value of the
output gate in the obvious way. For example,$or= 1 andzs = 0 we get the value 1 at the output
gate of the circuit shown in Figure 4.

T T2

Figure 4: Example of a boolean circuit

Instead of using circuits for computing boolean functiomns, can also use them for accepting
words of lengthrn in {0,1}*. Awordw = z;...z, € {0,1}" is now interpreted as a value
assignment to the input variablesey, . .. , z,, of a circuit. The word isicceptediff the output gate
has value 1 for this word. In order to deal with words of diffier length, we need one circuit for
each possible length. family of circuits is an infinite sequenc€ = (Cy, C1, .. .), whereC,, has
n input variables. The language accepted by such a familyrafics is the set of words such that
C||w|| @cceptaw.

Usually, one considers so-callediform families of circuits, i.e., circuits that can be generated
on a Turing machine with kg n-space bound. Sometimes, however, also non-uniform fasrlie
interesting. For example, the class of languages accegtadrbuniform families of polynomially-
sized circuits is just the clag¥poly introduced in Section 5.2.

Using restrictions on the size and depth of the circuits, & ©ow define new complexity
classes, which in their uniform variants are all subset®.00ne class that is important in the
following is the class of languages accepted by uniform li@siof circuits with polynomial size
and logarithmic depth, namediC!. Another class which proves to be important for us is defined
in terms of non-standard circuits, namely circuits withegahat haveinbounded fan-ininstead of
restricting the in-degree of each gate to be two at maximuemew allow an unbounded in-degree.
The class of languages accepted by families of polynomsi#lgd circuits with unbounded fan-in
and constant depth is calléd?.

298

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

From the definition, it follows almost immediately tha€® C NC'. Moreover, it has been
shown that there are some languageNl@' that are not in the non-uniform variant AC?, which
implies thatAC® # NC! (Furst, Saxe, & Sipser, 1984).

5.5 Boolean Formulae Cannot be Compiled to Conditional Effets

As we have seen in Section 5.3, Boolean formulae are quiteessipe if they are used in combi-
nation with partial state specifications. However, whatlistate specifications are complete? In
this case, it seems to be possible to simulate the evaluati@NF formulae by using conditional
effects. In fact, it is possible to compile in polynomiah®, for exampleSi to S preserving plan
size linearly, provided all formulae are in conjunctive mat form. Each operator would have to
be split into two operators, one that evaluates the clausastbe formulae in the original operator
and one that combines these evaluations and takes the appragctions, e.g., assertingif the
precondition is not satisfied. Sequencing of these pairpefaiors can be achieved by introducing
some extra literals.

What can we say about the general case, however? When to/sigiulate the evaluation of
an arbitrary logical formula using conditional effectsséems to be the case that we need as many
operators as the nesting depth of the formula, which meatswhwould need plans that cannot be
bounded to be only linearly longer than the original plans.

We will use the results sketched in Section 5.4 to sepdfat@ndS,¢. In order to do so, let us
view domain structures with fixed size plans as “machineat #itcept languages. For all words
consisting ofn bits, let

E, = (X, U{g}, On).

Assume that the atoms i3,, are numbered from 1 to. Then a wordw consisting ofn bits could
be encoded by the set of literals

I, = {p; | ifthe ith bitofwis 1} U {~p; | if the ith bit of w is 0}.

Conversely, for a consistent state specificatioa ZTn letwg be a word such that thi¢h bit is 1 iff
p; €S.

We now say that the-bit word w is accepted with a one-step oe-step planby =, iff there
exists a one-step arstep plan, respectively, for the instance

I, = ((En U {g}a On)a I, U {_'g}v {g}>

Similarly to families of circuits, we also define families @dmain structuresE = (o, =y, .. .).
The language accepted by such a family with a one-step$tep) plan is the set of words accepted
using the domain structuig,, for words of lengthn. Borrowing the notion of uniformity as well,
we say that a family of domain structuresuisiform if it can be generated bylag n-space Turing
machine.

Papadimitriou has pointed out that the languages acceptednifiorm polynomially-sized
boolean expressionis identical toNC! (Papadimitriou, 1994, p. 386). As is easy to see, a fam-
ily of S domain structures is nothing more than a family of boolegessions, provided we use
one-step plans for acceptance.

Proposition 16 The class of languages accepted by uniform familiggzadomain structures using
one-step plan acceptance is identicaNG".

299

NEBEL

If we now have a closer look at what the powercestep plan acceptance for families ¢
domain structures is, it turns out that it is less powerfahtNC'. In order to show that, we will first
prove the following lemma that relatesstepS, plans to circuits with gates of unbounded fan-in.

Lemma 17 LetE = (3, O) be aS;¢ domain structure, leG C f], and letA be ac-step plan over
=. Then there exists a polynomially sized boolean cir€uitith unbounded fan-in and depfla+ 2
such thatA is a plan for(E, I, G) iff the circuit C has value 1 for the inpuby.

Proof. The general structure of a circuit forcastepS,¢c plan is displayed in Figure 5. For each

Figure 5: Circuit structure and goal testing for-atepS,¢ plan

plan step (or level) and each atomp;, there is a connectiop{. The connections on levél are
the input gates, i.ep? = z;. The goal test is performed by angate that checks that all the goals
are true on levet, in our caseG = {p1, —p2,pn}. Further, using the/-gate, it is checked that no
inconsistency was generated when executing the plan.

For each plan step, it must be computed whether the precondition is satisfietvemat the
result of the conditional effects are. Figure 6 (a) displingsprecondition test for the precondition
{p1,p2, —p3}. If the conjunction of the precondition literals is not trug, becomes true, which is
connected to th&-gate in Figure 5.

Without loss of generality (using a polynomial transforioa}, we assume that all conditional
effects have the forni = . Whether the effedtis activated on level is computed by a circuit as
displayed in Figure 6 (b), which shows the circuit fgr, —ps} = —p;.

Finally, all activated effects are combined by the circhitvwn in Figure 6 (c). For all atoms,
we check whether both; and—p; have been activated, which would set true. This is again one
of the inputs of the/-gate in Figure 5. If neithew; nor —p; have been activated, the valueggfon
level j + 1 is determined by the value of on level;. Otherwise the value gf; on levelj + 1 is
determined by the value f*, i.e., the activation value of the positive effegton level;.

The depths of the circuits in Figure 6 (b) and (c) dominatediyeth of the circuit necessary to
represent one plan step leading to the conclusion that aspgg@ncan be represented using a circuit
of depth 7. Adding the depth of the goal testing circuit, ttaéna follows. u

The lemma implies thaf ¢ ¢-step plan acceptance is indeed less powerful at-step plan
acceptance, which means that a compilation schemedipto S preserving plan size linearly is
impossible.

300

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

2T = S PP Py

@) (b)

Figure 6: Circuit structure for precondition testing (anditional effects (b), and the computation
of effects (c) forS.¢ operators

Theorem 18 Sz A¢ X, for all membersY of theSz¢-class.

Proof. We show thatSi A¢ Sc¢, from which by Theorem 9 and Proposition 4 the claim follows.
Assume for contradiction thafz <° S;c. LetE = (Ey,E1,...) be a uniform family ofSi
domain structures ard’ = (Z(, E}, . ..) be theS;c domain structures generated by a compilation

schemef that preserves plan size linearly. By Lemma 17 we know thae&xrhS,: domain
structure=! = (X!, O/) and given goalz’ we can generate a polynomially sized, unbounded fan-
in circuit with depth7c¢ + 2 that tests whether a particulasstep plan achieves the goal. In order to
decidec-step plan existence, we must text| O/, |°) different plans, which is polynomial in the size
of E,, because is a compilation scheme. For each plan, we can generate sineirieuit, and by
adding anothev-gate we can decidestep plan existence using a circuit with depth 3 and size
polynomial in the size 0OE,,. Further, since the state-translation functions are navdtite results
of ¢; for fixed X can be computed using an additional level of gates. SincerdyyoBition 16 all
languages ilNC! are accepted by uniform families 6% domain structures using one-step plan
acceptance, our assumptip <¢ S;¢ implies that we can accept all languageNiG! by (possibly
non-uniform)AC? circuits, which is impossible by the result of Furst andeagues (1984). =

Using the Propositions 4 and 5 again, we can generalize theedheorem as follows.

Corollary 19 Spc andSp cannot be compiled tiSz¢] or [Scz] preserving plan size linearly.

6. Compilability Preserving Plan Size Polynomially

As has been shown in the previous section, only the compilatthemes induced by Propaositions 4
and 5 and the ones identified in Section 4 allow for compitaohemes preserving plan size ex-
actly. For all other pairs of formalisms we were able to rulé such compilation schemes—even

301

NEBEL

if we allow linear growth of the resulting plans. Neverttsdethere might still be a chance for
compilation schemes preserving plan size polynomiallwiktashown thatSzzc andSgz cannot
be compiled to the other formalisms even if the plan can grolynqomially, we may still be able
to find compilation schemes preserving plan size polyndynfal the Spz¢/Ssz pair and for the
remaining formalisms.

A preview of the results of this section is given in Figure 7s ifcan be seen, we are able

Figure 7: Equivalence classes of planning formalisms etedly polynomial-time compilation
schemes preserving plan size polynomially. Compilatidmesges constructed in this
section are indicated by dashed lines

to establish compilation schemes preserving plan sizenpatyally for all pairs of formalisms for
which we have not proved the impossibility of such compilatschemes.

6.1 Compiling Conditional Effects Away for Partial State Specifications

The first compilation scheme we will develop is one fréy ¢ to Szz. As before, we assume that
the conditional effects have only singleton effect setsitheu, since we can use arbitrary boolean
formulae in the effect conditions iz7¢, we assume that there is only one rule for each effect literal
Using a simple polynomial transformation, arbitrary sdtsgerators can be brought into this form.
This simplifies checking the conditioA(S, posio)) = P (S, pos{o)) considerably, because now
only one rule can activate a particular literal.

302

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

In order to simulate the parallel behavior of conditiondéets, we have to break them up into
individual operators that are executed sequentially. Tégans that for each conditional effect of
an operator we introduce two new operators. One simulagesubcessful application of the rule,
the other one simulates the “blocking” situation of the rufg least one of these operators must
be executed for each conditional effect in the original eper This is something we can force
by additional literals that are added to control the executf operators. All in all this leads to a
sequence of operators that has length bounded by the nurhbenditional effects in the original
operator.

If we want to simulate the parallel behavior by a sequencecbnditional operators, the effects
of the unconditional operators should not directly influerbe state description, but the effect
should be deferred until all operators corresponding tostteof conditional effects have been
executed. For this reason, we will use a sequence of “copyregators” which copy the activated
effects to the state description after all “conditional igpers” have been executed. These “copying
operators” can also be used to check that the set of actieffistts is consistent.

Theorem 20 Siz¢ can be compiled t&37 in polynomial time preserving plan size polynomially.

Proof. Assume thaE = (X, O) is theSgz¢ source domain structure and assume further, without
loss of generality (using a polynomial transformationgtthll operators have the form

0; = (pre(oi)7 {(Pz',l = li,17 ey Pimg = li,mi}>7

with ¢; j € Ls, l;; € , andl; ; # 1; . for i # k.

LetX, andX be disjoint copies of, which are used to record the active effects of conditional
effects, and le be another disjoint copy, which is used to record that arvaeiffect has not
been copied yet. Further, IBo = {p, |0 € O} be a new set of atoms corresponding one-to-one to
the operators i©® and letY be a set of symbols corresponding one-to-one to all comditieffects
in O, i.e.,

T ={zi;l(pi; = lij) € posto;),0; € OF.

Finally, letc be a fresh atom not appearingihu ¥ U X_ U X4 U X0 that signals that copying
the active effects to the state specification is in progr@$ge set of symbol&’ for the compiled
domain structure is then

Y=YUZLUZ_UZxUZoUTYU{c}

For each operatas; € O, the compilation scheme introduces a number of new oparaidre
first operator we introduce is one which checks whether thelitional effects of the previous
operators have all been executed, no copying is in progresgha precondition is satisfied. If this
is the case, the execution of the conditional effects far tipierator is started:

oP"® = (pre(o;) U %0 U {=c}, {po,} U=y U—E_ U=T U-S4).

This operator enables all the “conditional effect opematoFor the activated effects, we introduce
the following operators:
.:>)Z.)j —

0; ({po; N@ijt Azij} Udps,pp |p =1} U{p—,py | -p =1i;}).

303

NEBEL

In words, if the effect condition is entailed, then the aatidd positive or negative effect as well as
the fact that the rule has been tried is recorded.

Since there is at most one effect literal for each conditiaféect, a conditional effect is
“blocked” if the negation of the effect condition is entalléy the state specification. For all
“blocked conditional effects” we introduce the followingerators:

0" = ({po; N\ ~pijt, {Tij})-

In order to check that all conditional effects have beemt(activating the corresponding effect
or not activating it because the conditional effect is btk the following operator is used:

of = ({po;} U{mi,j € T (pij = lij) € pos(o;)}, {c} U {=po,}).

This operator enables copying of the activated effects @csthte specification, which is achieved
with the following set of operators for each atgne X::

Oﬁ = <{Cap+7_'p—7p#}7{pa _'p#}>7
01: = ({C, _'p-l-ap—ap#}a{_'p? _'p#}>7
OIJ)_ = <{Cap+7p—ap#}aJ—>'

Finally, we need an operator that checks that all possiliéetsfhave been copied. This operator
also starts the “execution cycle” again by enabling the atiex of another “precondition operator:”

= ({c} U2y, {=c}).
Using these definitions, we can now specify the set of cordf@erators:
o' = {ozpr?,‘of lo; € O} U
{077 | 0; € O, (¢i,; = li,j) € posio;)} U
{o " | 0; € O, (pi,; = lij) € posto;)} U
{o.,0" o |peX}U
{0}

Based on that, we specify a compilation schefime (f¢, f;, f,, ti, t4) as follows:

fe(E) (X', 0)
fi(E) = =%,U-% U-34U-YoU-TU{~c},
f4(B) = —¥oU{~c},
tZ(Z I) = I,
G) = G.

The schemd obviously satisfies conditions (2) and (3) for compilati@hemes and all the func-
tions can be computed in polynomial time. Furthé(ll) is aSzz-instance ifll is aSgzc-instance.
LetnowS € ¥ be a legalSizc state specification and I = R(S, 0;) for some operator
o; € O. From the above discussion, it is clear thafifj~ L, then there exists a sequenﬁé of
operators fromD’ consisting Ofolp re’ followed by operators of the formy, o0 ando;” 7 followed
by the operatov, followed in turn by operators?, followed finally by the operatousC such that

S" = Res(S U fi(B), A') N X.

304

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Conversely, ifS" |= L, then there does not exist any plan that transforms

R(S U fi(2), 0P

)

into a legal state specification that contaiisand —yp,, .

Using induction on the plan length, it follows from the argemts above that there exists a plan
A for IT iff there exists a plad\’ for F'(II) and for every such plan we hayié\’|| < ||A[| x (3 +
2m), with m being the maximum number of conditional effects in opestufrO. Hencef is a
polynomial-time compilation scheme preserving plan sizigpomially. u

An immediate consequence of this theorem is 81ai andSi7 form an equivalence class with
respect to compilability preserving plan size polynonyiall

Corollary 21 Spz¢ and Sz are polynomial-time compilable to each other preservingnpsize
polynomially.

Further, we know from Corollary 15 that this class cannobiee larger.

As in the case of compilingz¢ to S.¢, however, the result depends on the semantics chosen
for executing conditional effects over partial state sfyeaions. If we use the alternative seman-
tics where the resulting state specification is legal whenaibplication of all state-transformation
functions leads to a theory that can be represented as algetals, it seems likely that there exists
another scheme that preserves plan size polynomially. Mewnvié we use the alternative semantics
that deletes all the literals in(P (.S, pos{o)) — A(S,pos{o)) if P(S,posto) is consistent, then it
appears to be very unlikely that we are able to identify a datipn scheme that preserves plan
size polynomially.

6.2 Compiling Conditional Effects Away for Complete State $ecifications

The next compilation scheme compil8ge to S andS,¢ to S;. Since we deal with complete state
specification, we do not have to take care of the conditi¢s, pos{o)) = P (S, posio)), which

is always true for complete states. This makes the compilagcheme somewhat simpler. Since
S, does not allow for general boolean formulae, the schemenbesa little bit more difficult. In
general, however, the compilation scheme we will specifyeis/ similar to the one given in the
proof of Theorem 20.

Theorem 22 Sie can be compiled t&s and Sy¢ can be compiled t&, in polynomial time pre-
serving plan size polynomially.

Proof. As in the proof of Theorem 20, we assume that= (3, O) is the Spc or Sg¢) source
domain structure. Further, we assume that all operatores thavform

0; = (pre(o;), {lix = lix, -, Limy = lim; })s

with [;; € £ andl; ; C Ly if E is aSpe structure ofl; ; C 3 if = is aS,¢ structure. This means
that we do not assume the effects to be unique for each condgliteffect.
In addition, we assume the same set symbols for the compilisdith structure as in the proof
of Theorem 20:
Y=YXUZ;UX_UXuUXoUTU{c}

305

NEBEL

For each operatar; € O, we introduce the operatong e of, o, o, o , ando® as in the proof of
Theorem 20. In addition, the following operators are needed

07" = ({po;} UTig, {2ij} Ulpsspg | p=1ij} Ulp—,py | —p=1li;}),
0, = ({po; } U{~@ijm | Pijm € Tij}s {wij})-

The compiled set of operato@®’ contains all of the above operators and the compilationreehs
identical to the scheme presented in the proof of TheorenTB& means that the only significant
difference to the compilation scheme presented in the b®heorem 20 is the operator scheme
o;""""™ which tests for each rule whether it contains an effect a@dihat blocks the rule. Since
we have complete state specifications, every conditioriatteis either activated or blocked, and
thez; ;'s are used to record that the execution of each conditidfeitdas been tried.

Using now similar arguments as in the proof of Theorem 20gllbivs that this compilation

scheme is indeed a scheme that leads to the claim made iretbre .]

It follows that S andSi are equivalent with respect teh and all formalisms irfS,z¢] and
[Scz] are equivalent with respect t¢f). These two sets could be merged into one equivalence class,
provided we are able to prove that, e 8z, can be compiled t& .

6.3 Compiling Boolean Formulae Away

In Section 5.5 we showed that it is impossible to compile eaolformulae to conditional effects if
plans are only allowed to grow linearly. However, we alsdaed already the idea of a compilation
scheme that preserves plan size polynomially. Here we waill show that we can compile boolean
formulae toS,, which is expressively equivalent to basitcrIPS i.e., we can compile boolean
formulae away completely.

Theorem 23 Sp is polynomial-time compilable t§, preserving plan size polynomially.

Proof. Assume thaE = (X, O) is aSp domain structure. Further assume without loss of gengralit
that all operators; € O are of the formo; = (g;, L;), with L; C) andy; € Ly, (i.e., we have just
one formula as the precondition instead of a set of formulae)

Let £y and X}, be two new sets of atoms corresponding one-to-one to alfcutulae oc-
curring in preconditions of operators @. These new atoms are denoted gyand q;p for the
sub-formulasyy. Atoms of the formq;p are used to record that the truth-value of the sub-forngula
has been computed and the atoms of the fggrare used to store the computed truth-value.

For each operatar; = (¢;, L;), we will have in the target operator set the following operat

i = ({dpir qp, } Li U =2y).

The set of all operators generated in this way is denote@’by
Further, for each atom € %, we introduce the following two operators:

= {r} {5 B},
o, = {{-p}, {q,,~a})

The set of operators generated in this way is denote@ by

0,

| S

=

306

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

For each sub-formula occurring in preconditionsbf the form = 1 A 15 the following
operators are introduced:

O;/;i— = <{Q&laqu23qd)1a%ﬁ2}a{QZ/;aqw}%
01;1 = <{Q:b17 Gy }7 {q':/n _'qw}>7
01;2 = ({ngzv _'q’l/)2}7 {q':pv _'qw}>

For sub-formulae) = 1 V 15, the following operators are introduced:

011_1 = ({q;plaqwl}a{q;paqw}>a
0$2 = <{q;/;2vq¢2}a {q':/nq'(p}>7
oy = (> Qs =y, 0w s (a0, ~a0})-

Finally, fory» = —, we have the following operators:
of = (dy—ar} {dpap})s
o, = (& ar}Ady~aw})-

The set of operators generated by sub-formulae is denoté€xby
Now we can specify the compilation scheifhe

fe(B) = (BUZy Uy, O'UOy UOy),
fi(B) = %y,
fy(B) = X4,
ti(%,I) = 1,
ty(8,G) = G.

From the construction it is obvious that all the functions polynomial-time computable, that
the state-translation functions are modular, that thedadudfunctionF’ is a reduction, and that for
every planA for a source planning instandé there exists a plaf\’ for F(II) such that|A’|| <
[|A|| x (m 4+ 1), with m being the maximum number of sub-formulae of precondition® i From
that, the claim follows.]

There might be the question whether compiling boolean ftemaway could be done more
efficiently. Using the result that boolean expressions @evaluated by circuits with logarithmic
depth, this should be indeed possible. However, we ardfiedtisere with the result that there is
a compilation scheme preserving plan size polynomiallyllat Bhis result together with Theo-
rem 22 settles the question for compilation schemes priegeplan size polynomially for all pairs
of formalisms.

Corollary 24 All formalismsX’ with X C S;z¢ or X C Spc are polynomial-time compilable to
each other preserving plan size polynomially.

307

NEBEL

6.4 Parallel Execution Models and the Feasibility of Comp#tion Schemes Preserving Plan
Size Polynomially

While compilation schemes that preserve plan size exaclip@arly seem to be of immediate use,
a polynomial growth of the plan appears to be of little pieadtinterest. Considering the practical
experience that planning algorithms can roughly be charized by their property of how many
steps they can plan without getting caught by the combiistexplosion and the fact that this
number is significantly smaller than 100, polynomial growties not seem to make much sense.

If we take GRAPHPLAN (Blum & Furst, 1997) into consideration again—the plannaygtem
that motivated our investigation in the first place—it tuoos that this system allows for tiparallel
executionof actions. Although parallel execution might seem to adthéopower of the planning
system considerably, it does not affect our results at &k dequential plan can solve a planning
instance withn steps, a parallel plan will also need at leastctions. Nevertheless, although the size
of a plan (measured in the number of operations) might bediresthe number of time steps may
be considerably smaller—which might allow for a more effitigeneration of the plan. Having a
look at the compilation scheme that compiles conditiongdat$ away, it seems to be the case that
a large number of generated actions could be executed itigharin particular those actions that
simulate the conditional effects.

However, the semantics of parallel executiorGRAPHPLAN is quite restrictive. If one action
adds or deletes an atom that a second action adds or deldgfemneraction deletes an atom that
a second action has in its precondition, then these tworactannot be executed in parallel in
GRAPHPLAN. With this restriction, it seems to be impossible to compiaditional effects away
preserving the number of time steps in a plan. However, a datign scheme that preserves the
number of time steps linearly seems to be possible. Instéadiah a compilation scheme, the
approaches so far either used an exponential translatiaref& Knoblock, 1997) or modified the
GRAPHPLAN-algorithm in order to handle conditional effects (Andersb al., 1998; Koehler et al.,
1997; Kambhampati et al., 1997). These modifications irealvanges in the semantics of parallel
execution as well as changes in the search procedure. Whhese implementations are compared
with the straightforward translation Gazen and Knobloc%9@) used, it would also be interesting
to compare them with a compilation scheme based on the igedled out in Theorem 22 as the
base line.

7. Summary and Discussion

Motivated by the recent approaches to extenddR@PHPLAN algorithm (Blum & Furst, 1997) to
deal withmore expressive planning formalisifdnderson et al., 1998; Gazen & Knoblock, 1997,
Kambhampati et al., 1997; Koehler et al., 1997), we asked wieatermexpressive powerould
mean in this context. One reasonable intuition seems todietlibk termexpressive powerefers

to how concisely domain structures and the correspondiagsptan be expressed. Based on this
intuition and inspired by recent approaches in the areamfiledge compilation (Gogic et al., 1995;
Cadoli et al., 1996; Cadoli & Donini, 1997), we introducee tiotion ofcompilability in order to
measure the relative expressiveness of planning formslisthe basic idea is that@mpilation
schemecan only transform the domain structure, i.e., the symbbasd the operators, while the
initial state and the goal specification are not transformatdulo some small changes necessary
for technical reasons. Further, we distinguish compitaBohemes according to whether the plan
in the target formalism has the same size (up to an additinstaat), a size bounded linearly by the

308

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

size of the plan in the source formalism, or a size boundegnpaohially by the original planning
instance and the original plan.

Although the compilability framework appears to be a stifiyward and intuitive tool for
measuring the expressiveness of planning formalisms, pbssible to come up with alternative
measures. Backstrom (1995), for instance, proposedet&88-reductionswhich are polynomial
many-one reductions on planning problems that preservplémesize exactly. However, requiring
that the transformation should be polynomial-time comipletaeems to be overly restrictive. In
particular, if we want to prove that one formalisrmist as expressive as another one, we had better
proven that there exists no compilation scheme regardleBeve much computational resources
the compilation process may need. Furthermore, there appdee severe technical problems to
using Backstrom's (1995) framework for proving negatigsults. On the other hand, all of the
positive results reported by Backstrom are achievablénéncompilation framework because the
transformations he used are in fact compilation schemddangaill this together, it appears to be
the case that the compilation framework is superior frormauitive and technical point of view.

Another approach to judging the expressiveness of plarfisimgalisms has been proposed by
Erol and colleagues (1994, 1996). They measure the expeassis of planning formalisms accord-
ing to the set of plans a planning instance can have. Whieaghproach contraskserarchical task
networkplanning nicely withsTRIPSplanning, it does not help us in making distinctions betwee
the formalisms in th&-family.

The compilability framework is mainly a theoretical tool neeasure how concisely domain
structures and plans can be expressed. However, it als@a@pfmebe a good measure of how
difficult planning becomes when a new language feature igddBolynomial-timecompilation
schemes that preserve the plan size linearly indicate thsiteasy to integrate the feature that is
compiled away. One can either use the compilation schermseasmimic the compilation scheme
by extending the planning algorithm. If only a polynomimi¢ compilation scheme leading to a
polynomial growth of the plan is possible, then this is andation that adding the new feature
requires most probably a significant extension of the plammilgorithm. If even a compilation
scheme preserving plan size polynomially can be ruled bet) there is most probably a serious
problem integrating the new feature.

Using this framework, we analyzed a large family of planniagnalisms ranging from basic
STRIPSto formalisms with conditional effects, boolean formulaed incomplete state specifica-
tions. The most surprising result of this analysis is thatane able to come up with a complete
classification. For each pair of formalisms, we were eith#e @& construct golynomial-time
compilation schemeith the required size bound on the resulting plans or wectptdve that com-
pilation schemes are impossible—even if the computatiogsdurces for the compilation process
are unbounded. In particular, we showed for the formalisomsiclered in this paper:

e incomplete state specifications and literals in precomlitican be compiled to bassdriPS
preserving plan size exactly,

e incomplete state specifications and literals in precamattiand effect conditions can be com-
piled away preserving plan size exactly, if we have alreamhdiional effects,

e and there are no other compilation schemes preserving gkatireearly except those implied
by the specialization relationship and those describesleabo

309

NEBEL

If we allow for polynomial growth of the plans in the targetrrfmalism, then all formalisms not
containing incomplete state specifications and booleanutare are compilable to each other. In-
complete state specifications together with boolean faamuhowever, seem to add significantly
to the expressiveness of a planning formalism, since thaseot be compiled away even when
allowing for polynomial growth of the plan and unboundedbreses in the compilation process.

It should be noted, however, that some of these results hdidibwe use the semantics for
conditional effects over partial state specifications aflsp out in Section 2.1. For other semantics,
we may get slightly different results concerning the couatplity of conditional effects over partial
states.

One question one may ask is what happens if we consider fsmmalwith boolean formulae
that are syntactically restricted. As indicated at variplaces in the paper, restricted formulae,
such as CNF or DNF formulae, can sometimes be easily comailey. However, there are also
cases when this is impossible. For example, it can be shaat©iF formulae cannot be compiled
to basicsTRIPS preserving plan size linearly (Nebel, 1999), which confid@kstrom's (1995)
conjecture that CNF-formulae in preconditions add to theessive power of basgTRIPS

Another question is how reasonable our restrictions on gpdation scheme are. In particular,
one may want to know whethapn-modularstate-translation functions could lead to more powerful
compilation schemes. First of all, requiring that the stegeslation functions are modular seems
to be quite weak considering the fact that a compilation se&hshould only be concerned with
the domain structure and that the initial state and goalip&tion should not be transformed at
all. Secondly, considering the fact that the state-trdiasidunctions do not depend on the operator
set, more complicated functions seem to be useless. Fromretewhnical point of view, we need
modaularity in order to prove that conditional effects andliean formulae cannot be compiled away
preserving plan size linearly. For the conditional effeat®@dularity or a similar condition seems
to be crucial. For the case of boolean formulae, we could emdke condition to the point that
we require only that state-translation functions are cdaiga by circuits of constant depth—or
something similar. In any case, the additional freedom @te fjom non-modular state-translation
functions does not seem to be of any help because thesedumatd not take the operators into
account. Nevertheless, it seems to be an interesting tiedneroblem to prove that more powerful
state-translation functions do not add to the power of ctatiph schemes.

Although the paper is mainly theoretical, it was inspiredthy recent approaches to extend
the GRAPHPLAN algorithm to handle more powerful planning formalisms eimihg conditional
effects. So, what are the answers we can give to open prolateths field of planning algorithm
design? First of all, Gazen and Knoblock's (1997) approaatompiling conditional effects away
is optimal if we do not want to allow plan growth more than byomstant factor. Secondly, all of
the other approaches (Anderson et al., 1998; Kambhampatli, ét997; Koehler et al., 1997) that
modify the GRAPHPLAN algorithm are using a strategy similar to a polynomial-ticoenpilation
scheme preserving plan size polynomially. For this readmse approaches should be compared
to a “pure compilation approach” using the ideas from the mitation scheme developed in the
proof of Theorem 22 as the base line. Thirdly, allowing forastricted boolean formulae adds
again a level of expressivity because they cannot be cochpilay with linear growth of the plan
size. In fact, approaches such as the one by Anderson arghgo#s (1998) simply expand the
formulae to DNF accepting an exponential blow-up. Again,o&anot do better than that if plan
size should be preserved linearly. Fourthly, if we want td pdrtial state specifications on top of
general boolean formulae, this would amount to an increberpressivity that is much larger than

310

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

adding conditional effects or general formulae to basiriPs because in this case there is no way
to compile this away even if we allow for polynomial plan gtow

Finally, one may wonder how our results apply to planningragphes that are based on translat-
ing (bounded) planning problems to propositional logictsasSATPLAN (Kautz & Selman, 1996)
or BLACKBOX (Kautz & Selman, 1998). Since the entire analysis of theivelaxpressiveness of
planning formalisms uses the assumption that we compifa fsoe planning formalism to another
planning formalism, the results do not tell us anything dlboe size of representations if we switch
to another formalism. In particular, it seems possible td &in encoding of (bounded) planning
problems with conditional operators in propositional togihich is as concise as an encoding of
unconditional operators. The only advice our results givihat such a concise encoding will not
be found by first translating conditional actions to unctindal actions and then using the “stan-
dard” encoding for unconditional actions (Kautz, McAllest& Selman, 1996) to generate boolean
formulae. However, addressing the problem of determirtiegconciseness of representation in this
context appears to be an interesting and relevant topiaifard research.

Acknowledgments

The research reported in this paper was started and pantigaaut while the author enjoyed being
a visitor at the Al department of the University of New Southléé. Many thanks go to Norman
Foo, Maurice Pagnucco, and Abhaya Nayak and the rest of thridepdrtment for the discussions
and cappuccinos. | would also like to thank Birgitt Jennat dacobo Toran for some clarifications
concerning circuit complexity.

Appendix A: Symbol Index

Symbol Page Explanation

|- | 292 cardinality of a set

[l 277 size of an instance

= 274 symbol used in conditional effects

C 279 syntactic specialization relation

iy 282 compilability relation with restrictiom andy

L 273 boolean constant denoting falsity, also denoting
the illegal state specification

T 273 boolean constant denoting truth

a(-) 295 advice function

A(-,) 275, 27active effects of an operator in a state or statdfs@sion

AC? 298 complexity class

C 298 boolean circuit

C 298 family of boolean circuits

CONP 272 complexity class

coNP/poly295 non-uniformcoNP
CWAy(-) 284 closing a set of literals w.rxt.

A 277 plan, i.e., sequence of operators
AP 295 complexity class in the polynomial hierarchy
I 295 instance of a problem

311

NEBEL

I 277 initial state description
f 282 compilation scheme=((f¢, fi, fg,ti, 14))
F() 282 transformation induced by compilation scheme

fe. finfg 282 components of a compilation scheme
G 277 goal of a planning task

r 274 set of boolean formulae
¥, @, 273 boolean formulae
l 287 literal
L K 273 sets of literals
Ls 273 all boolean formulae that use atoms frim
Mod(-) 274 setof all models of a theory
NC! 298 complexity class
neg(-) 273 negative literals in a set of literals
NP 272 complexity class
NP/poly 295 non-uniformNP
0 274 operator<£ (pre, posb)
(@) 276 set of operators
o~ 277 set of finite sequences of operators
p,q,u,v,z 274 propositional atoms
P(-,-) 275 potentially active effects of an operator
for a given state specification
P 272 complexity class
P/poly 295 non-uniformP
PH 295 the polynomial hierarchy
pos(+) 273 positive literals in a set of literals
PLANEX 279 plan existence problem
post 274 postconditions of an operator
pre 274 preconditions of an operator
PSPACE 272 complexity class
I1 277 planning instance=((Z, I, G))
I’ 295 complexity class in the polynomial hierarchy
R(-,") 276 maps a state specification and an operator to a new state
Res(-,-) 277 extension oR(-,-) to plans
s 274 state (or truth assignment)
S 274 state specification
S 278 thesTRIPsplanning formalism
Sr 278 sTRIPswith literals in preconditions
Si 278 sTRIPSwith boolean formulae in preconditions
St 278 sTRIPSwith incomplete state descriptions
Se 278 sTRIPswith conditional effects
S 278 sTRIPSwith combinations of the above extensions
[Sczc] 283 equivalence classes inducedsly
[Scz] 283 equivalence classes inducedsly
o(+) 273 all propositional atoms used in a set of literals
b)) 273 countably infinite set of propositional atoms

312

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

x 273 finite subset oE

5 273 set of literals overs

P 295 complexity class in the polynomial hierarchy
tistg 282 state-translation functions in a compilation scheme
U 292 universal literals

w 298 aword ovef0,1}*

X 295 some complexity class

X,y 272 some planning formalisms

= 277 domain structure< (2, O))

= 299 family of domain structures

References

Anderson, C. R., Smith, D. E., & Weld, D. S. (1998). Conditibaffects in Graphplan. IRroceed-
ings of the 4th International Conference on Atrtificial Itigggnce Planning Systems (AIPS-
98), pp. 44-53. AAAI Press, Menlo Park.

Baader, F. (1990). A formal definition for expressive powfdtriowledge representation languages.
In Proceedings of the 9th European Conference on Artificiadlligence (ECAI-905tock-
holm, Sweden. Pitman.

Backstrom, C. (1995). Expressive equivalence of plagfanmalisms Artificial Intelligence 76(1—
2), 17-34.

Backstrom, C., & Nebel, B. (1995). Complexity results 8AS" planning. Computational Intelli-
gence 11(4), 625-655.

Blum, A. L., & Furst, M. L. (1997). Fast planning through piang graph analysis.Atrtificial
Intelligence 90(1-2), 279-298.

Brewka, G., & Hertzberg, J. (1993). How to do things with wistl On formalizing actions and
plans..Journal Logic and ComputatiQr3(5), 517-532.

Bylander, T. (1994). The computational complexity of prsitional STRIPS planningAtrtificial
Intelligence 69(1-2), 165-204.

Cadoli, M., & Donini, F. M. (1997). A survey on knowledge coitation. Al Communications
10(3,4), 137-150.

Cadoli, M., Donini, F. M., Liberatore, P., & Schaerf, M. (9 Comparing space efficiency of
propositional knowledge representation formalism. InllajeL. C., Doyle, J., & Shapiro,
S. (Eds.),Principles of Knowledge Representation and Reasoningcdéadings of the 5th
International Conference (KR-98)p. 364—373 Cambridge, MA. Morgan Kaufmann.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). HTN planning: i@plexity and expressivity. In
Proceedings of the 12th National Conference of the Amerssociation for Artificial Intel-
ligence (AAAI-94)pp. 1123-1129 Seattle, WA. MIT Press.

313

NEBEL

Erol, K., Hendler, J. A., & Nau, D. S. (1996). Complexity résufor hierarchical task-network
planning. Annals of Mathematics and Artificial Intelligencks, 69-93.

Fikes, R. E., & Nilsson, N. (1971). STRIPS: A new approachhtdpplication of theorem proving
to problem solving Artificial Intelligence 2, 189—208.

Furst, M., Saxe, J. B., & Sipser, M. (1984). Parity, circuéiwd the polynomial-time hierarchy.
Mathematical Systems Theopfy/(1), 13-27.

Garey, M. R., & Johnson, D. S. (1979Computers and Intractability—A Guide to the Theory of
NP-Completenesg-reeman, San Francisco, CA.

Gazen, B. C., & Knoblock, C. (1997). Combining the expremsass of UCPOP with the efficiency
of Graphplan. In Steel, S., & Alami, R. (EdsRBecent Advances in Al Planning. 4th European
Conference on Planning (ECP'9NoIl. 1348 ofLecture Notes in Artificial Intelligencepp.
221-233 Toulouse, France. Springer-Verlag.

Gogic, G., Kautz, H. A., Papadimitriou, C. H., & Selman, B99b). The comparative linguistics
of knowledge representation. Rroceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI-95)pp. 862—869 Montreal, Canada. Morgan Kaufmann.

Kambhampati, S., Parker, E., & Lambrecht, E. (1997). Undading and extending Graphplan.
In Steel, S., & Alami, R. (Eds.Recent Advances in Al Planning. 4th European Conference
on Planning (ECP'97)Vol. 1348 of Lecture Notes in Artificial Intelligengepp. 260—272
Toulouse, France. Springer-Verlag.

Karp, R. M., & Lipton, R. J. (1982). Turing machines that takdvice. L' Ensignement
Mathématique 28, 191-210.

Kautz, H. A., McAllester, D. A., & Selman, B. (1996). Encodiplans in propositional logic. In
Aiello, L. C., Doyle, J., & Shapiro, S. (Eds.Principles of Knowledge Representation and
Reasoning: Proceedings of the 5th International ConfezefitR-96) pp. 374-385 Cam-
bridge, MA. Morgan Kaufmann.

Kautz, H. A., & Selman, B. (1992). Forming concepts for fageience.. InProceedings of the
10th National Conference of the American Association fdifigial Intelligence (AAAI-92)
pp. 786—793 San Jose, CA. MIT Press.

Kautz, H. A., & Selman, B. (1996). Pushing the envelope: Rilag, propositional logic, and
stochastic search. IRroceedings of the 13th National Conference of the Amerissocia-
tion for Artificial Intelligence (AAAI-96)pp. 1194—-1201. MIT Press.

Kautz, H. A., & Selman, B. (1998). BLACKBOX: A new approachttee application of theorem
proving to problem solving. IMVorking notes of the AIPS'98 Workshop on Planning as
Combinatorial Searchrittsburgh, PA.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (129Extending planning graphs to an
ADL subset. In Steel, S., & Alami, R. (EdsRecent Advances in Al Planning. 4th European
Conference on Planning (ECP'9QAjol. 1348 ofLecture Notes in Artificial Intelligencep.
273-285 Toulouse, France. Springer-Verlag.

314

COMPILABILITY AND EXPRESSIVEPOWER OFPLANNING FORMALISMS

Lifschitz, V. (1986). On the semantics of STRIPS. In Gediddf P., & Lansky, A. (Eds.)Reason-
ing about Actions and Plans: Proceedings of the 1986 Woikspp. 1-9 Timberline, OR.
Morgan Kaufmann.

Nebel, B. (1999). What is the expressive power of disjuegtireconditions?. In Biundo, S., & Fox,
M. (Eds.),Recent Advances in Al Planning. 5th European Conferencdaamig (ECP'99)
Durham, UK. Springer-Verlag. To appear.

Papadimitriou, C. H. (1994 Computational ComplexityAddison-Wesley, Reading, MA.

Pednault, E. P. (1989). ADL: Exploring the middle groundwesn STRIPS and the situation
calculus. In Brachman, R., Levesque, H. J., & Reiter, R. (E@sinciples of Knowledge
Representation and Reasoning: Proceedings of the lstniienal Conference (KR-89)
pp. 324-331 Toronto, ON. Morgan Kaufmann.

Yap, C. K. (1983). Some consequences of non-uniform camditon uniform classeg.heoretical
Computer Scien¢e6, 287—-300.

315

