Conformant Planning

First Step toward Planning Under Uncertainty

Date




Conformant Planning

* Basic assumption in classical planning: the initial state is fully known
*  What if we don’t know everything about the initial state?

* Conformant planning -- like classical planning, but instead of a single possible initial state, a set of
possible initial states

*  Other forms of uncertainty:

* Uncertainty about the effect of actions (non-deterministic, stochastic)

* Some conformant planning algorithms can deal with non-deterministic effects
* Related issues:

* Observability: can we observe information about the current state?

* Conformant planning: no observations during plan execution




Conformant Planning: the Trouble with Incomplete Info

B

Problem: A robot must move from an uncertain / into G with certainty,
one cell at a time, In a grid nxn

e Conformant and classical planning look similar except for uncertain [
(assuming actions are deterministic).

e Yet plans may be quite different: best conformant plan above must
move robot to a corner first! (in order to localize)

H. Palacios & H. Geffner, Solving Conformant Planning Using a Classical Planner (Sometimes), AAAL06 5




Conformant Planning

* Conformant Planning problem (P A,1,G)
* Tis an arbitrary formula, and any state s that satisfies I is a possible initial state
* A can be non-deterministic. Later we will focus on deterministic effects

* Model -- identical to classical planning (possibly non-deterministic) automaton with multiple
initial states.

* Solution -- a plan that is guaranteed to take us from any initial state to some goal state, no matter
what the effect of actions is.

* Language -- like strips except:
* Initial state described by a formula -- any assignment satisfying it is a legal state

* Non-determinism can be captured by disjunctive effects: p v -p




Belief States

* Central concept: belief state --- the set of possible (world) states
+ Initial belief state: {s | s | =1}

* If our current belief state is b and we apply action a, then we reach a new belief

state b’=f{a(s) | s | =D}




Example:

B

......

2
J I

GoSouth

GoEast

GoEast

GoEast

GoSouth

GoNorth




Search in Belief Space

* Conformant planning can be viewed as the problem of finding a path in belief
space

* Initial state: initial belief state
* Goal state: any belief state b such thats€Eb =5 |=¢g
* Actions: a(b)={a(s) | s | =D}

* In general, a belief state could require an exponentially large (in # of state
variables) description




lerpeovng Heuratics B Panning 3s Sexrch n Beled Space

The Search Space |
| N H
\ ] I

Remark:
e the search space is Pow(S)
¢ & contains 15 states,

¢ Pow:(S) contains 32767 belief states!




Complexity

* We can verify that a classical plan is true in time linear in plan length and # of
propositions

* Verifying that a conformant plan is correct may be intractable
* Initial state: initial belief state
* Goal state: any belief state b such thats€Eb =5 |=¢g
* Actions: a(b)={a(s) | s | =D}

* In general, a belief state could require an exponentially large (in # of state
variables) description




Generating Conformant Plans

* Two main issues:
* How do we represent belief states efficiently?
* Small size desirable
* Ability to quickly detect goal satisfaction
*  Ability to quickly detect which action is applicable

* How can we generate good heuristic estimates?

10




Special Case

+ Standard STRIPS actions

+ Initial state: the value of some propositions is known, the value of others is
completely unknown (no constraints of the form p v q)

+ Solution:???

11




Representing Belief States

1. Explicit representation: Maintain a set of states
e All operations require time linear in number of possible states
e All operations are conceptually simple
® The number of possible states can be very large
® Does not work in practice
2. Symbolic representation: Maintain formula ¢ over state propositions
® sis a possible state iff it satisfies ¢
e Key issue: how do we represent ¢

¢ Different choices affect the computational and conceptual difficulty of different operations
(update, verification of goal/ preconditions) and the size of the formula

12




Alternative Symbolic

Representations

L3

Logical formula w/o constraints

L]

Conjunctive Normal Form: Conjunction of Disjunctions
* (pvqvr) & (-pvwvd) & (-wvqvs)

* Checking whether a precondition/goal holds require solving un-sat problem

<

Disjunctive Normal Form: Disjunction of Conjunctions
* (p&q&r) v (-p&wd) v (-w&qsé)
* Checking whether a condition holds is easy

* The number of conjuncts can grow rapidly

L3

Binary Decision Diagrams

13




Binary Decision Diagrams

KX

A data structure used for compactly representing boolean functions
Made popular by work on program verification

Based on recursive Shannon expansion

f 0 xfx+ x,fx’

Canonical representation

+ reduced ordered BDDs (ROBDD) are canonical (= there is only one way to
represent any function given a fixed variable order)

14




Recursive Shannon Expansion for
= ac + bc

15




Recursive Shannon Expansion for
= ac + bc

fe




Recursive Shannon Expansion for
= ac + bc

* f=acthc f@

g=bc '//

15




Recursive Shannon Expansion for
= ac + bc

* f=acthc f@
. h=f =fla=1) =c + bc

g=bc '//

15




Recursive Shannon Expansion for
= ac + bc

o= GieRH e f
« h=f =fla=1)=c+bc )
g=bc + h=c + bc

. g=f,=fla=0) = be

15




Recursive Shannon Expansion for
= ac + bc

o= GieRH e f
« h=f =fla=1)=c+bc )
g=bc + h=c + bc

S ng;/Zf(El:O):bC @

15




Recursive Shannon Expansion for
= ac + bc

o= GieRH e f
« h=f =fla=1)=c+bc )

e 7 h=c + bc
- 8=f,=fa=0)=bc @

» g, =(bc),_;=c

15




Recursive Shannon Expansion for
= ac + bc

o= GieRH e Jf
« h=f =fla=1)=c+bc )
g=bc + h=c + bc

- g=f,=fa=0)=bc
+ 8§ =(bo),=c @

+ &y =(bc), =0

15




Recursive Shannon Expansion for
= ac + bc

o= GieRH e Jf
« h=f =fla=1)=c+bc )
g=bc + =8 = e

- g=f,=fa=0)=bc
+ 8§ =(bo),=c @

+ &y =(bc), =0

o g = (@ e

15




Recursive Shannon Expansion for
= ac + bc

o= e
« h=f =fla=1)=c+bc

- ¢=f,=fla=0)="bc
+ 8, =), =c

+ &y =(bc), =0

o g = (@ e

e By, =(c+bo),,_,=c

15




Recursive Shannon Expansion for
= ac + bc

o= e
« h=f =fla=1)=c+bc

- ¢=f,=fla=0)="bc
+ 8, =), =c

+ &y =(bc), =0

o g = (@ e

e By, =(c+bo),,_,=c

15




Recursive Shannon Expansion for
= ac + bc

o= e
« h=f =fla=1)=c+bc

- ¢=f,=fla=0)="bc
+ 8, =), =c

+ &y =(bc), =0

o g = (@ e

e By, =(c+bo),,_,=c

15




BDD operations

* When the two outgoing edges of a node point to the same node, remove it

16




BDD operations

* When the two outgoing edges of a node point to the same node, remove it

= elln) o ellb)= 2ll)
k=1

16




BDD operations

* When the two outgoing edges of a node point to the same node, remove it

f=a"gb)+agb)=g(b)
k=1

16




BDD Operations

* Merge duplicate nodes

17




BDD Operations

* Merge duplicate noc%es

f,=a’g(b) +ah(c)=f,

17




BDD Operations

* Merge duplicate noc%es

f,=a’g(b) +ah(c)=f,

17




BDD Construction

* You can start with a decision tree and merge: example f=ac+bc

+ Reduced, ordered, BDD:
* Reduced -- no additional reductions can be applied

* Ordered -- the order of variables in a path from the root to a leaf is fixed

18




BDD Construction

* You can start with a decision tree and merge: example f=ac+bc

a c f

Truth table

R R EEREOOOO0O
RFOORRFROO O
OrRORrRORrRO
OrRrRORrROOO

+ Reduced, ordered, BDD:
* Reduced -- no additional reductions can be applied

* Ordered -- the order of variables in a path from the root to a leaf is fixed




BDD Construction

* You can start with a decision tree and merge: example f=ac+bc

abc f
O 0O0|O
O01]0
0100
0111
Truth table (1 O O (O
1 01(1
1 10(0

f —— 1 edge
==--0 edge

+ Reduced, ordered, BDD:

0

/ /
/% / /R
L L L
01101 11110]|L

Decision tree

* Reduced -- no additional reductions can be applied

* Ordered -- the order of variables in a path from the root to a leaf is fixed

18



BDD Construction (continued,)

19




BDD Construction (continued,)

1. Merge terminal
nodes

19




BDD Construction (continued,)

1. Merge terminal
nodes

2. Merge
duplicate
nodes

19




BDD Construction (continued,)

1. Merge terminal 2. Merge
nodes duplicate
nodes

19



BDD Construction (continued,)

1. Merge terminal 2. Merge 3. Remove
nodes duplicate redundant nodes
nodes

19



BDD Construction (continued,)

f f f = (a+b)c

4
.

s

0
1. Merge terminal 2. Merge 3. Remove
nodes duplicate redundant nodes

nodes

19



BDDs Support Efficient Logical

Manipulations

* Negating a function (very simple??)
* Conjoining two functions

* Disjoining two functions

* Others

* QOperations utilize the recursive definition of the function

20




Implicit Representation

* This is also a representation via a formula, but with different propositions
* Essentially, this is the same formula generated by a SAT-encoding

* A state s is possible currently if there is a satisfying assignment that assigns the
propositions at time t the same values as s.

* Update is very easy

* Checking whether a condition holds now requires verifying that a formula is
unsatisfiable

* The formula can be simplified during run-time

21



Searching in Belief Space

%

All current planners use forward search

)
b

Main problem: heuristics are difficult to generate
* Size heuristic: hs(b) =-1* |{s: s&b}|
* Pushes toward belief states with more certainty

* That’s about it ... not strong enough.

22




The Translation-Based Approach

* In classical planning, if we know the initial state, we know the current state simply from the description of the actions
Basic idea: maintain a copy of each proposition for each possible initial state
+  pliy, plia, ..., plix
* And also a “general” copy: p
Generate actions that update all copies
« If p-->gis an original effect of a, add p/i; --> g/ij for every 1<j<k
This way, we know what's true now as a function of what was true initially
#  We can also deduce that if p/i; holds now for every 1<j<k, then p holds.
* This way, we can know whether some precondition or goal condition holds

*  So far, pretty wasteful because we may have exponentially many initial states

23




The Translation-Based Approach

*  We can use this idea to generate a new classical planning problem
* Propositions: p, p/ijfor every possible proposition p and every possible initial state i;
* Actions:
* the original actions, with effects modified as described before
« special inference actions: p/ii A p/iz A ... A plix»p for every proposition p
+ Initial state: p/j; is true iff p holds in possible initial state i;
* Goal state: ¢ (as in the original problem)
*  We get a classical planning problem, and we can solve it with a classical planner

* No need for special heuristics!

24




The Translation-Based Approach

* Actually, in the literature:
* Propositions: Kp, Kp/i;is used
* Kp -- p is known
* Kplij-- p is known given i
* More generally: Kp/t -- p is known given some condition t on the initial state
* Kis used in logics of knowledge: Something is known if it holds in all possible states.
* This is captured by: Kp/i1 A Kp/iz A ... A Kp/ix-Kp

* The planner is reasoning about our state of knowledge

25




The Translation-Based Approach

* Main problem: many possible initial states
* Possible solution: use tags (conditions) that are more general
* This is not always possible, but in many problem it works
*  When it doesn’t work, we're in trouble -- why?
* Example: two variables: p1,p2,..., pk. Both unknown initially.
* 2k possible initial states
*  Suppose that the goal is pl&...&pk, and a; has a conditional effect: -p; --> pi
* According to previous slides, we need 2% possible tags
*  We can work with 2*k tags -- one for each value of each variable

* Reason -- the effect on tags is independent

26




