
Date

Conformant Planning
First Step toward Planning Under Uncertainty

1

Conformant Planning

✤ Basic assumption in classical planning: the initial state is fully known

✤ What if we don’t know everything about the initial state?

✤ Conformant planning -- like classical planning, but instead of a single possible initial state, a set of
possible initial states

✤ Other forms of uncertainty:

✤ Uncertainty about the effect of actions (non-deterministic, stochastic)

✤ Some conformant planning algorithms can deal with non-deterministic effects

✤ Related issues:

✤ Observability: can we observe information about the current state?

✤ Conformant planning: no observations during plan execution

2

3

Conformant Planning

✤ Conformant Planning problem 〈P,A,I,G〉

✤ I is an arbitrary formula, and any state s that satisfies I is a possible initial state

✤ A can be non-deterministic. Later we will focus on deterministic effects

✤ Model -- identical to classical planning (possibly non-deterministic) automaton with multiple
initial states.

✤ Solution -- a plan that is guaranteed to take us from any initial state to some goal state, no matter
what the effect of actions is.

✤ Language -- like strips except:

✤ Initial state described by a formula -- any assignment satisfying it is a legal state

✤ Non-determinism can be captured by disjunctive effects: p v -p

4

Belief States

✤ Central concept: belief state --- the set of possible (world) states

✤ Initial belief state: {s | s ⎮= I}

✤ If our current belief state is b and we apply action a, then we reach a new belief
state b’={a(s) | s ⎮= b}

5

6

Search in Belief Space

✤ Conformant planning can be viewed as the problem of finding a path in belief
space

✤ Initial state: initial belief state

✤ Goal state: any belief state b such that s∈ b ⇒ s ⎮= g

✤ Actions: a(b)={a(s) | s ⎮= b}

✤ In general, a belief state could require an exponentially large (in # of state
variables) description

7

8

Complexity

✤ We can verify that a classical plan is true in time linear in plan length and # of
propositions

✤ Verifying that a conformant plan is correct may be intractable

✤ Initial state: initial belief state

✤ Goal state: any belief state b such that s∈ b ⇒ s ⎮= g

✤ Actions: a(b)={a(s) | s ⎮= b}

✤ In general, a belief state could require an exponentially large (in # of state
variables) description

9

Generating Conformant Plans

✤ Two main issues:

✤ How do we represent belief states efficiently?

✤ Small size desirable

✤ Ability to quickly detect goal satisfaction

✤ Ability to quickly detect which action is applicable

✤ How can we generate good heuristic estimates?

10

Special Case

✤ Standard STRIPS actions

✤ Initial state: the value of some propositions is known, the value of others is
completely unknown (no constraints of the form p v q)

✤ Solution:???

11

Representing Belief States

1. Explicit representation: Maintain a set of states

• All operations require time linear in number of possible states

• All operations are conceptually simple

• The number of possible states can be very large

• Does not work in practice

2. Symbolic representation: Maintain formula φ over state propositions

• s is a possible state iff it satisfies φ

• Key issue: how do we represent φ

• Different choices affect the computational and conceptual difficulty of different operations
(update, verification of goal/preconditions) and the size of the formula

12

Alternative Symbolic
Representations
✤ Logical formula w/o constraints

✤ Conjunctive Normal Form: Conjunction of Disjunctions

✤ (pvqvr) & (-pvwvd) & (-wvqvs)

✤ Checking whether a precondition/goal holds require solving un-sat problem

✤ Disjunctive Normal Form: Disjunction of Conjunctions

✤ (p&q&r) v (-p&w&d) v (-w&qs&)

✤ Checking whether a condition holds is easy

✤ The number of conjuncts can grow rapidly

✤ Binary Decision Diagrams

13

Binary Decision Diagrams

✤ A data structure used for compactly representing boolean functions

✤ Made popular by work on program verification

✤ Based on recursive Shannon expansion

✤ ! ! ! f = x fx + x’ fx’

✤ Canonical representation

✤ reduced ordered BDDs (ROBDD) are canonical (= there is only one way to
represent any function given a fixed variable order)

14

Recursive Shannon Expansion for
f= ac + bc

15

Recursive Shannon Expansion for
f= ac + bc

a
f

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc
a

f

g= bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc
a

f
• h = fa = f(a=1) = c + bc

g= bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc
a

f
• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
g= bc h= c + bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
g= bc h= c + bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
• gb = (bc)|b=1 = c

g= bc h= c + bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
• gb = (bc)|b=1 = c

• gb’ = (bc)|b=0 = 0

g= bc h= c + bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
• gb = (bc)|b=1 = c

• gb’ = (bc)|b=0 = 0

• hb = (c+bc)|b=1 = c

g= bc h= c + bc

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

0

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
• gb = (bc)|b=1 = c

• gb’ = (bc)|b=0 = 0

• hb = (c+bc)|b=1 = c

• hb’ = (c+bc)|b=0 = c

g= bc h= c + bc

c

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

0

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
• gb = (bc)|b=1 = c

• gb’ = (bc)|b=0 = 0

• hb = (c+bc)|b=1 = c

• hb’ = (c+bc)|b=0 = c

g= bc h= c + bc
b

c

15

Recursive Shannon Expansion for
f= ac + bc

• f = ac+bc

b

0

a
f

• h = fa = f(a=1) = c + bc

• g = fa’ = f(a=0) = bc
• gb = (bc)|b=1 = c

• gb’ = (bc)|b=0 = 0

• hb = (c+bc)|b=1 = c

• hb’ = (c+bc)|b=0 = c

g= bc h= c + bc
b

c

1

15

BDD operations

✤ When the two outgoing edges of a node point to the same node, remove it

✤

16

BDD operations

✤ When the two outgoing edges of a node point to the same node, remove it

✤

f = a’ g(b) + a g(b) = g(b)
(fa + fa’ = 1)

a

b

f

g

16

BDD operations

✤ When the two outgoing edges of a node point to the same node, remove it

✤

f = a’ g(b) + a g(b) = g(b)
(fa + fa’ = 1)b

g

a

b

f

g

16

BDD Operations

✤ Merge duplicate nodes

✤

17

BDD Operations

✤ Merge duplicate nodes

✤

f1 = a’ g(b) + a h(c) = f2

a a

b c
hg

f1 f2

17

BDD Operations

✤ Merge duplicate nodes

✤

f1 = a’ g(b) + a h(c) = f2 f = f1 = f2

a a

b c
hg

f1 f2
a

b c
g h

f

17

BDD Construction

✤ You can start with a decision tree and merge: example f=ac+bc

✤ Reduced, ordered, BDD:

✤ Reduced -- no additional reductions can be applied

✤ Ordered -- the order of variables in a path from the root to a leaf is fixed

18

BDD Construction

✤ You can start with a decision tree and merge: example f=ac+bc

✤ Reduced, ordered, BDD:

✤ Reduced -- no additional reductions can be applied

✤ Ordered -- the order of variables in a path from the root to a leaf is fixed

a b c f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0

Truth table

18

BDD Construction

✤ You can start with a decision tree and merge: example f=ac+bc

✤ Reduced, ordered, BDD:

✤ Reduced -- no additional reductions can be applied

✤ Ordered -- the order of variables in a path from the root to a leaf is fixed

1 edge
0 edge

a b c f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0

Truth table

Decision tree
10 0 0 1 0 10

a

b

c

b

c c c

f

18

BDD Construction (continued)

19

BDD Construction (continued)

10

a

b

c

b

c c c

f

1. Merge terminal
nodes

19

BDD Construction (continued)

10

a

b

c

b

c c c

f

2. Merge
duplicate
nodes

1. Merge terminal
nodes

19

BDD Construction (continued)

10

a

b

c

b

c c c

f f

10

a

b

c

b

c

2. Merge
duplicate
nodes

1. Merge terminal
nodes

19

BDD Construction (continued)

10

a

b

c

b

c c c

f f

10

a

b

c

b

c

2. Merge
duplicate
nodes

1. Merge terminal
nodes

3. Remove
redundant nodes

19

BDD Construction (continued)

10

a

b

c

b

c c c

f f

10

a

b

c

b

c

10

a

b

c

f = (a+b)c

2. Merge
duplicate
nodes

1. Merge terminal
nodes

3. Remove
redundant nodes

19

BDDs Support Efficient Logical
Manipulations

✤ Negating a function (very simple??)

✤ Conjoining two functions

✤ Disjoining two functions

✤ Others

✤ Operations utilize the recursive definition of the function

20

Implicit Representation

✤ This is also a representation via a formula, but with different propositions

✤ Essentially, this is the same formula generated by a SAT-encoding

✤ A state s is possible currently if there is a satisfying assignment that assigns the
propositions at time t the same values as s.

✤ Update is very easy

✤ Checking whether a condition holds now requires verifying that a formula is
unsatisfiable

✤ The formula can be simplified during run-time

21

Searching in Belief Space

✤ All current planners use forward search

✤ Main problem: heuristics are difficult to generate

✤ Size heuristic: hs(b) = -1 * ⎮{s : s∈b}⎮

✤ Pushes toward belief states with more certainty

✤ That’s about it ... not strong enough.

22

The Translation-Based Approach

✤ In classical planning, if we know the initial state, we know the current state simply from the description of the actions

✤ Basic idea: maintain a copy of each proposition for each possible initial state

✤ p/i1, p/i2, ... , p/ik

✤ And also a “general” copy: p

✤ Generate actions that update all copies

✤ If p --> q is an original effect of a, add p/ij --> q/ij for every 1≤j≤k

✤ This way, we know what’s true now as a function of what was true initially

✤ We can also deduce that if p/ij holds now for every 1≤j≤k, then p holds.

✤ This way, we can know whether some precondition or goal condition holds

✤ So far, pretty wasteful because we may have exponentially many initial states

23

The Translation-Based Approach

✤ We can use this idea to generate a new classical planning problem

✤ Propositions: p, p/ij for every possible proposition p and every possible initial state ij

✤ Actions:

✤ the original actions, with effects modified as described before

✤ special inference actions: p/i1 ∧ p/i2 ∧ ... ∧ p/ik ➞ p for every proposition p

✤ Initial state: p/ij is true iff p holds in possible initial state ij

✤ Goal state: g (as in the original problem)

✤ We get a classical planning problem, and we can solve it with a classical planner

✤ No need for special heuristics!

24

The Translation-Based Approach

✤ Actually, in the literature:

✤ Propositions: Kp, Kp/ij is used

✤ Kp -- p is known

✤ Kp/ij -- p is known given ij

✤ More generally: Kp/t -- p is known given some condition t on the initial state

✤ K is used in logics of knowledge: Something is known if it holds in all possible states.

✤ This is captured by: Kp/i1 ∧ Kp/i2 ∧ ... ∧ Kp/ik ➞ Kp

✤ The planner is reasoning about our state of knowledge

25

The Translation-Based Approach

✤ Main problem: many possible initial states

✤ Possible solution: use tags (conditions) that are more general

✤ This is not always possible, but in many problem it works

✤ When it doesn’t work, we’re in trouble -- why?

✤ Example: two variables: p1,p2,...,pk. Both unknown initially.

✤ 2k possible initial states

✤ Suppose that the goal is p1&...&pk, and ai has a conditional effect: -pi --> pi

✤ According to previous slides, we need 2k possible tags

✤ We can work with 2*k tags -- one for each value of each variable

✤ Reason -- the effect on tags is independent

26

