Conformant Planning

First Step toward Planning Under Uncertainty
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Conformant Planning

* Basic assumption in classical planning: the initial state is fully known
*  What if we don’t know everything about the initial state?

* Conformant planning -- like classical planning, but instead of a single possible initial state, a set of
possible initial states

*  Other forms of uncertainty:

* Uncertainty about the effect of actions (non-deterministic, stochastic)

* Some conformant planning algorithms can deal with non-deterministic effects
* Related issues:

* Observability: can we observe information about the current state?

* Conformant planning: no observations during plan execution




Conformant Planning: the Trouble with Incomplete Info

B

Problem: A robot must move from an uncertain / into G with certainty,
one cell at a time, In a grid nxn

e Conformant and classical planning look similar except for uncertain [
(assuming actions are deterministic).

e Yet plans may be quite different: best conformant plan above must
move robot to a corner first! (in order to localize)
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Conformant Planning

* Conformant Planning problem (P A,1,G)
* Tis an arbitrary formula, and any state s that satisfies I is a possible initial state
* A can be non-deterministic. Later we will focus on deterministic effects

* Model -- identical to classical planning (possibly non-deterministic) automaton with multiple
initial states.

* Solution -- a plan that is guaranteed to take us from any initial state to some goal state, no matter
what the effect of actions is.

* Language -- like strips except:
* Initial state described by a formula -- any assignment satisfying it is a legal state

* Non-determinism can be captured by disjunctive effects: p v -p




Belief States

* Central concept: belief state --- the set of possible (world) states
+ Initial belief state: {s | s | =1}

* If our current belief state is b and we apply action a, then we reach a new belief

state b’=f{a(s) | s | =D}
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Search in Belief Space

* Conformant planning can be viewed as the problem of finding a path in belief
space

* Initial state: initial belief state
* Goal state: any belief state b such thats€Eb =5 |=¢g
* Actions: a(b)={a(s) | s | =D}

* In general, a belief state could require an exponentially large (in # of state
variables) description
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Remark:
e the search space is Pow(S)
¢ & contains 15 states,

¢ Pow:(S) contains 32767 belief states!




Complexity

* We can verify that a classical plan is true in time linear in plan length and # of
propositions

* Verifying that a conformant plan is correct may be intractable
* Initial state: initial belief state
* Goal state: any belief state b such thats€Eb =5 |=¢g
* Actions: a(b)={a(s) | s | =D}

* In general, a belief state could require an exponentially large (in # of state
variables) description




Generating Conformant Plans

* Two main issues:
* How do we represent belief states efficiently?
* Small size desirable
* Ability to quickly detect goal satisfaction
*  Ability to quickly detect which action is applicable

* How can we generate good heuristic estimates?
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Special Case

+ Standard STRIPS actions

+ Initial state: the value of some propositions is known, the value of others is
completely unknown (no constraints of the form p v q)

+ Solution:???
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Representing Belief States

1. Explicit representation: Maintain a set of states
e All operations require time linear in number of possible states
e All operations are conceptually simple
® The number of possible states can be very large
® Does not work in practice
2. Symbolic representation: Maintain formula ¢ over state propositions
® sis a possible state iff it satisfies ¢
e Key issue: how do we represent ¢

¢ Different choices affect the computational and conceptual difficulty of different operations
(update, verification of goal/ preconditions) and the size of the formula
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Alternative Symbolic

Representations

L3

Logical formula w/o constraints

L]

Conjunctive Normal Form: Conjunction of Disjunctions
* (pvqvr) & (-pvwvd) & (-wvqvs)

* Checking whether a precondition/goal holds require solving un-sat problem

<

Disjunctive Normal Form: Disjunction of Conjunctions
* (p&q&r) v (-p&wd) v (-w&qsé)
* Checking whether a condition holds is easy

* The number of conjuncts can grow rapidly

L3

Binary Decision Diagrams
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Binary Decision Diagrams

KX

A data structure used for compactly representing boolean functions
Made popular by work on program verification

Based on recursive Shannon expansion

f 0 xfx+ x,fx’

Canonical representation

+ reduced ordered BDDs (ROBDD) are canonical (= there is only one way to
represent any function given a fixed variable order)
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Recursive Shannon Expansion for
= ac + bc
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Recursive Shannon Expansion for
= ac + bc
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Recursive Shannon Expansion for
= ac + bc
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Recursive Shannon Expansion for
= ac + bc
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BDD operations

* When the two outgoing edges of a node point to the same node, remove it
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BDD operations

* When the two outgoing edges of a node point to the same node, remove it

= elln) o ellb)= 2ll)
k=1
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BDD operations

* When the two outgoing edges of a node point to the same node, remove it

f=a"gb)+agb)=g(b)
k=1
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BDD Operations

* Merge duplicate nodes
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BDD Operations

* Merge duplicate noc%es

f,=a’g(b) +ah(c)=f,
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BDD Operations

* Merge duplicate noc%es

f,=a’g(b) +ah(c)=f,
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BDD Construction

* You can start with a decision tree and merge: example f=ac+bc

+ Reduced, ordered, BDD:
* Reduced -- no additional reductions can be applied

* Ordered -- the order of variables in a path from the root to a leaf is fixed

18




BDD Construction

* You can start with a decision tree and merge: example f=ac+bc

a c f

Truth table
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+ Reduced, ordered, BDD:
* Reduced -- no additional reductions can be applied

* Ordered -- the order of variables in a path from the root to a leaf is fixed




BDD Construction

* You can start with a decision tree and merge: example f=ac+bc

abc f
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+ Reduced, ordered, BDD:
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Decision tree

* Reduced -- no additional reductions can be applied

* Ordered -- the order of variables in a path from the root to a leaf is fixed
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BDD Construction (continued,)
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BDD Construction (continued,)

1. Merge terminal
nodes
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BDD Construction (continued,)

1. Merge terminal
nodes

2. Merge
duplicate
nodes
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BDD Construction (continued,)

1. Merge terminal 2. Merge
nodes duplicate
nodes
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BDD Construction (continued,)

1. Merge terminal 2. Merge 3. Remove
nodes duplicate redundant nodes
nodes
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BDD Construction (continued,)

f f f = (a+b)c

4
.

s

0
1. Merge terminal 2. Merge 3. Remove
nodes duplicate redundant nodes

nodes
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BDDs Support Efficient Logical

Manipulations

* Negating a function (very simple??)
* Conjoining two functions

* Disjoining two functions

* Others

* QOperations utilize the recursive definition of the function
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Implicit Representation

* This is also a representation via a formula, but with different propositions
* Essentially, this is the same formula generated by a SAT-encoding

* A state s is possible currently if there is a satisfying assignment that assigns the
propositions at time t the same values as s.

* Update is very easy

* Checking whether a condition holds now requires verifying that a formula is
unsatisfiable

* The formula can be simplified during run-time
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Searching in Belief Space

%

All current planners use forward search

)
b

Main problem: heuristics are difficult to generate
* Size heuristic: hs(b) =-1* |{s: s&b}|
* Pushes toward belief states with more certainty

* That’s about it ... not strong enough.
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The Translation-Based Approach

* In classical planning, if we know the initial state, we know the current state simply from the description of the actions
Basic idea: maintain a copy of each proposition for each possible initial state
+  pliy, plia, ..., plix
* And also a “general” copy: p
Generate actions that update all copies
« If p-->gis an original effect of a, add p/i; --> g/ij for every 1<j<k
This way, we know what's true now as a function of what was true initially
#  We can also deduce that if p/i; holds now for every 1<j<k, then p holds.
* This way, we can know whether some precondition or goal condition holds

*  So far, pretty wasteful because we may have exponentially many initial states
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The Translation-Based Approach

*  We can use this idea to generate a new classical planning problem
* Propositions: p, p/ijfor every possible proposition p and every possible initial state i;
* Actions:
* the original actions, with effects modified as described before
« special inference actions: p/ii A p/iz A ... A plix»p for every proposition p
+ Initial state: p/j; is true iff p holds in possible initial state i;
* Goal state: ¢ (as in the original problem)
*  We get a classical planning problem, and we can solve it with a classical planner

* No need for special heuristics!
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The Translation-Based Approach

* Actually, in the literature:
* Propositions: Kp, Kp/i;is used
* Kp -- p is known
* Kplij-- p is known given i
* More generally: Kp/t -- p is known given some condition t on the initial state
* Kis used in logics of knowledge: Something is known if it holds in all possible states.
* This is captured by: Kp/i1 A Kp/iz A ... A Kp/ix-Kp

* The planner is reasoning about our state of knowledge
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The Translation-Based Approach

* Main problem: many possible initial states
* Possible solution: use tags (conditions) that are more general
* This is not always possible, but in many problem it works
*  When it doesn’t work, we're in trouble -- why?
* Example: two variables: p1,p2,..., pk. Both unknown initially.
* 2k possible initial states
*  Suppose that the goal is pl&...&pk, and a; has a conditional effect: -p; --> pi
* According to previous slides, we need 2% possible tags
*  We can work with 2*k tags -- one for each value of each variable

* Reason -- the effect on tags is independent
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