Planning with Uncertainty

PAH 2015

Classical vs. Uncertainty Planning

- what have you learnt so far?
- sequential decision making
- deterministic effects of actions
- static environment
- perfect observation
- perfect sensors

Classical vs. Uncertainty Planning

- the world is not perfect
- actions may fail or yield unexpected results
- the environment may change due to other agents
- the agent does not have knowledge about whole situation
- other agents can have antagonistic objectives
- sensors are not precise
- first step towards more realistic setting
- planning with uncertainty

Classical vs. Uncertainty Planning

- Uncertainty modeling
- non-determinism
- a limited set of outcomes of actions
- unlimited possible failures (conformant/contingency)
- limited possible failures (fault tolerant)

- probability
- all possible outcomes with probability distribution
- perfect observability (MDP)
- partial observability (POMDP)

Conformant Planning

Conformant vs. Classical Planning

Problem: A robot must move from an uncertain I into G with certainty, one cell at a time, in a grid $n \times n$

- Conformant and classical planning look similar except for uncertain I (assuming actions are deterministic).
- Yet plans can be quite different: best conformant plan must move robot to a corner first! (in order to localize)

Basic Translation: Move to Knowledge Level

Given conformant problem $\Pi=\langle P, I, O, G\rangle$

- P - set of (all unobservable) propositional state variables
- O - set of operators with conditional effects $\langle c, e\rangle$
- I - prior knowledge about the initial state (clauses over P)
- G - goal description (conjunction over P)

Define classical problem $K_{0}(\Pi)=\left\langle P^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$

- $P^{\prime}=\{K p, K \neg p \mid p \in P\}$
- $I^{\prime}=\{K p \mid$ clause $p \in I\}$
- $G^{\prime}=\{K p \mid p \in G\}$
- $O^{\prime}=O$ but preconds p replaced by $K p$, and effects $\langle c, e\rangle$ replaced by $K c \rightarrow K e$ (supports) and $\neg K \neg c \rightarrow \neg K \neg e$ (cancellation)
$K_{0}(\Pi)$ is sound but incomplete: every classical plan that solves $K_{0}(\Pi)$ is a conformant plan for Π, but not vice versa.

Basic Translation: Move to Knowledge Level

Conformant $\Pi \quad \Rightarrow \quad$ Classical $K_{0}(\Pi)$

$\langle P, I, O, G\rangle \quad \Rightarrow \quad\left\langle P^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$
variable $p \quad \Rightarrow \quad K p, K \neg p$ (two vars)
Init: \quad known var $p \quad \Rightarrow \quad K p \wedge \neg K \neg p$
Init unknown var $p \quad \Rightarrow \quad \neg K p \wedge \neg K \neg p$ (both false)
Goal $p \quad \Rightarrow \quad K p$
Operator a has prec $p \quad \Rightarrow \quad a$ has prec $K p$
Operator $a:\langle c, p\rangle \quad \Rightarrow \quad\left\{\begin{array}{l}a: K c \rightarrow K p \\ a: K \neg c \rightarrow \emptyset \\ a: \neg K \neg c \rightarrow \neg K \neg p\end{array}\right.$

Basic Properties and Extensions

- Translation $K_{0}(\Pi)$ is sound:
- If π is a classical plan that solves $K_{0}(\Pi)$, then π is a conformant plan for Π.
- But way too incomplete
- often $K_{0}(\Pi)$ will have no solution while Π does
- works when uncertainty is irrelevant
- Extension $K_{T, M}(\Pi)$ we present now can be both complete and polynomial

Idea

- Given literal L and tag t, atom $K L / t$ means
- $K\left(t_{0} \supset L\right)$: $K L$ true if t is true initially

Example

- Conformant Problem П:
- Init: $x_{1} \vee x_{2}, \neg g$
- Goal: g
- Actions: $a_{1}: x_{1} \rightarrow g, a_{2}: x_{2} \rightarrow g$
- Classical Problem $K_{T, M}(\Pi)$:
- Init: $K x_{1} / x_{1}, K x_{2} / x_{2}, K \neg g, \neg K g, \neg K x_{1}, \neg K \neg x_{1}, \ldots$
- After $a_{1}: K g / x_{1}, K x_{1} / x_{1}, K x_{2} / x_{2}, \neg K \neg g$,
- After $a_{2}: K g / x_{2}, K g / x_{1}, K x_{1} / x_{2}, K x_{2} / x_{2}, \neg K \neg g$, $\neg K g$
- New action mergeg: $K g / x_{1} \wedge K g / x_{2} \rightarrow K g$
- After mergeg: $K g, K g / x_{2}, K g / x_{1}, K x_{1} / x_{2}, K x_{2} / x_{2}, \neg K \neg g, \ldots$
- Goal satisfied: Kg

Key elements in Translation $K_{T, M}(\Pi)$

- a set T of tags t : consistent set of assumptions (literals) about the initial situation /

$$
l \not \vDash \neg t
$$

- a set M of merges m : valid subsets of tags

$$
I \models \bigvee_{L \in m} L
$$

- Semantics of var $K L / t: L$ is true given that initially $t\left(\right.$ i.e. $K\left(t_{0} \supset L\right)$)

Example of T, M

Example

Given $I=\{p \vee q, v \vee \neg w\}, T$ and M can be:

$$
\begin{aligned}
T & =\{\{ \}, p, q, v, \neg w\} & T^{\prime} & =\{\{ \},\{p, v\},\{q, v\}, \ldots\} \\
M & =\{\{p, q\},\{v, \neg w\}\} & M^{\prime} & =\ldots
\end{aligned}
$$

Translation $K_{T, M}(\Pi)$

For conformant $\langle P, I, O, G\rangle, K_{T, M}(\Pi)$ is $\left\langle P^{\prime}, I^{\prime}, O^{\prime}, G^{\prime}\right\rangle$

- $\mathbf{P}^{\prime}: K L / t$ for every literal L and $\operatorname{tag} t \in T$
- $\mathbf{I}^{\prime}: K L / t$ if $I \models(t \supset L)$
- $\mathbf{G}^{\prime}: K L$ for $L \in G$
- For every $\operatorname{tag} t$ in T and $a: L_{1} \wedge \cdots \wedge L_{n} \rightarrow L$ in O, add to O^{\prime}
- a:KL $/ t \wedge \cdots \wedge K L_{n} / t \rightarrow K L / t$
- $a: \neg K \neg L_{1} / t \wedge \cdots \wedge \neg K \neg L_{n} / t \rightarrow \neg K \neg L / t$
- prec $L \Rightarrow$ prec $K L$
- Merge actions in O^{\prime} : for each lit L and merge $m \in M$ with $m=\left\{t_{1}, \ldots, t_{n}\right\}$

$$
\operatorname{merge}_{L, m}: K L / t_{1} \wedge \ldots \wedge K L / t_{n} \rightarrow K L
$$

Properties of Translation $K_{T, M}$

- If T contains only the empty tag, $K_{T, M}(\Pi)$ reduces to $K_{0}(\Pi)$
- $K_{T, M}(\Pi)$ is always sound

We will see that...

- For suitable choices of T, M translation is complete
- ... and sometimes polynomial as well

Intuition of soundness

- Idea:
- if sequence of actions π makes $K L / t$ true in $K_{T, M}(\Pi)$
- π makes L true in Π over all trajectories starting at initial states satisfying t

Theorem (Soundness $K_{T, M}(\Pi)$)
If π is a plan that solves the classical planning problem $K_{T, M}(\Pi)$, then the action sequence π^{\prime} that results from π by dropping the merge actions is a plan that solves the conformant planning problem Π.

A complete but exponential instance of $K_{T, M}(\Pi): K_{s 0}$

If possible initial states are $s_{0}^{1}, \ldots, s_{0}^{n}$, scheme $K_{s 0}$ is the instance of $K_{T, M}(\Pi)$ with

- $T=\left\{\{ \}, s_{0}^{1}, \ldots, s_{0}^{n}\right\}$
- $M=\left\{\left\{s_{0}^{1}, \ldots, s_{0}^{n}\right\}\right\}$
i.e., only one merge for the disjunction of possible initial states
- Intuition: applying actions in $K_{s 0}$ keeps track of each fluent for each possible initial states
- This instance is complete, but exponential in the number of fluents
- ...although not a bad conformant planner

Performance of $K_{s 0}+F F$

		Planners exec time (s)			
Problem	$\# S_{0}$	$K_{\text {s0 }}$	KP	PONDD	CFF
Bomb-10-1	1 k	648,9	0	1	0
Bomb-10-5	1 k	2795,4	0,1	3	0
Bomb-10-10	1 k	5568,4	0,1	8	0
Bomb-20-1	1 M	$>1.8 \mathrm{G}$	0,1	4139	0
Sqr-4-16	4	0,3	fail	1131	13,1
Sqr-4-24	4	1,6	fail	$>2 h$	321
Sqr-4-48	4	57,5	fail	$>2 h$	$>2 h$
Sortnet-6	64	2,2	fail	2,1	fail
Sortnet-7	128	27,9	fail	17,98	fail
Sortnet-8	256	$>1.8 G$	fail	907,1	fail

Translation time included in all tables.

Fault Tolerant Planning:
 Complexity and Compilation

Carmel Domshlak

Action Dynamics and Solution Concepts

Action Dynamics and Solution Concepts

Action Dynamics and Solution Concepts

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

| We control the nature.
 No bad things will happen! | PSPACE / NP | |
| :--- | :---: | :--- | :--- |
| | | |

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

$\left.\begin{array}{l|c|l|l}\hline \text { Classical } & \begin{array}{c}\text { We control the nature. } \\ \text { No bad things will happen! }\end{array} & \text { PSPACE / NP }\end{array}\right]$

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

$\left.\begin{array}{l|c|l|l}\hline \text { Classical } & \begin{array}{c}\text { We control the nature. } \\ \text { No bad things will happen! }\end{array} & \text { PSPACE / NP }\end{array}\right]$

Jensen, Veloso, \& Bryant, ICAPS'04

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

Classical	We control the nature. No bad things will happen!	PSPACE / NP	
Fault Tolerant	Nature tries to full us, but it has other things to do as well. \odot	At most κ bad things will happen.	EXPTIME PSPACE / NP
FOND	Nature tries to full us. 2	EXPTIME	

Here: COMPLEXITY

Between Classical and (FOND) Contingent Planning

Between Bold Optimism and Paranoia

Classical	We control the nature. No bad things will happen!	PSPACE / NP	
Fault Tolerant	Nature tries to full us, but it has other things to do as well. \odot At most κ bad things will happen.	EXPTIME PSPACE / NP	\qquad
FOND	Nature tries to full us. Bad things always happen ...	EXPTIME	

Here: COMPILATION

Task Classification and Decision Problems

FT task classification
Task is α-primary if each action has at most α primary ($=0$-failures) effects

Task Classification and Decision Problems

FT task classification
Task is α-primary if
each action has at most α primary ($=0$-failures) effects

Decision problems
FT- α - κ : Does α-primary Π have a κ-plan?
POLY-FT- α - κ : Does α-primary Π have a κ-plan such that all its κ-admissible executions reach the goal after a polynomial number of steps?

1-or-2-effects fragment of FT

Each action is either

- deterministic, or
- has two possible effects, one primary and one secondary.

Example: 2-plan for a 1-or-2-effects task:

Key property of FT-1- κ (within "1-or-2-effects")

Property

Any irreducible κ-plan induces such a DFS-ordered sequence of sub-plans with "at most one non-goal leaf with j failures so far."

Key property of FT-1- κ (within "1-or-2-effects")

Property

Any irreducible κ-plan induces such a DFS-ordered sequence of sub-plans with "at most one non-goal leaf with j failures so far."

- Key enabler for the compilation
- In the paper: Generalization to $O(1)$-effects per action

Key property of FT-1- κ (within "1-or-2-effects")

Property

Any irreducible κ-plan induces such a DFS-ordered sequence of sub-plans with "at most one non-goal leaf with j failures so far."

- Key enabler for the compilation
- In the paper: Generalization to $O(1)$-effects per action

Key property of FT-1- κ (within "1-or-2-effects")

Property

Any irreducible κ-plan induces such a DFS-ordered sequence of sub-plans with "at most one non-goal leaf with j failures so far."

- Key enabler for the compilation
- In the paper: Generalization to $O(1)$-effects per action

Tiny evaluation

- Robot to move from BL to TR of a 7×7, 4-connected grid
- Edges: unsafe/safe with $p /(1-p)$
- Safe \sim deterministic
- Unsafe \sim can get a flat and stay
- 10 spare tires placed randomly on the grid

	CFF	CFF $\left(\Pi^{(\mathcal{F}, \kappa)}\right)$				$\mathrm{FD}\left(\Pi^{\prime}\right)$				
task		0	1	2	4	0	1	2	4	
$p=0.1$	0.12	0.00	-	-	-	0.00	0.02	0.03	0.06	
	0.13	0.00	2.10	-	-	0.00	1.67	0.04	0.07	
	0.13	0.00	-	-	-	0.00	0.21	0.03	0.07	
	0.13	0.00	-	-	-	0.00	0.02	0.03	0.06	
	0.13	0.00	-	-	-	0.00	0.09	0.04	0.07	
$p=0.2$	0.13	0.00	-	-	-	0.00	27.32	0.04	0.08	
	0.13	0.00	-	-	-	0.00	0.01	0.03	0.06	
	0.13	0.00	-	-	-	0.00	0.02	0.03	0.06	
	0.13	0.00	-	-	-	0.00	0.01	0.03	0.06	
	0.13	0.00	-	-	-	0.00	5.96	0.04	0.07	
$p=0.5$	0.13	0.00	-	-	-	0.00	0.38	0.05	0.09	
	0.13	0.00	3.32	4.13	-	0.00	0.04	0.63	11.56	
	0.13	0.00	-	-	-	0.00	0.31	38.86	-	
	0.13	0.00	0.14	0.15	0.15	0.00	0.01	0.03	0.06	
	0.13	0.00	-	-	-	0.00	0.89	17.37	1.25	

Probabilistic Planning

Classical vs. Probabilistic Planning

- Classical Planning: $\left\langle S, s_{0}, S_{G}, A, f, c\right\rangle$
- states, initial state, goal state(s)
- actions
- transition function $f: S \times A \rightarrow S$
- cost function
- Probabilistic Planning
- probabilistic transition function $P: S \times A \times S \rightarrow[0,1]$

$$
\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right)=1
$$

Q : why is this enough for modelling uncertainty in environment?

Probabilistic Planning -Visualization

Probabilistic Planning - Solution

- what is the solution in classical planning?
- sequence of (partially) ordered actions leading from initial state to the goal state
- this is not sufficient in the probabilistic case

- what if the plan fails?
- we need a (partial) policy

Probabilistic Planning - Solution

- in general we seek for a probabilistic historydependent policy
- $\pi: H \times A \rightarrow[0,1]$
- where $h=s_{1} a_{1} s_{2} a_{2} \ldots s_{t}$
- note that the policy may prescribe randomization over actions
- now we have a representation for plans (policy)
- we need a method for plan evaluation

Probabilistic Planning - Evaluation

- costs are assigned to triplets (s, a, s^{\prime})
- typically termed rewards (i.e., positive sense)
- executing a policy yields a sequence of rewards
- policy value - linear additive utility
- $u\left(R_{1}, R_{2}, \ldots\right)=R_{1}+\gamma R_{2}+\gamma^{2} R_{3}+\cdots$
- $u\left(\pi\left(s_{0}\right)\right)=E\left[u\left(R_{1}, \ldots\right)\right]$
- expected utility - what can happen?
- optimal only for risk-neutral agent

Probabilistic Planning - Optimal Solution

- If the quality of every policy can be measured by its expected linear additive utility, there is a policy that is optimal at every time step.
(Stated in various forms by Bellman, Denardo, and others)
- we seek for π^{*} s.t. $u\left(\pi^{*}\right) \geq u(\pi)$ for all other policies π
- note: can be the case that the policy cannot be measured by expected linear additive utility?
- yes (infinite state-space with non-discounted rewards, deadends, ...)

Probabilistic Planning - Algorithms

- this lecture
- using classical planning to probabilistic planning
- straightforward approach (FF-replan)
- improved approach (Robust FF)
- "multi-layered" approach (FF-Hindsight Optimization)
- next lectures
- algorithms that directly use probability and uncertainty
- formal definition MDP, strategy/policy iteration
- current approaches for solving MDPs
- uncertainty in observations
- formal definition and current approaches for solving POMDPs

Probabilistic Planning - First Approach

- 2004 - first international probabilistic planning competition
- several participants, mainly based on MDP solvers
- winner?
- FF-Replan
- possibly the simplest algorithm you can think of ...

FF-Replan

- outline of the algorithm
I. determinizes the input domain (remove all probabilistic information from the problem)

2. synthesizes a plan
3. executes the plan
4. should an unexpected state occur, replans

FF-Replan - Determinization

- what information can be discarded?
- two main heuristics
- keep only one from all probabilistic outcomes of an action in a state (e.g., using the outcome with the highest probability)
- keep all outcomes
- generate a separate action for each possible outcome
- very simple, not sound, not optimal, but still good enough for simple domains
- (outperformed also all participants in IPPC-06)

Probabilistic Planning (2)

- winner of IPPC 2008
- Robust-FF
- (Incremental Plan Aggregation for Generating Policies in MDPs, Konigsbuch, Kuter, Infantes 2010)
- generalizes FF-Replan
I. determinize the problem

2. use classical planner to find partial plans
3. aggregate these plans into the partial policy
4. continue until the probability of replanning is below given threshold

Robust-FF

- outline of the algorithm

Robust-FF

- number of options
- selecting determinization (most probable, all outcomes)
- selecting goals (only problem goals, random goals, best goals)
- random/best goals - include also expanded states into $G_{F F}$; either k random, or k"best ones"
- calculating probability of reaching terminal states (dynamic programming, Monte Carlo simulations)
- soundness vs. completeness of the algorithm?
- only with selected methods $\left(R F F_{A O}\right)$
- not (approximately) optimal in general

Hindsight Optimization (HOP) - FF-Hindsight

- Approximate the value of a state
- sample a set of determinized problems originating from that state
- then solve the problems "in hindsight" and combine their values
- if the deterministic problems are easier \rightarrow computational gains
- Optimal value function

$$
V^{*}(s, T)=\max _{\pi} \boldsymbol{E}[R(s, F, \pi)]
$$

- state s, horizon T, (non-stationary) policy π, total reward R and random variable F uniformly distributed over all futures
- HOP value function approximation

$$
V_{h s}(s, T)=E\left[\max _{\pi} R(s, F, \pi)\right]
$$

