
Markov Decision 
Processes
Michal Jakob
Agent Technology Center, 
Dept. of Computer Science and Engineering, 
FEE, Czech Technical University

AE4M36PAH 2014/2015 - Lecture 12

http://michaljakob.net/
http://agents.fel.cvut.cz/
https://cw.fel.cvut.cz/wiki/courses/a4m36pah/lectures
http://fel.cvut.cz/
http://fel.cvut.cz/
http://oi.fel.cvut.cz/
http://oi.fel.cvut.cz/


Planning
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Classical Planning
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Probabilistic Planning
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Rational Behaviour in a  Stochastic World

Plan and then execute no longer rational 
in stochastic world.

Future projections not reliable. Action 
may result in other states than desired.

Rational agent has to consider the new 
reality… and decide/replan accordingly.

 Sequential decision making
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Grid World Example
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Lecture Online

MDP: Formal Model

MDP: Solution Techniques
 Value iteration

 Policy iteration

 Modified policy interation

MDP: Advanced Topics
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MDP Formalization
Markov Decision Processes
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MDPs in Context
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(Probabilistic planning)



Markov Chain
Stationary Markov Chain

Defined by state transition probabilities 𝑃(𝑆𝑡+1|𝑆𝑡)
 Markovian property: 𝑃 𝑆𝑡+1 𝑆𝑡 , 𝑆𝑡−1, … 𝑆0 = 𝑃(𝑆𝑡+1|𝑆𝑡)

Markov Decision Processes: Augments the stationary Markov 
chain with actions and rewards
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Markov Decision Process Definition

Markov Decision Process

Markov decision process is a 5-tuple 𝑺, 𝑨, 𝑷. . , . , 𝑹 . , 𝜸 where
• 𝑆 is a finite set of states.
• 𝐴 is a finite set of actions (𝐴(𝑠) is the finite set of actions 

available from state 𝑠).
• 𝑃 𝑠′ 𝑠, 𝑎 = Pr(𝑠𝑡+1 = 𝑠

′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) is the (transition)
probability that action 𝑎 in state 𝑠 at time 𝑡 will lead to state 𝑠′
in time 𝑡 + 1.

• 𝑅(𝑠) is the reward the agent receives after entering state 𝑠. 
Reward can be positive or negative but must be bounded.

• 𝛾 ∈ [0,1] is the discount factor, which represents the 
difference in importance between future rewards and present 
rewards.
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Partially Observable MDP (POMDPs)

Fully-observable MDP: the agent knows perfectly the current 
state when deciding on the action.

Partially observable MDPs (POMDPs): the agent only has noisy 
observation of the current state when deciding on the action.
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Grid World Example

OPEN INFORMATICS / PLANNING AND GAMES: MARKOV DECISION PROCESSES

Transition model
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Utilities over Time

How to measure the performance of the agent?

Utility function is a function of environment (state) history 

𝑈ℎ 𝑠0, 𝑠1, … , 𝑠𝑛

What is a sensible choice of 𝑈ℎ?

OPEN INFORMATICS / PLANNING AND GAMES: MARKOV DECISION PROCESSES

Preference stationarity assumption assumption

If two state sequences [𝑠0, s1, s2, … ] and [𝑠0
′ , 𝑠1
′ , 𝑠2
′ , … ] start 

with the same state (i.e. 𝑠0 = 𝑠0
′ ), then the two sequences 

should be preference-ordered the same way as sequences 
[𝑠1, 𝑠2, … ] and 𝑠1

′ , 𝑠2
′ , … .



Utilities over Time

Under the stationarity assumption, there are only two coherent 
ways to assign utilities to state sequences

1. Additive rewards

𝑈ℎ 𝑠0, 𝑠1, 𝑠2, … = 𝑅 𝑠0 + 𝑅 𝑠1 + 𝑅 𝑠2 +⋯

2. Discounted rewards

𝑈ℎ 𝑠0, 𝑠1, 𝑠2, … = 𝑅 𝑠0 + 𝛾𝑅 𝑠1 + 𝛾
2𝑅 𝑠2 +⋯

where the discount factor 𝛾 ∈ [0,1]

Discount factor captures the  preference for current rewards over 
future rewards.
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Decision Horizon

Finite horizon: there is a fixed time D after which decisions does 
not matter
 ∀𝑘 ≥ 1 𝑈ℎ 𝑠0, 𝑠1, … , 𝑠𝐷+𝑘 = 𝑈ℎ( 𝑠0, 𝑠1, … , 𝑠𝐷 )

 optimal action in a given state can change over time  optimal policy non-
stationary

Infinite horizon: no fixed deadline
 no need to behave differently in the same state  optimal policy is 

stationary

 𝛾 < 1: utility 𝑈ℎ is bounded

 𝛾 = 1: then there needs to be absorbing states and the agent needs to be 
guaranteed to reach them ( proper policy)

Absorbing/termination states: agent stays forever receiving zero 
reward
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Policy
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Optimal policy (from state 𝑠):
𝜋𝑠
∗ = argmax

𝜋
𝑈𝜋(𝑠)

Stationary Policy

Stationary policy for an MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) is a function

𝜋: 𝑆 ↦ 𝐴

Value of policy (from state 𝑠):

𝑈𝜋 𝑠 = 𝐸Pr( 𝑠0,𝑠1,… |𝑠0=𝑠,𝜋)  

𝑡=0

∞

𝛾𝑡𝑅(𝑆𝑡)

i.e. “long-term” total reward from 𝑠 onwards (assuming policy 𝜋)



Optimal Policy
Optimal policy independent of the initial state (under discounted 
rewards and infinite horizon), i.e

𝜋𝑠
∗ = 𝜋𝑠′

∗ for any 𝑠′

We can thus define the utility (value) of the state

𝑈 𝑠 = 𝑈𝜋
∗
𝑠

For MDPs with stationary dynamics and rewards and infinite 
decision horizon, there always exists an optimum stationary policy.
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Optimal policy (discounted rewards and infinite horizon)

𝜋∗ 𝑠 = arg max
𝑎∈𝐴(𝑠)
 

𝑠′

𝑈 𝑠′ 𝑃(𝑠′|𝑠, 𝑎)



Example: Optimal Policies in the Grid 
World

OPEN INFORMATICS / PLANNING AND GAMES: MARKOV DECISION PROCESSES

Utilities of states and the optimal policy for 𝜸 = 𝟏 and 
𝑹(𝒔) = −𝟎. 𝟎𝟒 for non-terminal states

𝑈(𝑠) 𝜋∗(𝑠)



Dependence on Penalty
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Solving MDPs
Markov Decision Processes

OPEN INFORMATICS / PLANNING AND GAMES: MARKOV DECISION 
PROCESSES



Solving MDPs

How do we find the optimum policy?

Basic (dynamic programming-based) techniques:
1. value iteration – compute utility 𝑈(𝑠) for each state and use is for 

selecting best action

2. policy iteration – represent policy 𝜋(𝑠) explicitly and update it in parallel 
to the utility function 𝑈 𝑠

Advanced approaches
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Value Iteration

Recall the utility* of a state

𝑈 𝑠 = 𝐸Pr( 𝑠0,𝑠1,… |𝑠0=𝑠,𝜋∗)  

𝑡=0

∞

𝛾𝑡𝑅(𝑆𝑡)

I.e.

One equation per state  𝒏 non-linear equations for 𝒏 unknowns
 solution is unique

* also termed value of a state 𝑉(𝑠)
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Bellman Equation (1957)

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎
 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑈(𝑠′) ∀𝑠 ∈ 𝑆



Bellman Equation Example
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𝜸 = 𝟎. 𝟓 and 𝑹(𝒔) = −𝟎. 𝟎𝟒 for non-terminal states

𝑈 1,1 =



Value Iteration

Analytical solution not feasible  iterative solution

If applied infinitely often, guaranteed to reach an equilibrium
and the final utility values are the solutions to the Bellman 
equations.
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Bellman Update (Backup)

𝑈𝑖+1 𝑠 ← 𝑅 𝑠 + 𝛾max
𝑎
 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑈𝑖(𝑠
′) ∀𝑠 ∈ 𝑆



Value Iteration
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𝑃(𝑠′|𝑠, 𝑎)

𝑃



Value Iteration Example
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0.0 0.03 -13.5 0.54.0 0.754.2 1.04.3 1.14.4 1.2

𝛾 = 0.5𝑈𝑖+1 𝑠 ← 𝑅 𝑠 + 𝛾max
𝑎
 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑈𝑖(𝑠
′)



Dependency on the Discount
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Four movement actions; 0.7 probability of moving in the desired direction, 0.1 in
the others
R = -1 for bumping into walls; four special rewarding states +10 (at
position (9,8); 9 across and 8 down), one worth +3 (at position (8,3)), one
worth -5 (at position (4,5)) and one -10 (at position (4,8))



Convergence of Value Iteration

Value iteration eventually converges to a unique set of solutions
of the Bellman equations (for 𝛾 < 1)
 Proof based on the fact that the Bellman update is an contraction on the 

space of utility vectors
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Number of iterations for reaching
an error bound 𝑈𝑖 − 𝑈 < 𝜖

𝑁 = log
2𝑅𝑚𝑎𝑥
𝜖 1 − 𝛾

/ log 1/𝛾

For finite horizon MDPs: |𝐷| steps. 



Policy Convergence
Policy loss resulting from executing a policy based on error-
bounded approximate state utility function

𝑈𝑖 − 𝑈 < 𝜖 ⇒ 𝑈
𝜋𝑖 − 𝑈 <

2𝜖𝛾

1 − 𝛾

 Termination condition:  𝑈𝑖+1 − 𝑈𝑖 < 𝜖(1 − 𝛾)/𝛾

Policy convergence may occur 
long before utility convergence

Trade-off between long-term decision 
making and computational cost
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Policy Iteration

Possible to get an optimal policy even when the utility estimate is 
inaccurate  search for optimal policy and utility values 
simultaneously Policy iteration

Alternates between two steps:
1. policy evaluation: recalculates values of states 𝑈𝑖 = 𝑈

𝜋𝑖 given the 
current policy 𝜋𝑖

2. policy improvement/iteration: calculates a new maximum expected 
utility policy 𝜋𝑖+1 using one-step look-ahead based on 𝑈𝑖

Terminates when the policy improvement step yields no change in 
the utilities.
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Policy Evaluation

The equations are now linear can be solved in 𝑂(𝑛3)
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Simplified Bellman Equation

𝑈𝑖 𝑠 = 𝑅 𝑠 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝜋𝑖(𝑠) 𝑈𝑖(𝑠
′) ∀𝑠 ∈ S



Policy Iteration Algorithm
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𝑃(𝑠′|𝑠, 𝑎)

𝑃

𝑃(𝑠′|𝑠, 𝑎) 𝑃(𝑠′|𝑠, 𝜋(𝑠))



Modified Policy Iteration

Policy iteration often converges in few iterations but each 
iteration is expensive.

Main idea: use iterative approximate policy evaluation.

 Use a few steps of value iteration (with 𝜋 fixed)

 Start from the value function produced in the last iteration

Often converges much faster than pure value iteration or policy 
iteration (combines the strength of both approaches).
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Simplified Bellman Update

𝑈𝑖+1 𝑠 ← 𝑅 𝑠 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝜋𝑖(𝑠) 𝑈𝑖(𝑠
′) ∀𝑠 ∈ S



Generalized Policy Iteration
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𝑉 ~ 𝑈

Note: Value iteration is a special case of 
modified / generalized policy iteration



Asynchronous Policy Iteration

Previous algorithms required updating values of utilities and 
policies in all states.

This is not necessary   Asynchronous policy iteration
 pick any subset of states and apply either kind of updating (policy 

improvement or simplified value iteration)

 still guaranteed to converge under certain assumptions

Enables much more general asynchronous heuristic algorithms 
(e.g. prioritized sweeping).
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Efficiency of DP-based Approaches

DP methods take to find an optimal policy is polynomial in the 
number of states and actions.
 A DP method is guaranteed to find an optimal policy in polynomial time 

even though the total number of (deterministic) policies is 𝑆 |𝐴|.

 DP is exponentially faster than any direct search in policy space could be.

Both policy iteration and value iteration are used, and it is not 
clear which, if either, is better in general. 

On problems with large state spaces, asynchronous DP methods
are often preferred. 

OPEN INFORMATICS / PLANNING AND GAMES: MARKOV DECISION PROCESSES



Advanced Solution 
Techniques
Markov Decision Processes
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Speeding-up MDP Search

1. Prioritizing updates based on the estimation of which updates 
have the largest impact.

2. Prunning the state space based on the knowledge of the initial 
state.

3. Prioritizing updates based on the additional knowledge in the 
form of a heuristic function.
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Prioritized Value Iteration

Many Bellman updates do not change the utility function

Idea: Prioritize Bellman updates – prefer those that have most 
impact.

When the utility 𝑈(𝑠′) of no successor 𝑠′ of a state 𝑠 has been 
updated since the last update of 𝑠, we don’t need to update 𝑈(s).
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Prioritized Value Iteration Algorithm
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Many ways to set the update priority…



How to Prioritize
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Prioritized Sweeping

Idea: Estimate the expected change in the utility of a state if an 
update was performed at it now, and treats this as the priority of 
a state.

Let Δ𝑈(𝑠′) denote the change in the utility of 𝑈(𝑠′) after its 
latest Bellman update. Then

priority𝑃𝑆 𝑠 ← max priority𝑃𝑆 𝑠 ,max
𝑎∈A
𝑃 𝑠′ 𝑠, 𝑎 Δ𝑈(𝑠′)

Priority sweeping converges the optimal utility function if the 
initial priority values are non-zero for all states 𝑠 ∈ 𝑆.

Other variants: Improved prioritized sweeping – takes into 
account proximity to high-reward (goal) states.
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Heuristic Algorithms for MDPs

Storing and updating utility and policy values for all state 
prohibitively expensive.
 polynomial in the number of states (but this can be huge!)

Idea: Do not compute utility and policy function for all states

Two pieces of information can drastically reduce the amount of 
computation resources needed.

1. MDP’s initial state: a policy closed w.r.t. initial state often 
excludes large parts of the state space.

2. Heuristic function: a prior knowledge that helps us assess the 
quality of different states in MDPs
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FIND-and-REVISE Algorithm

Greedy graph 𝑮𝒔𝟎
𝑼′: all states that can be reach from 𝑠0 by any 

policy that is greedy w.r.t to 𝑈′ and closed w.r.t. 𝑠0.

Residual 𝑅𝑒𝑠𝑈
′
𝑠 = 𝑈′ 𝑠 − 𝑅 𝑠 − max

𝑎
 𝑠′ 𝑃 𝑠

′ 𝑠, 𝑎 𝑈′(𝑠′)
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Algorithm: FIND-and-REVISE

Start with a heuristic value function 𝑈 ← ℎ

while 𝑈’s greedy graph 𝐺𝑠0
𝑈 ′ contains a state 𝑠 with 𝑅𝑒𝑠𝑈

′
𝑠 > 𝜖 do

FIND a state 𝑠 in 𝐺𝑠0
𝑈 ′ with 𝑅𝑒𝑠𝑈

′
𝑠 > 𝜖

REVISE 𝑈′(𝑠) with a Bellman update
end

return 𝜋𝑈
′



Other Topics

More expressive representations
 Factored/Relational MDDPs

 PPDDL and RDDL (Relational Domain Definition Language) 

 …..

Other solution techniques:
 Real-time dynamic programming

 Monte Carlo-based techniques

 ….
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Concluding Remarks

MDPs are a very powerful model for sequential decision making… 

…but with strong assumptions

1. States fully observable: generalization  partially observable 
MDPs (next lecture)

2. State transition and reward model known: generalization 
reinforcement learning 
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Reinforcement Learning

Reinforcement learning (RL) is based on MDPs but transition and 
reward models not known.

MDP computes an optimal policy. RL learns an optimum policy.

Key ingredient: exploitation vs. exploration control.

Model-based vs. model-free approaches.
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Summary

MDPs generalize deterministic state space search to stochastic 
environments.

MDPs are a foundation for probabilistic planning.

An optimum policy associates an action with (every) state.

Basic dynamic programming-based solution techniques: value iteration
and policy iteration.

Advanced techniques based intelligent prioritization of asynchronous 
update.

Very active area of research (and progress).

Reading:
 Russel and Norvig: Artificial Intelligence: 

Modern Approach, 2010, Sections 17.1-17.3.
 Mausam and Kolobov: Planning with Markov 

Decision Processes: An AI Perspective, 2012
(advanced)
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