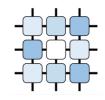


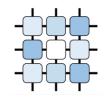
PAH 2015

MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel



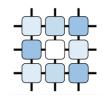
Markov Decision Processes (MDPs)

- main formal model
 - $\Pi = \langle S, A, D, T, R \rangle$
 - states finite set of states of the world
 - actions finite set of actions the agent can perform
 - horizon finite/infinite set of time steps (1,2,...)
 - transition function
 - $T: S \times A \times S \times D \rightarrow [0,1]$
 - reward function
 - $R: S \times A \times S \times D \to \mathbb{R}$



Markov Decision Processes (MDPs)

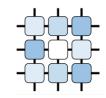
- online planning ~ any-time algorithm
 - learn the next move
 - play it
 - iterate
- reward on final states (often win or lose)
- implicit (and compact) representation of large MDPs
 - cannot grow the full tree
 - cannot safely cut branches
 - cannot be greedy



Markov Decision Processes (MDPs)

- online planning
 - focus on current state
 - set of possible courses
 - decision making ~ selection of one action

- online planning curse of dimensionality
 - number of applicable action is $O(poly(|\Pi|))$
 - complexity because of the state-space size $O(\exp(|\Pi|))$



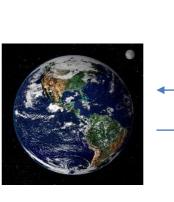
MDPs – Using Monte Carlo Methods

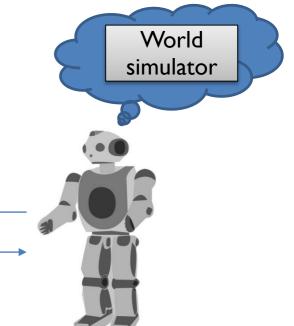
- Monte Carlo sampling is a well known method for searching through large state space
- exploiting MC in sequential decision making has first been successfully designed in (Kocsis & Szepesvari, 2006)

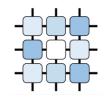
- foundations in mathematical theory
 - Multi-Armed Bandit (MAB) Problem
 - Upper Confidence Bounds (UCB)
 - exploration/exploitation dilemma

Monte Carlo Methods

- Monte Carlo Simulation: a technique that can be used to solve a mathematical or statistical problem using repeated sampling to determine the properties of some phenomenon (or behavior)
- Monte-Carlo Planning: compute a good policy for an MDP by interacting with an MDP simulator
- when simulator of a planning domain is available or can be learned from data
 - even if not described as a MDP
 - queries has to be cheap (relatively)





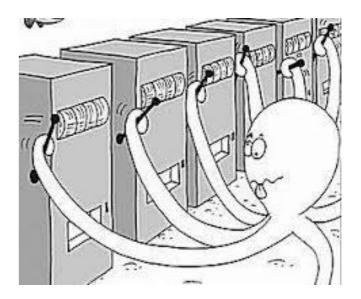


Monte Carlo Simulation

- Domains with Simulators
 - traffic
 - robotics
 - military missions
 - computer network
 - disaster relief and emergency planning
 - sports
 - board and video games
 - board (Go, Hex, Settlers of Catan, ...), card (poker, Magic: The Gathering, ...), RTS (Total War: Rome II, ...)

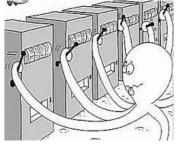
Multi-Armed Bandit Problem

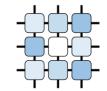
- sequential decision problem (over a single state)
- $k \ge 2$ stochastic actions (arms a_i)
 - each parameterized with an unknown probability distribution v_i
 - each with a stored expectation μ_i
 - if executed (pulled) rewarded at random from v_i
- objective
 - get maximal reward after N pulls
 - minimize regret of pulling wrong arm(s)



Multi-Armed Bandit Problem (variants)

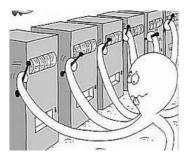
- learning-while-acting
 - reward for each action
 - cumulative regret (exploration/exploitation dilemma)
 - algorithms: ϵ -greedy, UCBI
 - used in: Monte Carlo Tree Search, UCBI applied to trees (UCT)
- online planning/learning-while-planning
 - reward only for final decision (N "free action tries" by simulator)
 - simple regret (only exploration)
 - algorithms: uniform sampling, ϵ -greedy, Sequential Halving
 - used in: Trial-based Heuristic Tree Search (THTS)





e-greedy

• parameterized by ϵ



- flip a ϵ -biased coin
 - (ϵ): select arm a_i randomly with uniform probability and update μ_i
 - (1ϵ) : select estimated best arm a^* and update μ^*
- typically $\epsilon \approx 0, 1$ (but this can vary depending on circumstances)
- exponential convergence to the optimal arm

Upper Confidence Bounds

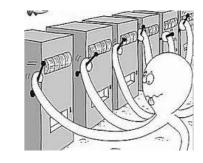
- UCBI arm selection:
 - select arm a_i maximizing UCBI formula:

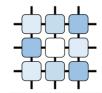
and update μ_i

• $n - \text{times the state is visited}; n_i - \text{times the action is visited}$

 $\mu_i + \sqrt{\frac{2 \ln n}{n_i}}$

- μ_i average reward from the previous plays
- exploration factor ensures to evaluate actions that are evaluated rarely
- only polynomial (but empirically fast) convergence to optimal arm



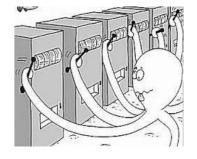


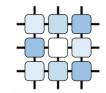
Sequential Halving

- parameterized by sampling budget T
- (1) begins with all arms as candidate arms S
- (2) sample/play all candidate arms in *S t*-times $t = \left| \frac{T}{|S| \lceil \log_2 k \rceil} \right|$

and update their
$$\mu_i$$

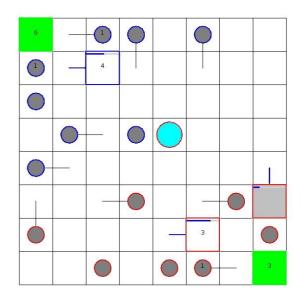
- (3) remove [half] of the candidate arms with lowest μ_i
- (4) until there is only one (resulting) candidate arm: goto (2)
- exponential convergence to the optimal arm (provided the budget is going to ∞ ; not any-time)



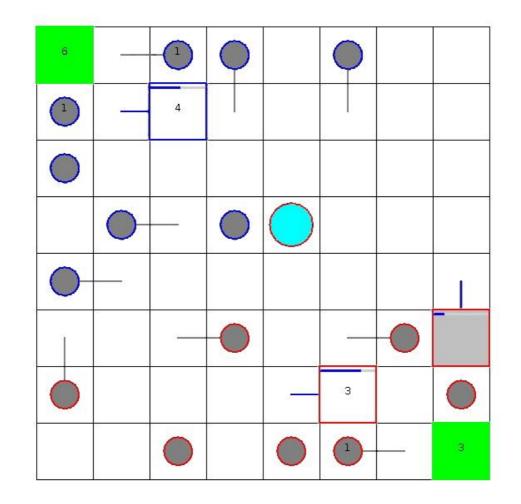


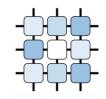
Combinatorial Multi-Armed Bandit Problem⁻¹

- combination of actions (arms) has to be selected (some forbidden)
- reward defined over combinations of actions (c-actions)
- expectation of reward per c-action
- \otimes curse of dimensionality (action combinations), $O(\exp(|\Pi|))$
- ^(c) we can approximate
 - randomly generate candidate c-actions, pick the best one (NMC)
 - assume additive rewards for one c-action; linear-side inform. (LSI)



• \rightarrow sequential decision making (over different states): repeated MABs





Monte Carlo Tree Search (MCTS)

- sequential decision making (over different states)
- gradually grow the search tree
- two types of tree nodes
 - decision nodes (action selection) the algorithm selects
 - chance nodes (world selection) the world selects the outcome (in case of MDP model based on known probabilities)

• returned solution: path (action from root) visited the most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

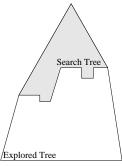
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

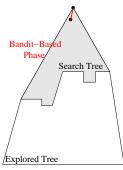
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

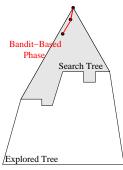
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

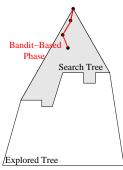
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

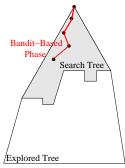
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

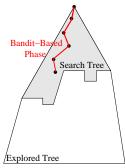
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

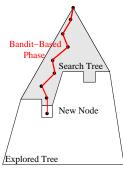
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

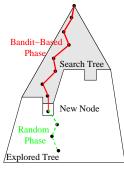
Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Returned solution:

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

Select next action bis

Random phase, roll-out

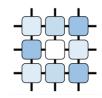
Compute instant reward

Evaluate

Update information in visited nodes

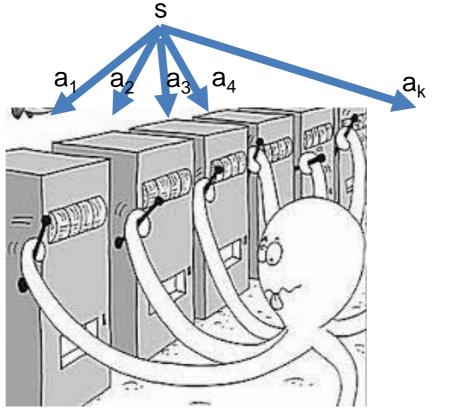
Propagate

Returned solution:

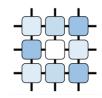


UCT – Principle

• UCBI applied on trees – UCT

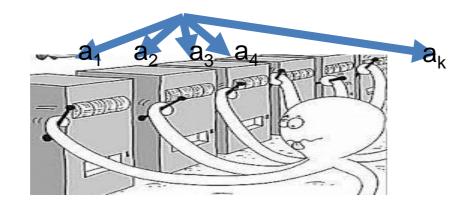


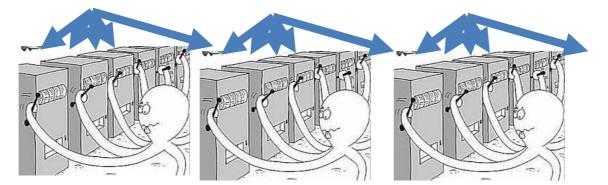
 $\mathsf{R}(\mathsf{s},\mathsf{a}_1,\,{}^*) \quad \mathsf{R}(\mathsf{s},\mathsf{a}_2,\,{}^*) \quad \mathsf{R}(\mathsf{s},\mathsf{a}_3,\,{}^*) \quad \mathsf{R}(\mathsf{s},\mathsf{a}_4,\,{}^*) \qquad \mathsf{R}(\mathsf{s},\mathsf{a}_k,\,{}^*)$

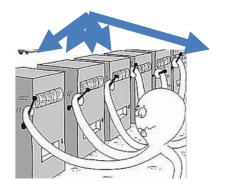


UCT – Principle

• UCBI applied on trees – UCT

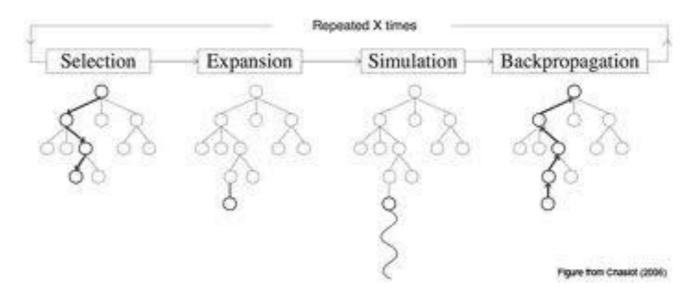






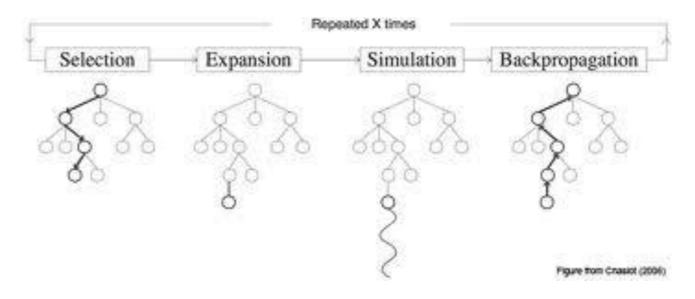
UCT – Phases

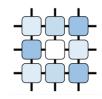
- UCBI applied on trees UCT
 - cumulative or simple regret?
 - why?
- using bandits in sequential decision making
- 4 phases from MCTS



UCT – Phases

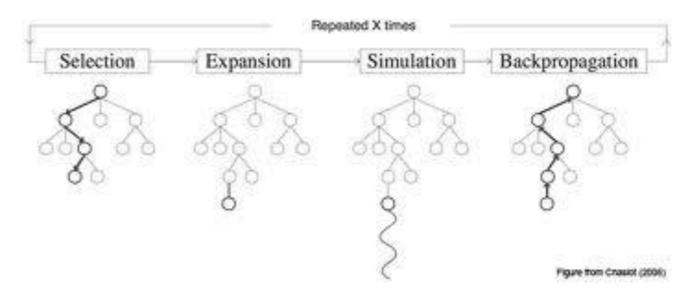
- UCBI applied on trees UCT
 - <u>cumulative</u> or simple regret?
 - why?
- using bandits in sequential decision making
- 4 phases from MCTS

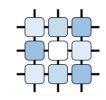




UCT – Phases

- UCBI applied on trees UCT
 - <u>cumulative</u> or simple regret?
 - why? \rightarrow "it just works"
- using bandits in sequential decision making
- 4 phases from MCTS



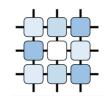


UCT – Selection

- selection (UCBI)
 - for each action a_i applicable in s UCB selects the one that maximizes

$$c_{\sqrt{\frac{\ln n}{n_i}}} + \sum_{s' \in S} T(s, a_i, s') [R(s, a_i, s') + \gamma V(s')]$$

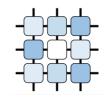
- $n \text{times the state is visited}; n_i \text{times the action is visited}$
- V(s) average reward from the previous iterations
- *c* exploration constant (linear to expected utility)
- exploration factor ensures to evaluate actions that are evaluated rarely



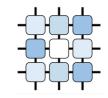
UCT – Expansion, Simulation, Backup

- expansion (MCTS)
 - in a selection node where not all actions were yet sampled, expand (uniformly) randomly one of the new nodes
- simulation (MCTS)
 - (uniformly) randomly select actions in decision nodes
 - using the simulator based on the probabilities in the MDP simulate world behavior in the chance nodes MDP
- backup (MCTS)
 - updating μ_i^s for all search tree nodes along the trial based on the rewards (incl. the simulation)

Beyond UCT



- UCT is far from optimal algorithm
 - there exist simple examples where vanilla UCT performs bad
- number of reasons
 - learning the best action is different from learning the best (contingency) plan
 - situation that occur in states does not exactly correspond to multiarmed bandit (mathematically)
- there are modifications and improvements
 - RAVE (Gelly & Silver, 2007) \rightarrow rapid action value estimate
 - THTS (Keller & Helmert, 2013) \rightarrow MaxUCT, <u>UCT*</u>
 - many others ...



Beyond UCT many others

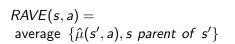
- numbers of possible of improvements
- vanilla UCT is not that fast
- MCTS/UCT requires large number of iterations to converge
- depth-limited rollouts
- reducing branching factor (some actions are dominated \rightarrow remove)
- different action selection principles
- improving rollout policy (biased simulators, "clever" decision nodes)
- incorporate prior knowledge
- parallelization

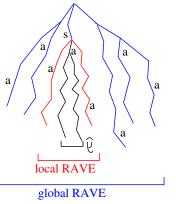
RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

- ▶ It needs some time to decrease the variance of $\hat{\mu}_{s,a}$
- Generalizing across the tree ?





Rapid Action Value Estimate, 2

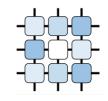
Using RAVE for action selection In the action selection rule, replace $\hat{\mu}_{s,a}$ by

$$\alpha \hat{\mu}_{s,a} + (1 - \alpha) \left(\beta RAVE_{\ell}(s, a) + (1 - \beta)RAVE_{g}(s, a)\right)$$
$$\alpha = \frac{n_{s,a}}{n_{s,a} + c_{1}} \qquad \beta = \frac{n_{parent}(s)}{n_{parent}(s) + c_{2}}$$

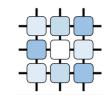
Using RAVE with Progressive Widening

- ▶ PW: introduce a new action if $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$
- Select promising actions: it takes time to recover from bad ones

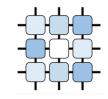
• Select argmax $RAVE_{\ell}(parent(s))$.



- a common framework based on five ingredients:
 - heuristic function
 - backup function
 - action selection
 - outcome selection
 - trial length
- subsuming: MCTS, UCT, FIND-and-REVISE, AO* (AND/OR graph solver), Real-Time Dynamic Programming (RTDP), various heuristic functions (e.g., iterative deepening search)
- providing: MaxUCT, UCT*, ...
- UCT* in PROST 2014 is currently best performing IPPC planner



- Heuristic function
 - action value initialization (Q-value) $h: S \times A \mapsto \mathbb{R}$
 - state value initialization (V-value) $h: S \mapsto \mathbb{R}$
- Action selection
 - UCBI, *ε*-greedy, ...
- Outcome selection
 - Monte Carlo sampling; outcome based on biggest potential impact

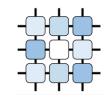


• optimal policy derived from the Bellman optimality equation:

$$V^{*}(s) = \begin{cases} 0 & \text{if } s \text{ is terminal} \\ \max_{a \in A} Q^{*}(a, s) & \text{otherwise} \end{cases}$$
$$Q^{*}(a, s) = R(a, s) + \sum_{s' \in S} P(s' | a, s) \cdot V^{*}(s')$$

- Full Bellman backup ~ Bellman optimality equation, k trials
- Monte Carlo backup

$$V^{k}(s) = \begin{cases} 0 & \text{if } s \text{ is terminal} \\ \frac{\sum_{a \in A} n_{a,s} \cdot Q^{k}(a,s)}{n_{s}} & \text{otherwise} \\ Q^{k}(a,s) = R(a,s) + \frac{\sum_{s' \in S} n_{s'} \cdot V^{k}(s')}{n_{a,s}} \end{cases}$$



Algorithm 1: The THTS schema.

- 1 **THTS**(MDP M, timeout T):
- 2 $n_0 \leftarrow \text{getRootNode}(M)$
- 3 while not solved (n_0) and time() < T do
 - visitDecisionNode (n_0)
- 5 return greedyAction (n_0)

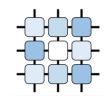
6 visitDecisionNode(Node n_d):

- 7 if n_d was never visited then initializeNode (n_d)
- 8 $N \leftarrow \text{selectAction}(n_d)$
- 9 for $n_c \in N$ do

4

```
10 visitChanceNode(n_c)
```

- 11 backupDecisionNode (n_d)
- 12 visitChanceNode(Node n_c):
- 13 $N \leftarrow \text{selectOutcome}(n_c)$
- 14 for $n_d \in N$ do
- 15 visitDecisionNode (n_d)
- 16 backupChanceNode (n_c)



- maintains explicit tree of alternating decision and chance nodes
- selection phase
 - alternating visitDecisionNode and visitChangeNode
 - selection by selectAction and selectOutcome
 - tree traversing (down)
- expansion phase
 - when unvisited node encountered
 - added child node for each action
 - heuristics used to initialize the estimates
 - allows selection phase for new nodes

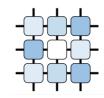
Algorithm 1: The THTS schema.		
1	THTS (MDP M , timeout T):	
2	$n_0 \leftarrow \text{getRootNode}(M)$	
3	while not solved (n_0) and time $() < T$ do	
4	visitDecisionNode (n_0)	
5	return greedyAction (n_0)	
6	visitDecisionNode(Node n_d):	
7	if n_d was never visited then initializeNode (n_d)	
8	$N \leftarrow \text{selectAction}(n_d)$	
9	for $n_c \in N$ do	
10	visitChanceNode (n_c)	
11	$backupDecisionNode(n_d)$	
12	visitChanceNode(Node n_c):	
13	$N \leftarrow \text{selectOutcome}(n_c)$	
14	for $n_d \in N$ do	
15	visitDecisionNode (n_d)	
16	backupChanceNode (n_c)	

- selection and expansion phases alternate until the trial length
- backup phase (backupDecisionNode & backupChanceNode)
 - all selected nodes are updated in reverse order
 - when another selected, but not yet visited \rightarrow selection phase
 - a trial ends when the backup is called on the root node
 - tree backing (up)
- the process is repeated until the timeout T allows for another trial
- highest expectation action is returned greedyAction

_		
Algorithm 1: The THTS schema.		
1	THTS (MDP M , timeout T):	
2	$n_0 \leftarrow getRootNode(M)$	
3	while not solved (n_0) and time $() < T$ do	
4	visitDecisionNode (n_0)	
5	return greedyAction (n_0)	
6	visitDecisionNode(Node n_d):	
7	if n_d was never visited then initializeNode (n_d)	
8	$N \leftarrow \text{selectAction}(n_d)$	
9	for $n_c \in N$ do	
10	visitChanceNode (n_c)	
11	$backupDecisionNode(n_d)$	
12	visitChanceNode(Node n_c):	
13	$N \leftarrow \text{selectOutcome}(n_c)$	
14	for $n_d \in N$ do	
15	visitDecisionNode (n_d)	
16	$backupChanceNode(n_c)$	

MaxUCT

- backup function
 - action-value by Monte Carlo backup $(Q^k(s))$
 - state-value by Full Bellman backup $(V^*(s))$
- action selection \rightarrow UCBI
- outcome selection \rightarrow Monte Carlo sampling (MDP based)
- heuristic function \rightarrow N/A
- trial length \rightarrow UCT (horizon length, i.e. to leafs)



UCT*

- backup function
 - Partial Bellman backup (weighted proportionally to subtree probability)
- action selection \rightarrow UCBI
- outcome selection \rightarrow Monte Carlo sampling (MDP based)
- heuristic function \rightarrow Iterative Deepening Search (depth: 15)
- trial length → explicit tree length + I
 (only initialized new nodes using heuristics)
- resembles classical heuristic Breadth-First-Search (rather than UCT Depth-First-Search)