
Monte Carlo Tree Search

PAH 2015

MCTS animation and RAVE slides by Michèle Sebag and Romaric Gaudel



 main formal model 

 Π = 𝑆, 𝐴, 𝐷, 𝑇, 𝑅

 states – finite set of states of the world

 actions – finite set of actions the agent can perform

 horizon – finite/infinite set of time steps (1,2,… )

 transition function

 𝑇: 𝑆 × 𝐴 × 𝑆 × 𝐷 → [0,1]

 reward function

 𝑅: 𝑆 × 𝐴 × 𝑆 × 𝐷 → ℝ

Markov Decision Processes (MDPs)



 online planning ~ any-time algorithm

 learn the next move

 play it

 iterate

 reward on final states (often win or lose)

 implicit (and compact) representation of large MDPs

 cannot grow the full tree

 cannot safely cut branches

 cannot be greedy

Markov Decision Processes (MDPs)



 online planning

 focus on current state

 set of possible courses

 decision making ∼ selection of one action

 online planning curse of dimensionality

 number of applicable action is O poly Π

 complexity because of the state-space size O exp Π

Markov Decision Processes (MDPs)



 Monte Carlo sampling is a well known method for searching through 

large state space

 exploiting MC in sequential decision making has first been successfully 

designed in (Kocsis & Szepesvari, 2006)

 foundations in mathematical theory

 Multi-Armed Bandit (MAB) Problem

 Upper Confidence Bounds (UCB)

 exploration/exploitation dilemma 

MDPs – Using Monte Carlo Methods



 Monte Carlo Simulation: a technique that can be used to solve a 

mathematical or statistical problem using repeated sampling to 

determine the properties of some phenomenon (or behavior)

 Monte-Carlo Planning: compute a good policy for an MDP by 

interacting with an MDP simulator

 when simulator of a planning domain is available 

or can be learned from data

 even if not described 

as a MDP

 queries has to be cheap 

(relatively)

Monte Carlo Methods

World
simulator



 Domains with Simulators

 traffic

 robotics

 military missions

 computer network

 disaster relief and emergency planning

 sports

 board and video games

 board (Go, Hex, Settlers of Catan, …), card (poker, Magic: The 

Gathering, …), RTS (Total War: Rome II, …)

Monte Carlo Simulation



 sequential decision problem (over a single state)

 𝑘 ≥ 2 stochastic actions (arms 𝑎𝑖)

 each parameterized with an unknown probability distribution 𝜈𝑖

 each with a stored expectation 𝜇𝑖

 if executed (pulled) rewarded at 

random from 𝜈𝑖

 objective

 get maximal reward after N pulls

 minimize regret of pulling wrong arm(s)

Multi-Armed Bandit Problem



 learning-while-acting

 reward for each action

 cumulative regret (exploration/exploitation dilemma)

 algorithms:  𝝐-greedy, UCB1

 used in: Monte Carlo Tree Search, UCB1 applied to trees (UCT)

 online planning/learning-while-planning

 reward only for final decision (N “free action tries” by simulator)

 simple regret (only exploration)

 algorithms:  uniform sampling, 𝝐-greedy, Sequential Halving

 used in:  Trial-based Heuristic Tree Search (THTS)

Multi-Armed Bandit Problem (variants)



 parameterized by 𝝐

 flip a 𝝐-biased coin

 (𝝐): select arm 𝑎𝑖 randomly with uniform probability and update 𝜇𝑖

 (1 − 𝝐): select estimated best arm 𝑎∗ and update 𝜇∗

 typically 𝝐 ≈ 𝟎, 𝟏 (but this can vary depending on circumstances)

 exponential convergence to the optimal arm

𝝐-greedy



 UCB1 arm selection:

 select arm 𝑎𝑖 maximizing UCB1 formula:

𝜇𝑖 +
2 ln 𝑛

𝑛𝑖

and update 𝜇𝑖

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝜇𝑖 – average reward from the previous plays

 exploration factor ensures to evaluate actions that are evaluated 

rarely

 only polynomial (but empirically fast) convergence to optimal arm

Upper Confidence Bounds



 parameterized by sampling budget T

 (1) begins with all arms as candidate arms 𝑆

 (2) sample/play all candidate arms in 𝑆 𝑡-times

𝑡 =
𝑇

|𝑆| log2 𝑘

and update their 𝜇𝑖

 (3) remove half of the candidate arms with lowest 𝜇𝑖

 (4) until there is only one (resulting) candidate arm: goto (2)

 exponential convergence to the optimal arm (provided the budget is 

going to ∞; not any-time)

Sequential Halving



 combination of actions (arms) has to be 

selected (some forbidden)

 reward defined over combinations of 

actions (c-actions)

 expectation of reward per c-action

  curse of dimensionality (action combinations), O exp Π

  we can approximate

 randomly generate candidate c-actions, pick the best one (NMC)

 assume additive rewards for one c-action; linear-side inform. (LSI)

Combinatorial Multi-Armed Bandit Problem



Combinatorial Multi-Armed Bandit Problem

  sequential decision making (over different states): repeated MABs



 sequential decision making (over different states)

 gradually grow the search tree

 two types of tree nodes

 decision nodes (action selection) – the algorithm selects

 chance nodes (world selection) – the world selects the outcome (in 

case of MDP model based on known probabilities)

 returned solution:  path (action from root) visited the most often

Monte Carlo Tree Search (MCTS)



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random



 UCB1 applied on trees – UCT

UCT – Principle

s

a1 a2 a3 a4 ak

R(s,a1, *)   R(s,a2, *)  R(s,a3, *)  R(s,a4, *)     R(s,ak, *)



 UCB1 applied on trees – UCT

UCT – Principle

a1 a2 a3 a4 ak



 UCB1 applied on trees – UCT

 cumulative or simple regret?

 why?

 using bandits in sequential decision making

 4 phases from MCTS

UCT – Phases



 UCB1 applied on trees – UCT

 cumulative or simple regret?

 why?

 using bandits in sequential decision making

 4 phases from MCTS

UCT – Phases



 UCB1 applied on trees – UCT

 cumulative or simple regret?

 why?  “it just works”

 using bandits in sequential decision making

 4 phases from MCTS

UCT – Phases



 selection (UCB1)

 for each action 𝑎𝑖 applicable in 𝑠 UCB selects 

the one that maximizes

𝑐
ln 𝑛

𝑛𝑖
+  

𝑠′∈𝑆

𝑇 𝑠, 𝑎𝑖 , 𝑠
′ [𝑅 𝑠, 𝑎𝑖 , 𝑠

′ + 𝛾𝑉 𝑠′ ]

 𝑛 – times the state is visited; 𝑛𝑖 – times the action is visited

 𝑉(𝑠) – average reward from the previous iterations

 𝑐 - exploration constant (linear to expected utility)

 exploration factor ensures to evaluate actions that are evaluated 

rarely

UCT – Selection



 expansion (MCTS)

 in a selection node where not all actions were yet sampled, expand 

(uniformly) randomly one of the new nodes

 simulation (MCTS)

 (uniformly) randomly select actions in decision nodes

 using the simulator based on the probabilities in the MDP simulate 

world behavior in the chance nodes MDP

 backup (MCTS)

 updating 𝜇𝑖
𝑠 for all search tree nodes along the trial based on the 

rewards (incl. the simulation)

UCT – Expansion, Simulation, Backup  



 UCT is far from optimal algorithm

 there exist simple examples where vanilla UCT performs bad

 number of reasons

 learning the best action is different from learning the best 

(contingency) plan

 situation that occur in states does not exactly correspond to multi-

armed bandit (mathematically)

 there are modifications and improvements

 RAVE (Gelly & Silver, 2007)  rapid action value estimate

 THTS (Keller & Helmert, 2013)  MaxUCT, UCT*

 many others …

Beyond UCT



 numbers of possible of improvements

 vanilla UCT is not that fast

 MCTS/UCT requires large number of iterations to converge

 depth-limited rollouts

 reducing branching factor (some actions are dominated  remove)

 different action selection principles

 improving rollout policy (biased simulators, “clever” decision nodes)

 incorporate prior knowledge

 parallelization

Beyond UCT many others



RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

I It needs some time to decrease the variance of µ̂s,a
I Generalizing across the tree ?

RAVE (s, a) =
average {µ̂(s ′, a), s parent of s ′}

global RAVE

local RAVE

s

a

a

a

a

a

a

a

a



Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace µ̂s,a by

αµ̂s,a + (1− α) (βRAVE`(s, a) + (1− β)RAVEg (s, a))

α =
ns,a

ns,a+c1
β =

nparent(s)
nparent(s)+c2

Using RAVE with Progressive Widening

I PW: introduce a new action if b b
√

n(s) + 1c > b b
√

n(s)c
I Select promising actions: it takes time to recover from bad

ones

I Select argmax RAVE`(parent(s)).



 a common framework based on five ingredients: 

 heuristic function

 backup function

 action selection

 outcome selection

 trial length

 subsuming: MCTS, UCT, FIND-and-REVISE,  AO* (AND/OR graph 

solver), Real-Time Dynamic Programming (RTDP), various heuristic 

functions (e.g., iterative deepening search)

 providing: MaxUCT, UCT*, …

 UCT* in PROST 2014 is currently best performing IPPC planner

Trial-based Heuristic Tree Search (THTS)



 Heuristic function

 action value initialization (Q-value)

ℎ: 𝑆 × 𝐴 ↦ ℝ

 state value initialization (V-value)

ℎ: 𝑆 ↦ ℝ

 Action selection

 UCB1, 𝝐-greedy, …

 Outcome selection

 Monte Carlo sampling; outcome based on biggest potential impact

Trial-based Heuristic Tree Search (THTS)



 optimal policy derived from the Bellman optimality equation: 

𝑉∗ 𝑠 =  
0 if 𝑠 is terminal
max
a∈𝐴
𝑄∗ 𝑎, 𝑠 otherwise

𝑄∗ 𝑎, 𝑠 = 𝑅 𝑎, 𝑠 + 
𝑠′∈𝑆
𝑃 𝑠′|𝑎, 𝑠 ⋅ 𝑉∗(𝑠′)

 Full Bellman backup ~ Bellman optimality equation, k trials

 Monte Carlo backup

𝑉𝑘 𝑠 =  

0 if 𝑠 is terminal
 𝑎∈𝐴𝑛𝑎,𝑠 ⋅ 𝑄

𝑘 𝑎, 𝑠

𝑛𝑠
otherwise

𝑄𝑘 𝑎, 𝑠 = 𝑅 𝑎, 𝑠 +
 𝑠′∈𝑆 𝑛𝑠′ ⋅ 𝑉

𝑘 𝑠′

𝑛𝑎,𝑠

Trial-based Heuristic Tree Search (THTS)



Trial-based Heuristic Tree Search (THTS)



 maintains explicit tree of alternating decision and chance nodes

 selection phase 

 alternating visitDecisionNode and visitChangeNode

 selection by selectAction and selectOutcome

 tree traversing (down)

 expansion phase

 when unvisited node encountered

 added child node for each action

 heuristics used to initialize

the estimates

 allows selection phase for new nodes

Trial-based Heuristic Tree Search (THTS)



 selection and expansion phases alternate until the trial length

 backup phase (backupDecisionNode & backupChanceNode)

 all selected nodes are updated in reverse order

 when another selected, but not yet visited  selection phase

 a trial ends when the backup is called on the root node

 tree backing (up)

 the process is repeated until the 

timeout T allows for another trial

 highest expectation action is returned

greedyAction

Trial-based Heuristic Tree Search (THTS)



 backup function

 action-value by Monte Carlo backup (𝑄𝑘 𝑠 )

 state-value by Full Bellman backup (𝑉∗ 𝑠 )

 action selection  UCB1

 outcome selection  Monte Carlo sampling (MDP based)

 heuristic function  N/A

 trial length  UCT (horizon length, i.e. to leafs)

MaxUCT



 backup function

 Partial Bellman backup 

(weighted proportionally to subtree probability)

 action selection  UCB1

 outcome selection  Monte Carlo sampling (MDP based)

 heuristic function  Iterative Deepening Search (depth: 15)

 trial length  explicit tree length +1

(only initialized new nodes using heuristics)

 resembles classical heuristic Breadth-First-Search (rather than UCT 

Depth-First-Search)

UCT*


