Robot Motion Planning 2

Jiří Vokřínek A4M36PAH - 7.4.2014

Literature

Steven M. LaValle.

Planning Algorithms.

Cambridge University Press, 2006.

Available online*:

http://planning.cs.uiuc.edu/

^{*}many pics are taken from here

- Localization
- Mapping and Navigation
- Collision detection/avoidance
 - Obstacles
 - Other robots
- Motion planning
 - Roadmap, visibility graphs
 - Cell decomposition
 - Potential fields
- Coverage planning

• Goal:

- Compute motion strategies (geometric timeparameterized paths/trajectories)
- Move to the specific position
- Build a map of the region
- Find a target, explore an area
- Assemble/disassemble parts

- Problem: compute a collision-free path for a moving object among static obstacles
- Input:
 - Geometry of a moving object and obstacles
 - Kinematics of the robot (degrees of freedom)
 - Initial and goal robot configurations (positions & orientations)
- Output: continuous sequence of collision-free robot configurations connecting the initial and goal configurations

- Configuration space
- Sampling-based motion planning
- Combinatorial motion planning

- Several variants of the path planning problem have been proven to be PSPACE-hard.
- A complete algorithm may take exponential time (complete algorithm finds a path if one exists and reports no path exists otherwise).

Problem Formulation for Point (Holonomic) Robot

Input:

- Robot represented as a point in the plane
- Obstacles represented as polygons
- Initial and goal positions

Output:

A collision-free path between the initial and goal positions

Problem Formulation for Point Robot

continuous representation

(configuration space formulation)

discretization

(random sampling, processing critical geometric events)

graph searching

(breadth-first, best-first, A*)

Random Sampling Methods

- Probabilistic roadmaps
- Rapidly exploring random tree

Probabilistic Roadmaps

- Randomly generated discrete representation of the continuous space
- Graph consisting of
 - Nodes admissible configuration of the robot
 - Edges feasible path between the particular configurations

Probabilistic Roadmaps

- Randomly generated discrete representation of the continuous space
- Graph consisting of
 - Nodes admissible configuration of the robot
 - Edges feasible path between the particular configurations
- Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found

Probabilistic Roadmaps

- Multi-query
 - Single roadmap used for planning queries several time (PRM)
- Single-query
 - New roadmap for each planning problem
 - Configuration subspace relevant to the problem
 - i.e. RRT (rapidly exploring random tree)

Multi-query Strategy

- Learning phase
 - Find random (non colliding) samples of Configuration space (node)
 - Connect random configurations using local planner (edge)
 - A connection represent admissible path between configurations
 - Consider only nodes within ε >0 distance
 - Collision detection can be performed for configurations "on the edge"

- Query phase
 - Connect start and goal configuration with PRM using local planner
 - Use the graph to search the path

Given problem domain

Generate random configurations

Connect random configuration samples

Get the connected roadmap (graph)

Query Configurations

Add start and goal

Query Configurations

Find the path

Random Sampling

- A solution can be found using only a few number of samples (Oraculum)
- Sampling strategies matters

Random Sampling

- A solution can be found using only a few number of samples (Oraculum)
- Sampling strategies matters
 - Near obstacles
 - Narrow passages
 - Grid-based
 - Uniform sampling (be carefull)

Random Sampling

Dispersion

Discrepancy

Bounding box

- Incrementally builds a graph towards the goal area
 - Start with the initial configuration (root)
 - Generate a new random configuration q_{new}
 - Find the closest node q_{near} in the tree (KD-tree)
 - Extend q_{near} towards q_{new} (move close to position)
 - Repeat random generation until distance from goal is sufficient
 - Terminate after decided running time

- Rapidly explores the space
- Allows kinematic and dynamic constraints
- Can provide trajectory as a sequence of control commands
- Collision detection test is usually used as "black-box"
- Poor performance in narrow passages
- Provides feasible (not optimal) paths
- Many variants

Apply rotations to reach the goal

Planning on a 3D surface

RRT-star

- PRM and RRT are theoretically probabilistic complete (feasible solution without quality guarantee)
- RRT-star: asymptotically optimal RRT
 - Based on guaranteed dispersion

Extension of Robotic Problem

- More complex robots
 - Multiple robots
 - Movable objects, moving obstacles
 - Non-holonomic & dynamic constraints
 - Physical models and deformable objects
 - Sensorless motions (exploiting task mechanics)
 - Uncertainty in control and/or sensing
 - Optimal motion planning
 - Integration of planning and control

Extension of Robotic Problem

- More complex robots
 - Multiple robots
 - Movable objects, moving obstacles
 - Non-holonomic & dynamic constraints
 - Physical models and deformable objects
 - Sensorless motions (exploiting task mechanics)
 - Uncertainty in control and/or sensing
 - Optimal motion planning
 - Integration of planning and control

Integrating Dynamics

- Point robot trajectory vs. system dynamics
- Controlling problem
- Feasible trajectories reduce configuration space
- Trajectory primitives
 - Maneuvers
- Motion planning incl. system dynamics

Maneuver Tree

Maneuvers

- Car-like robot
- Dubins curves (two templates, 6 seq.)
 - Optimal path for wheeled vehicles
 - Consist of three primitives
 - No reverse direction allowed
 - Constant speed
- Reeds-Shepp Curves (46)
 - Reverse direction allowed

Dubins Curves

Trajectory parameterization (tree expansion)

$$\{L_{\alpha}R_{\beta}L_{\gamma}, R_{\alpha}L_{\beta}R_{\gamma}, L_{\alpha}S_{d}L_{\gamma}, L_{\alpha}S_{d}R_{\gamma}, R_{\alpha}S_{d}L_{\gamma}, R_{\alpha}S_{d}R_{\gamma}\}$$

Maneuvers Examples

Car-like example

- Flight example
 - 3D space
 - Climb/descend maneuvers
 - Adjustable speed

Adaptive Path Planner

- Cooperative surveillance mission context
 - Roadmap for a high-level planning
 - Low-level motion planning using Reeds-Shepp curves
 - Replanning in the case of collision

