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Robot Motion Planning – Motivational problem
How to transform high-level task specification (provided by humans)
into a low-level description suitable for controlling the actuators?

To develop algorithms for such a transformation.

The motion planning algorithms provide transformations how to
move a robot (object) considering all operational constraints.

It encompasses several disciples, e.g., mathematics,
robotics, computer science, control theory, artificial
intelligence, computational geometry, etc.
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Piano Mover’s Problem
A classical motion planning problem

Having a CAD model of the piano, model of the environment, the prob-
lem is how to move the piano from one place to another without hitting
anything.

Basic motion planning algorithms are focused pri-
marily on rotations and translations.

We need notion of model representations and formal definition of
the problem.
Moreover, we also need a context about the problem and realistic
assumptions.

The plans have to be admissible and feasible.
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Robotic Planning Context

Path
robot and

workspace

Models of

Trajectory Planning

Tasks and Actions Plans

Mission Planning

feedback control

Sensing and Acting

controller − drives (motors) − sensors

Trajectory

symbol level

"geometric" level

"physical" level

Problem Path Planning

Motion Planning

Sources of uncertainties

because of real environment

Open−loop control?

Robot Control
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Real Mobile Robots

In a real deployment, the problem is a more complex.

The world is changing
Robots update the knowledge about
the environment

localization, mapping and navigation

New decisions have to made
A feedback from the environment

Motion planning is a part of the mission
replanning loop.

Josef Štrunc, Bachelor
thesis, CTU, 2009.

An example of robotic mission:

Multi-robot exploration of unknown environment

How to deal with real-world complexity?
Relaxing constraints and considering realistic assumptions.
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Notation

W – World model describes the robot workspace and its boundary
determines the obstacles Oi .

2D world, W = R2

A Robot is defined by its geometry, parameters (kinematics) and it
is controllable by the motion plan.
C – Configuration space (C-space)
A concept to describe possible configurations of the robot. The
robot’s configuration completely specify the robot location inW
including specification of all degrees of freedom.

E.g., a robot with rigid body in a plane C = {x , y , ϕ} = R2 × S1.

Let A be a subset of W occupied by the robot, A = A(q).
A subset of C occupied by obstacles is

Cobs = {q ∈ C : A(q) ∩ Oi ,∀i}

Collision-free configurations are
Cfree = C \ Cobs .

Jan Faigl, 2016 A4M36PAH – Lecture 9: Trajectory Planning 10 / 62



Intro Notation Sampling-based Motion Planning Randomized Sampling-Based Methods Optimal Motion Planners

Path / Motion Planning Problem
Path is a continuous mapping in C-space such that

π : [0, 1]→ Cfree , with π(0) = q0, and π(1) = qf ,

Only geometric considerations

Trajectory is a path with explicate parametrization of time, e.g.,
accompanied by a description of the motion laws (γ : [0, 1] → U ,
where U is robot’s action space).

It includes dynamics.

[T0,Tf ] 3 t  τ ∈ [0, 1] : q(t) = π(τ) ∈ Cfree

The planning problem is determination of the function π(·).

Additional requirements can be given:

Smoothness of the path
Kinodynamic constraints

E.g., considering friction forces

Optimality criterion
shortest vs fastest (length vs curvature)
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Planning in C-space
Robot motion planning robot for a disk robot with a radius ρ.

Disk robot

Goal position

Start position

Motion planning problem in
geometrical representation of W

C−space

Cfree

Point robot

Start configuration

Goal configuration

obstC

Motion planning problem in
C-space representation

C-space has been obtained by enlarging obstacles by the disk A
with the radius ρ.

By applying Minkowski sum: O ⊕A = {x + y | x ∈ O, y ∈ A}.
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Example of Cobs for a Robot with Rotation

x

y

θ

y

Robot body

Reference point

θ=π/2

θ=0 x

x

y

obs
C

A simple 2D obstacle → has a complicated Cobs

Deterministic algorithms exist
Requires exponential time in C dimension,

J. Canny, PAMI, 8(2):200–209, 1986

Explicit representation of Cfree is impractical to compute.
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Representation of C-space

How to deal with continuous representation of C-space?

Continuous Representation of C-space

↓
Discretization

processing critical geometric events, (random) sampling
roadmaps, cell decomposition, potential field

↓
Graph Search Techniques
BFS, Gradient Search, A∗
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Planning Methods - Overview
(selected approaches)

Roadmap based methods
Create a connectivity graph of the free space.

Visibility graph
(complete but impractical)

Cell decomposition
Voronoi diagram

Discretization into a grid-based (or lattice-based) representation
(resolution complete)

Potential field methods (complete only for a “navigation function”, which is
hard to compute in general)

Classic path planning algorithms

Randomized sampling-based methods
Creates a roadmap from connected random samples in Cfree
Probabilistic roadmaps

samples are drawn from some distribution
Very successful in practice
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Visibility Graph
1. Compute visibility graph
2. Find the shortest path E.g., by Dijkstra’s algorithm

Problem Visibility graph Found shortest path

Constructions of the visibility graph:
Naïve – all segments between n vertices of the map O(n3)

Using rotation trees for a set of segments – O(n2)
M. H. Overmars and E. Welzl, 1988
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Voronoi Diagram

1. Roadmap is Voronoi diagram that maximizes clearance from the
obstacles

2. Start and goal positions are connected to the graph
3. Path is found using a graph search algorithm

Voronoi diagram Path in graph Found path
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Visibility Graph vs Voronoi Diagram
Visibility graph

Shortest path, but it is close to obstacles. We
have to consider safety of the path.

An error in plan execution can
lead to a collision.

Complicated in higher dimensions

Voronoi diagram
It maximize clearance, which can provide
conservative paths
Small changes in obstacles can lead to large
changes in the diagram
Complicated in higher dimensions

A combination is called Visibility-Voronoi – R. Wein,
J. P. van den Berg, D. Halperin, 2004

For higher dimensions we need other roadmaps.

Jan Faigl, 2016 A4M36PAH – Lecture 9: Trajectory Planning 19 / 62



Intro Notation Sampling-based Motion Planning Randomized Sampling-Based Methods Optimal Motion Planners

Cell Decomposition
1. Decompose free space into parts.

Any two points in a convex region can be directly
connected by a segment.

2. Create an adjacency graph representing the connectivity of the
free space.

3. Find a path in the graph.

Trapezoidal decomposition

Centroids represent
cells

Connect adjacency
cells

q

gq

0

Find path in the
adjacency graph

Other decomposition (e.g., triangulation) are possible.
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Artificial Potential Field Method
The idea is to create a function f that will provide a direction
towards the goal for any configuration of the robot.
Such a function is called navigation function and −∇f (q) points to
the goal.
Create a potential field that will attract robot towards the goal qf
while obstacles will generate repulsive potential repelling the robot
away from the obstacles.

The navigation function is a sum of potentials.

Such a potential function can have several local minima.
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Avoiding Local Minima in Artificial Potential Field

Consider harmonic functions that have only one extremum

∇2f (q) = 0

Finite element method
Dirichlet and Neumann boundary conditions

J. Mačák, Master thesis, CTU, 2009
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Sampling-based Motion Planning

Avoids explicit representation of the obstacles in C-space
A “black-box” function is used to evaluate a configuration q is a
collision free

(E.g., based on geometrical models and testing
collisions of the models)

It creates a discrete representation of Cfree
Configurations in Cfree are sampled randomly and connected to a
roadmap (probabilistic roadmap)
Rather than full completeness they provides probabilistic com-
pleteness or resolution completeness

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)
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Probabilistic Roadmaps
A discrete representation of the continuous C-space generated by ran-
domly sampled configurations in Cfree that are connected into a graph.

Nodes of the graph represent admissible configuration of the
robot.
Edges represent a feasible path (trajectory) between the particular
configurations.

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)

Having the graph, the final path (trajectory) is found by a graph search technique.
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Probabilistic Roadmap Strategies
Multi-Query
Generate a single roadmap that is then used for planning queries
several times.
An representative technique is Probabilistic RoadMap (PRM)

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration
Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.
Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

Single-Query
For each planning problem constructs a new roadmap to character-
ize the subspace of C-space that is relevant to the problem.

Rapidly-exploring Random Tree – RRT LaValle, 1998
Expansive-Space Tree – EST Hsu et al., 1997
Sampling-based Roadmap of Trees – SRT

(combination of multiple–query and single–query approaches)
Plaku et al., 2005
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Multi-Query Strategy

Build a roadmap (graph) representing the environment
1. Learning phase

1.1 Sample n points in Cfree
1.2 Connect the random configurations using a local planner

2. Query phase
2.1 Connect start and goal configurations with the PRM

E.g., using a local planner
2.2 Use the graph search to find the path

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration
Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.
Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

First planner that demonstrates ability to solve general planning prob-
lems in more than 4-5 dimensions.
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PRM Construction

#1 Given problem domain #2 Random configuration #3 Connecting samples

C

C

obs

obs
C

free

C

obs
C

obs
C

obs

C

obs
C

C
free

obs

obs

C
obs

C

obs
C

Local planner

C

Cobs

obsC

obs

freeC

Cobs

Cobs

collision
δ

#4 Connected roadmap #5 Query configurations #6 Final found path

C

free
C

C
obs

C
obs

C
obs

C
obs

obs
C

free
C

C
obs

C
obs

C
obs

C
obs

obs
C

free
C

C
obs

C
obs

C
obs

C
obs

obs
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Practical PRM

Incremental construction
Connect nodes in a radius ρ
Local planner tests collisions up
to selected resolution δ
Path can be found by Dijkstra’s
algorithm

ρ

obs

obs
C

obs
C

obs
C

C
free

obs

C

C

What are the properties of the PRM algorithm?

We need a couple of more formalism.
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Path Planning Problem Formulation

Path planning problem is defined by a triplet
P = (Cfree , qinit ,Qgoal),

Cfree = cl(C \ Cobs), C = (0, 1)d , for d ∈ N, d ≥ 2
qinit ∈ Cfree is the initial configuration (condition)
Ggoal is the goal region defined as an open subspace of Cfree

Function π : [0, 1]→ Rd of bounded variation is called :
path if it is continuous;
collision-free path if it is path and π(τ) ∈ Cfree for τ ∈ [0, 1];
feasible if it is collision-free path, and π(0) = qinit and
π(1) ∈ cl(Qgoal).

A function π with the total variation TV(π) <∞ is said to have bounded
variation, where TV(π) is the total variation

TV(π) = sup{n∈N,0=τ0<τ1<...<τn=s}
∑n

i=1 |π(τi )− π(τi−1)|

The total variation TV(π) is de facto a path length.
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Path Planning Problem

Feasible path planning:
For a path planning problem (Cfree , qinit ,Qgoal)

Find a feasible path π : [0, 1]→ Cfree such that π(0) = qinit and
π(1) ∈ cl(Qgoal), if such path exists.
Report failure if no such path exists.

Optimal path planning:
The optimality problem ask for a feasible path with the minimum cost.

For (Cfree , qinit ,Qgoal) and a cost function c : Σ→ R≥0
Find a feasible path π∗ such that
c(π∗) = min{c(π) : π is feasible}.
Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded,
i.e., there exists kc such that c(π) ≤ kc TV(π).
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Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem
(Cfree , qinit ,Qgoal).

q ∈ Cfree is δ-interior state of Cfree if
the closed ball of radius δ centered at q
lies entirely inside Cfree .

δ

q

−interior state

int  (        )

obs

Cfree
δ

C

δ-interior of Cfree is intδ(Cfree) = {q ∈ Cfree |B/,δ ⊆ Cfree}.
A collection of all δ-interior states.

A collision free path π has strong δ-clearance, if π lies entirely
inside intδ(Cfree).
(Cfree , qinit ,Qgoal) is robustly feasible if a solution exists and it is a
feasible path with strong δ-clearance, for δ>0.
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Probabilistic Completeness 2/2

An algorithmALG is probabilistically complete if, for any robustly
feasible path planning problem P = (Cfree , qinit ,Qgoal)

lim
n→0

Pr(ALG returns a solution to P) = 1.

It is a “relaxed” notion of completeness
Applicable only to problems with a robust solution.

C

C

obs

freeint  (        )
δ

init

Cobs

Cfree
δ

int  (        )

q

We need some space, where random configurations
can be sampled
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Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ-clearance
Notice, we use strong δ-clearance for probabilistic completeness

Function ψ : [0, 1]→ Cfree is called homotopy, if ψ(0) = π1 and ψ(1) =
π2 and ψ(τ) is collision-free path for all τ ∈ [0, 1].
A collision-free path π1 is homotopic to π2 if there exists homotopy
function ψ.

A path homotopic to π can be continuously trans-
formed to π through Cfree .
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Asymptotic Optimality 2/4

A collision-free path π : [0, s] → Cfree has weak δ-clearance if
there exists a path π′ that has strong δ-clearance and homotopy
ψ with ψ(0) = π, ψ(1) = π′, and for all α ∈ (0, 1] there exists
δα > 0 such that ψ(α) has strong δ-clearance.

Weak δ-clearance does not require points along a
path to be at least a distance δ away from obstacles.

π

π’
init

obs

Cfree
δ

int  (        )

q

C A path π with a weak δ-clearance
π′ lies in intδ(Cfree) and it is the
same homotopy class as π
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Asymptotic Optimality 3/4

It is applicable with a robust optimal solution that can be obtained
as a limit of robust (non-optimal) solutions.
A collision-free path π∗ is robustly optimal solution if it has weak
δ-clearance and for any sequence of collision free paths {πn}n∈N,
πn ∈ Cfree such that limn→∞ πn = π∗,

lim
n→∞

c(πn) = c(π∗).

There exists a path with strong δ-clearance, and π∗ is
homotopic to such path and π∗ is of the lower cost.

Weak δ-clearance implies robustly feasible solution problem
(thus, probabilistic completeness)
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Asymptotic Optimality 4/4

An algorithm ALG is asymptotically optimal if, for any path plan-
ning problem P = (Cfree , qinit ,Qgoal) and cost function c that admit
a robust optimal solution with the finite cost c∗

Pr

({
lim
i→∞

YALGi = c∗
})

= 1.

YALGi is the extended random variable corresponding to the minimum-
cost solution included in the graph returned by ALG at the end of
iteration i .
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Properties of the PRM Algorithm

Completeness for the standard PRM has not been provided when
it was introduced
A simplified version of the PRM (called sPRM) has been mostly
studied
sPRM is probabilistically complete

What are the differences between PRM and sPRM?
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PRM vs simplified PRM (sPRM)
PRM

Input: qinit , number of samples n, radius ρ
Output: PRM – G = (V ,E)

V ← ∅;E ← ∅;
for i = 0, . . . , n do

qrand ← SampleFree;
U ← Near(G = (V ,E), qrand , ρ);
V ← V ∪ {qrand};
foreach u ∈ U, with increasing
||u − qr || do

if qrand and u are not in the
same connected component of
G = (V ,E) then

if CollisionFree(qrand , u)
then

E ← E ∪
{(qrand , u), (u, qrand )};

return G = (V ,E);

sPRM Algorithm

Input: qinit , number of samples n, ra-
dius ρ

Output: PRM – G = (V ,E)

V ← {qinit} ∪
{SampleFreei}i=1,...,n−1;E ← ∅;
foreach v ∈ V do

U ←Near(G = (V ,E), v , ρ) \ {v};
foreach u ∈ U do

if CollisionFree(v , u) then
E ← E ∪{(v , u), (u, v)};

return G = (V ,E);

There are several ways for the set U of
vertices to connect them

k-nearest neighbors to v

variable connection radius ρ as a
function of n
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PRM – Properties

sPRM (simplified PRM)
Probabilistically complete and asymptotically optimal
Processing complexity O(n2)
Query complexity O(n2)
Space complexity O(n2)

Heuristics practically used are usually not probabilistic complete
k-nearest sPRM is not probabilistically complete
variable radius sPRM is not probabilistically complete

Based on analysis of Karaman and Frazzoli

PRM algorithm:
+ Has very simple implementation
+ Completeness (for sPRM)
− Differential constraints (car-like vehicles) are not straightforward
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Comments about Random Sampling 1/2

Different sampling strategies (distributions) may be applied

Notice, one of the main issue of the randomized sampling-based
approaches is the narrow passage
Several modifications of sampling based strategies have been pro-
posed in the last decades
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Comments about Random Sampling 2/2
A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

Sampling strategies are important
Near obstacles
Narrow passages
Grid-based
Uniform sampling must be carefully considered.

James J. Kuffner, Effective Sampling and Distance
Metrics for 3D Rigid Body Path Planning, ICRA, 2004.

Naïve sampling Uniform sampling of SO(3) using Euler angles

Jan Faigl, 2016 A4M36PAH – Lecture 9: Trajectory Planning 42 / 62



Intro Notation Sampling-based Motion Planning Randomized Sampling-Based Methods Optimal Motion Planners

Rapidly Exploring Random Tree (RRT)

Single–Query algorithm
It incrementally builds a graph (tree) towards the goal area.

It does not guarantee precise path to the goal configuration.

1. Start with the initial configuration q0, which is a root of the
constructed graph (tree)

2. Generate a new random configuration qnew in Cfree
3. Find the closest node qnear to qnew in the tree

E.g., using KD-tree implementation like ANN or FLANN libraries

4. Extend qnear towards qnew
Extend the tree by a small step, but often a direct control
u ∈ U that will move robot the position closest to qnew is
selected (applied for δt).

5. Go to Step 2, until the tree is within a sufficient distance from the
goal configuration

Or terminates after dedicated running time.
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RRT Construction

#1 new random configuration

0 q new
q

#2 the closest node

0

q near
q new

q

#3 possible actions from qnear

new

u 3

u 5

u 4

u 2

u 1

q near
q0q

#4 extended tree

q 0
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RRT Algorithm
Motivation is a single query and control-based path finding
It incrementally builds a graph (tree) towards the goal area.

RRT Algorithm
Input: qinit , number of samples n

Output: Roadmap G = (V ,E)

V ← {qinit};E ← ∅;
for i = 1, . . . , n do

qrand ← SampleFree;
qnearest ← Nearest(G = (V ,E), qrand );
qnew ← Steer(qnearest , qrand );
if CollisionFree(qnearest , qnew ) then

V ← V ∪ {xnew}; E ← E ∪ {(xnearest , xnew )};

return G = (V ,E);

Extend the tree by a small step, but often a direct control u ∈ U that will
move robot to the position closest to qnew is selected (applied for dt).

Rapidly-exploring random trees: A new tool for path planning
S. M. LaValle,
Technical Report 98-11, Computer Science Dept., Iowa State University, 1998
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Properties of RRT Algorithms

Rapidly explores the space
qnew will more likely be generated in large not yet covered parts.

Allows considering kinodynamic/dynamic constraints (during the
expansion).
Can provide trajectory or a sequence of direct control commands
for robot controllers.
A collision detection test is usually used as a “black-box”.

E.g., RAPID, Bullet libraries.

Similarly to PRM, RRT algorithms have poor performance in
narrow passage problems.
RRT algorithms provides feasible paths.

It can be relatively far from optimal solution, e.g.,
according to the length of the path.

Many variants of RRT have been proposed.
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RRT – Examples 1/2

Alpha puzzle benchmark Apply rotations to reach the goal

Bugtrap benchmark Variants of RRT algorithms
Courtesy of V. Vonásek and P. Vaněk
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RRT – Examples 2/2

Planning for a car-like robot

Planning on a 3D surface

Planning with dynamics
(friction forces)

Courtesy of V. Vonásek and P. Vaněk
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Car-Like Robot

Configuration

−→x =

 x
y
φ


position and orientation

Controls
−→u =

(
v
ϕ

)
forward velocity, steering angle

System equation
ẋ = v cosφ
ẏ = v sinφ

ϕ̇ =
v

L
tanϕ

(x, y)

L

θ

ϕ

ICC

Kinematic constraints dim(−→u ) < dim(−→x )

Differential constraints on possible q̇:

ẋ sin(φ)− ẏ cos(φ) = 0
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Control-Based Sampling

Select a configuration q from the tree T of the current
configurations

Pick a control input −→u = (v , ϕ) and
integrate system (motion) equation
over a short period ∆x

∆y
∆ϕ

 =

∫
t+∆t

t

 v cosφ
v sinφ
v
L tanϕ

 dt

If the motion is collision-free, add the endpoint to the tree

E.g., considering k configurations for kδt = dt.
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RRT and Quality of Solution

RRT provides a feasible solution without quality guarantee
Despite of that, it is successfully used in many prac-
tical applications

In 2011, a systematical study of the asymptotic behaviour of ran-
domized sampling-based planners has been published

It shows, that in some cases, they converge to a non-
optimal value with a probability 1.

Sampling-based algorithms for optimal motion planning
Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846–894, 2011.

http://sertac.scripts.mit.edu/rrtstar
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RRT and Quality of Solution 1/2

Let Y RRT
i be the cost of the best path in the RRT at the end of

iteration i .
Y RRT
i converges to a random variable

lim
i→∞

Y RRT
i = Y RRT

∞ .

The random variable Y RRT
∞ is sampled from a distribution with zero

mass at the optimum, and

Pr [Y RRT
∞ > c∗] = 1.

Karaman and Frazzoli, 2011

The best path in the RRT converges to a sub-optimal solution al-
most surely.
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RRT and Quality of Solution 2/2

RRT does not satify a necessary condition for the asymptotic opti-
mality

For 0 < R < infq∈Qgoal
||q− qinit ||, the event {limn→∞ Y RTT

n = c∗}
occurs only if the k-th branch of the RRT contains vertices outside
the R-ball centered at qinit for infinitely many k .

See Appendix B in Karaman&Frazzoli, 2011

It is required the root node will have infinitely many subtrees that
extend at least a distance ε away from qinit

The sub-optimality is caused by disallowing new better paths
to be discovered.
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Rapidly-exploring Random Graph (RRG)
RRG Algorithm
Input: qinit , number of samples n
Output: G = (V ,E)

V ← ∅;E ← ∅;
for i = 0, . . . , n do

qrand ← SampleFree;
qnearest ← Nearest(G = (V ,E), qrand);
qnew ← Steer(qnearest , qrand);
if CollisionFree(qnearest , qnew ) then
Qnear ← Near(G =

(V ,E), qnew ,min{γRRG (log(card(V ))/ card(V ))1/d , η});
V ← V ∪ {qnew}; E ← E ∪ {(qnearest , qnew ), (qnew , qnearest)};
foreach qnear ∈ Qnear do

if CollisionFree(qnear , qnew ) then
E ← E ∪ {(qrand , u), (u, qrand)};

return G = (V ,E);
Proposed by Karaman and Frazzoli (2011). Theoretical results are related to
properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961)
and further studied by Penrose (1999).
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RRG Expansions

At each iteration, RRG tries to connect new sample to the all
vertices in the rn ball centered at it.
The ball of radius

r(card(V )) = min

{
γRRG

(
log (card(V ))

card(V )

)1/d

, η

}
where

η is the constant of the local steering function
γRRG > γ∗RRG = 2(1 + 1/d)1/d(µ(Cfree)/ξd)1/d

- d – dimension of the space;
- µ(Cfree) – Lebesgue measure of the obstacle–free space;
- ξd – volume of the unit ball in d-dimensional Euclidean space.

The connection radius decreases with n

The rate of decay ≈ the average number of connections
attempted is proportional to log(n)
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RRG Properties

Probabilistically complete
Asymptotically optimal
Complexity is O(log n)

(per one sample)

Computational efficiency and optimality

Attempt connection to Θ(log n) nodes at each iteration;
in average

Reduce volume of the “connection” ball as log(n)/n;
Increase the number of connections as log(n).
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Other Variants of the Optimal Motion Planning

PRM* – it follows standard PRM algorithm where connections are
attempted between roadmap vertices that are within connection
radius r as a function of n

r(n) = γPRM(log(n)/n)1/d

RRT* – a modification of the RRG, where cycles are avoided
A tree version of the RRG

A tree roadmap allows to consider non-holonomic dynamics and
kinodynamic constraints.
It is basically RRG with “rerouting” the tree when a better path is
discovered.
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Example of Solution 1/2

RRT, n=250

RRT*, n=250

RRT, n=500

RRT*, n=500

RRT, n=2500

RRT*, n=2500

RRT, n=10000

RRT*, n=10000
Karaman & Frazzoli, 2011
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Example of Solution 2/2

RRT, n=20000 RRT*, n=20000
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Overview of Randomized Sampling-based Algorithms

Algorithm
Probabilistic Asymptotic
Completeness Optimality

sPRM 4 8

k-nearest sPRM 8 8

RRT 4 8

RRG 4 4

PRM* 4 4

RRT* 4 4

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete
and optimal as well.
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Summary

Introduction to motion planning
Overview of sampling-based planning methods

Basic roadmap methods
Visibility graph
Voronoi diagram
Cell decomposition

Artificial potential field method

Randomized Sampling-based Methods and their properties (PRM,
sPRM, RRT)
Optimal Motion Planners (RRG, PRM∗, RRT∗)
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