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What is AI?

Two of somewhat more pragmatic attempts

The study of mental faculties through the use of
computational models.
(E. Charniak & D. McDermott)

The science concerned with understanding intelligent
behavior by attempting to create it in the artificial.
(T. Smithers)

Intelligent behavior can be considered (postulated?) as
ability to solve problems for which the machine has no
knowledge of an suitable algorithm
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NASA Experience

Galileo Jupiter or Cassini Saturn
missions

$1G budget

Ground crew of 100-300
personnel

Mars micro-rover Sojourne

$100M budget

Small (and tired!) ground
teams

Sojourne operated for two month, but future robots are
expected to operate much longer!
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NASA Vision

Space-explorating systems should be

Low-cost and rapid development, low-cost control

Autonomous operation for long periods of time

Autonomous operation must guarantee success, given
tight deadlines and resource constraints

Utopy?
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NASA Vision

Space-explorating systems should be

Low-cost and rapid development, low-cost control

Autonomous operation for long periods of time

Autonomous operation must guarantee success, given
tight deadlines and resource constraints

Utopy? Not really. First progress in this direction has been
accomplished in 1998 in the scope of the Deep Space One
project!
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Planning Problems

A sample of problems:

Solving Rubik’s cube (or 15-puzzle, or ...)

Selecting and ordering movements of an elevator or a crane

Scheduling of production lines

Autonomous robots

Crisis management

...

What is in common?
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Planning Problems

What is in common?

All these problems deal with action selection or control

Some notion of problem state

(Often) specification of initial state and/or goal state

Legal moves or actions that transform states into other
state
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Planning Problems

For now focus on:

Plans (aka solutions) are sequences of moves that
transform the initial state into the goal state

Intuitively, not all solutions are equally desirable

What is our task?

1 Find out whether there is a solution

2 Find any solution

3 Find an optimal (or near-optimal) solution

4 Fixed amount of time, find best solution possible

5 Find solution that satisfy property ℵ (what is ℵ? you
choose!)
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Planning Problems

What is our task?

1 Find out whether there is a solution

2 Find any solution

3 Find an optimal (or near-optimal) solution

4 Fixed amount of time, find best solution possible

5 Find solution that satisfy property ℵ (what is ℵ? you
choose!)

♠ While all these tasks sound related, they are very different.
The techniques best suited for each one are almost
disjoint.

In AI planning, (1) is usually assumed not to be an issue.
(In contrast, in formal verification this is the central issue.)
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Planning and Action Selection in AI

Three approaches in AI (in general?) to the problems of
action selection or control

Learning : learn control from experience

Programming : specify control by hand

Planning : specify problem by hand, derive control
automatically

All three have strengths and weaknesses; approaches not
exclusive and often complementary.

Planning is a form of general problem solving
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Three Key Ingredients of Planning
... and of AI approach to problems in general?

Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

1 models for defining, classifying, and understanding
problems

- what is a planning problem
- what is a solution (plan), and
- what is an optimal solution

2 languages for representing problems

3 algorithms for solving them
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Three Key Ingredients of Planning
... and of AI approach to problems in general?

Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

1 models for defining, classifying, and understanding
problems

- what is a planning problem
- what is a solution (plan), and
- what is an optimal solution

2 languages for representing problems

3 algorithms for solving them
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State model for Classical AI Planning

finite state space S

an initial state s0 ∈ S
a set SG ⊆ S of goal states

applicable actions
A(s) ⊆ A for s ∈ S
a transition function
s′ = f(a, s) for a ∈ A(s)
a cost function c : A∗ → [0,∞)

A solution is a sequence of applicable
actions that maps s0 into SG

An optimal solution minimizes c
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Why planning is difficult?

Solutions to planning
problems are paths from an
initial state to a goal state
in the transition graph

Dijkstra’s algorithm solves
this problem in
O(|V | log (|V |) + |E|)
Can we go home??
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Why planning is difficult?

Solutions to planning
problems are paths from an
initial state to a goal state
in the transition graph

Dijkstra’s algorithm solves
this problem in
O(|V | log (|V |) + |E|)
Can we go home??

♠ Not exactly ⇒ |V | of our
interest is 1010, 1020, 10100,
. . .

But do we need such
values of |V | ?!
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Why planning is difficult?

Generalize the earlier
example:

Five locations, three robot
carts, 100 containers, three
piles
|V | ≈ 10277

The number of atoms in the
universe is only about 1087

The state space in our
example is more than 10109

times as large (uppss ...)

And solving such a problem
is not hopeless!
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Transition systems

A

BC

D

E F

initial state

goal states
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Transition systems
Formalization of the dynamics of the world/application

Definition (transition system)

A transition system is 〈S, I, {a1, . . . , an}, G〉 where

S is a finite set of states (the state space),

I ⊆ S is a finite set of initial states,

every action ai ⊆ S × S is a binary relation on S,

G ⊆ S is a finite set of goal states.

Definition (applicable action)

An action a is applicable in a state s if sas′ for at least one
state s′.
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Transition systems
Deterministic transition systems

A transition system is deterministic if there is only one initial
state and all actions are deterministic. Hence all future states
of the world are completely predictable.

Definition (deterministic transition system)

A deterministic transition system is 〈S, I,O,G〉 where

S is a finite set of states (the state space),

I ∈ S is a state,

actions a ∈ O (with a ⊆ S × S) are partial functions,

G ⊆ S is a finite set of goal states.

Successor state wrt. an action

Given a state s and an action a so that a is applicable in s, the
successor state of s with respect to a is s′ such that sas′,
denoted by s′ = appa(s).
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Blocks world
The transition graph for three blocks
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Blocks world
Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

. . .
19 13564373693588558173

1 Finding a solution is polynomial time in the number of
blocks (move everything onto the table and then construct
the goal configuration).

2 Finding a shortest solution is NP-complete (for a compact
description of the problem).
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Deterministic planning: plans

Definition (plan)

A plan for 〈S, I, A,G〉 is a sequence π = a1, . . . , an of action
instances such that a1, . . . , an ∈ A and s0, . . . , sn is a sequence
of states (the execution of π) so that

1 s0 = I,

2 si = appai
(si−1) for every i ∈ {1, . . . , n}, and

3 sn ∈ G.

This can be equivalently expressed as

appan
(appan−1

(. . . appa1
(I) . . . )) ∈ G
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Three Key Ingredients of Planning
... and of AI approach to problems in general?

Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

1 models for defining, classifying, and understanding
problems

- what is a planning problem
- what is a solution (plan), and
- what is an optimal solution

2 languages for representing problems

3 algorithms for solving them
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Succinct representation of transition systems

More compact representation of actions than as relations
is often

possible because of symmetries and other regularities,
unavoidable because the relations are too big.

Represent different aspects of the world in terms of
different state variables.  A state is a valuation of state
variables.

Represent actions in terms of changes to the state
variables.
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State variables

The state of the world is described in terms of a finite set
of finite-valued state variables.

Example

hour: {0, . . . , 23} = 13
minute: {0, . . . , 59} = 55
location: {51, 52, 82, 101, 102} = 101
weather: {sunny, cloudy, rainy} = cloudy
holiday: {T,F} = F

Any n-valued state variable can be replaced by dlog2 ne
Boolean (2-valued) state variables.

Actions change the values of the state variables.
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Blocks world with state variables

State variables:
location-of-A: {B,C, table}
location-of-B: {A,C, table}
location-of-C : {A,B, table}

Example

s(location-of-A) = table

s(location-of-B) = A

s(location-of-C) = table A
B

C

Not all valuations correspond to an intended blocks world
state, e. g. s such that s(location-of-A) = B and
s(location-of-B) = A.
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Blocks world with Boolean state variables

Example

s(A-on-B) = 0
s(A-on-C) = 0

s(A-on-table) = 1
s(B-on-A) = 1
s(B-on-C) = 0

s(B-on-table) = 0
s(C-on-A) = 0
s(C-on-B) = 0

s(C-on-table) = 1

A
B

C



Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple Π = 〈V, I, A,G〉
where

V is a finite set of state variables,

I is an initial state over V ,

A is a finite set of actions over V , and

G is a constraint (= formula) over V describing the goal
states.

Notes:

Unless stated otherwise, G will be a single partial
assignment to V

We will omit the word “deterministic” where it is clear
from context.
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Mapping planning tasks to transition systems

From every deterministic planning task Π = 〈V, I, A,G〉 we can
produce a corresponding transition system
T (Π) = 〈S, I, A′, G′〉:

1 S is the set of all valuations of V ,

2 A′ = {R(a) | a ∈ A} where
R(a) = {(s, s′) ∈ S × S | s′ = appa(s)}, and

3 G′ = {s ∈ S | s |= G}.
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Planning Languages

Key issue

Models represented implicitly in a declarative language

Play two roles

specification: concise model description

computation: reveal useful info about problem’s structure
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The SAS Language

A problem in SAS is a tuple 〈V,A, I,G〉
V is a finite set of state variables with finite domains
dom(vi)
I is an initial state over V

G is a partial assignment to V

A is a finite set of actions a specified via pre(a) and eff(a),
both being partial assignments to V

An action a is applicable in a state s ∈ dom(V ) iff
s[v] = pre(a)[v] whenever pre(a)[v] is specified

Applying an applicable action a changes the value of each
variable v to eff(a)[v] if eff(a)[v] is specified.

Example: 8-puzzle
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The STRIPS language
Useful fragment of SAS

A problem in STRIPS is a tuple 〈P,A, I,G〉
P stands for a finite set of atoms (boolean vars)

I ⊆ P stands for initial situation

G ⊆ P stands for goal situation

A is a finite set of actions a specified via pre(a), add(a),
and del(a), all subsets of P

States are collections of atoms

An action a is applicable in a state s iff pre(a) ⊆ s
Applying an applicable action a at s results in
s′ = (s \ del(a)) ∪ add(a)
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Why STRIPS is interesting

STRIPS operators are particularly simple, yet expressive
enough to capture general planning problems.

In particular, STRIPS planning is no easier than general
planning problems.

Many algorithms in the planning literature are easier to
present in terns of STRIPS .
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Three Key Ingredients of Planning
... and of AI approach to problems in general?

Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

1 models for defining, classifying, and understanding
problems

2 languages for representing problems
3 algorithms for solving them

NEXT: algorithms for classical planning
where a significant progress has been recently achieved
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More on the Motivation

Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

Modeling Time vs. Solution Time and Quality

specialized methods are typically more efficient
(though even that is not necessarily correct),
but tend to require lots of programming

goal in AI problem solving is to facilitate modeling and
yet provide efficient solutions

this involves general languages (a la SAS or STRIPS)
and thus language-specific algorithms
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State-space search

state-space search: one of the big success stories of AI

many planning algorithms based on state-space search
(we’ll see some other algorithms later, though)

will be the focus of this and the following topics

we assume prior knowledge of basic search algorithms
uninformed vs. informed
systematic vs. local

background on search: Russell & Norvig, Artificial
Intelligence – A Modern Approach, chapters 3 and 4
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Satisficing or optimal planning?

Must carefully distinguish two di↵erent problems:

satisficing planning: any solution is OK
(although shorter solutions typically preferred)

optimal planning: plans must have shortest possible length

Both are often solved by search, but:

details are very di↵erent

almost no overlap between good techniques for satisficing
planning and good techniques for optimal planning

many problems that are trivial for satisficing planners are
impossibly hard for optimal planners
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Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 1: Search direction

progression: forward from initial state to goal

regression: backward from goal states to initial state

bidirectional search
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Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 2: Search space representation

search nodes are associated with states

search nodes are associated with sets of states
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Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 3: Search algorithm

uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

heuristic search (systematic):
greedy best-first, A⇤, Weighted A⇤, IDA⇤, . . .

heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .
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Planning by state-space search

How to apply search to planning?  many choices to make!

Choice 4: Search control

heuristics for informed search algorithms

pruning techniques: invariants, symmetry elimination,
helpful actions pruning, . . .
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Planning by forward search: progression

Progression: Computing the successor state app

o

(s) of a state
s with respect to an operator o.

Progression planners find solutions by forward search:

start from initial state

iteratively pick a previously generated state and progress it
through an operator, generating a new state

solution found when a goal state generated

pro: very easy and e�cient to implement
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Search space representation in progression planners

Two alternative search spaces for progression planners:
1 search nodes correspond to states

when the same state is generated along di↵erent paths,
it is not considered again (duplicate detection)
pro: fast
con: memory intensive (must maintain closed list)

2 search nodes correspond to operator sequences
di↵erent operator sequences may lead to identical states
(transpositions)
pro: can be very memory-e�cient
con: much wasted work (often exponentially slower)

 first alternative usually preferable
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Progression planning example (depth-first search)

I

G
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Forward search vs. backward search

Going through a transition graph in forward and backward
directions is not symmetric:

forward search starts from a single initial state;
backward search starts from a set of goal states

when applying an operator o in a state s in forward
direction, there is a unique successor state s0;
if we applied operator o to end up in state s0,
there can be several possible predecessor states s

 most natural representation for backward search in planning
associates sets of states with search nodes
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Search

Search algorithms are used to find solutions (plans) for
transition systems in general, not just for planning tasks.

Planning is one application of search among many.
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Required ingredients for search

A general search algorithm can be applied to any transition
system for which we can define the following three operations:

init(): generate the initial state

is-goal(s): test if a given state is a goal state

succ(s): generate the set of successor states of state s,
along with the operators through which they are reached
(represented as pairs ho, s0i of operators and states)

Together, these three functions form a search space (a very
similar notion to a transition system).
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Search for planning: progression

Let ⇧ = hV, I,O, Gi be a planning task.

Search space for progression search

states: all states of ⇧ (assignments to V )

init() = I

succ(s) = {ho, s0i | o 2 O, s0 = app

o

(s)}

is-goal(s) =

(
true if s |= G

false otherwise
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Classification of search algorithms

uninformed search vs. heuristic search:

uninformed search algorithms only use the basic
ingredients for general search algorithms

heuristic search algorithms additionally use heuristic
functions which estimate how close a node is to the goal

systematic search vs. local search:

systematic algorithms consider a large number of search
nodes simultaneously

local search algorithms work with one (or a few) candidate
solutions (search nodes) at a time

not a black-and-white distinction; there are crossbreeds
(e. g., enforced hill-climbing)
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Classification: what works where in planning?

uninformed vs. heuristic search:

For satisficing planning, heuristic search vastly
outperforms uninformed algorithms on most domains.

For optimal planning, the di↵erence is less pronounced. An
e�ciently implemented uninformed algorithm is not easy
to beat in most domains. (But doable! We’ll see that
later.)

systematic search vs. local search:

For satisficing planning, the most successful algorithms are
somewhere between the two extremes.

For optimal planning, systematic algorithms are required.
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Uninformed search algorithms
Less relevant for planning, yet not irrelevant

Popular uninformed systematic search algorithms:

breadth-first search

depth-first search

iterated depth-first search

Popular uninformed local search algorithms:

random walk
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Heuristic search algorithms: systematic

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

greedy best-first search

A⇤

weighted A⇤

IDA⇤

depth-first branch-and-bound search

breadth-first heuristic search

. . .
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Heuristic search algorithms: local

Heuristic search algorithms are the most common and
overall most successful algorithms for classical planning.

Popular heuristic local search algorithms:

hill-climbing

enforced hill-climbing

beam search

tabu search

genetic algorithms

simulated annealing

. . .
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Heuristic search: idea

goal
init

dist
anc

e esti
mate

distance estimate

distance estimate

distance estimate
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Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)

Let ⌃ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a
function h : ⌃ ! N0 [ {1}.

The value h(�) is called the heuristic estimate or heuristic
value of heuristic h for node �. It is supposed to estimate the
distance from � to the nearest goal node.
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What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

For most heuristic search algorithms, h does not need to
have any strong properties for the algorithm to work
(= be correct and complete).

However, the e�ciency of the algorithm closely relates to
how accurately h reflects the actual goal distance.

For some algorithms, like A⇤, we can prove strong formal
relationships between properties of h and properties of the
algorithm (optimality, dominance, run-time for bounded
error, . . . )

For other search algorithms, “it works well in practice” is
often as good an analysis as one gets.
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Perfect heuristic

Let ⌃ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the
heuristic h⇤ which maps each search node � to the length of a
shortest path from state(�) to any goal state.

Note: h⇤(�) = 1 i↵ no goal state is reachable from �.



Automated
(AI) Planning

Planning by
state-space
search

Progression

Regression

Search
algorithms for
planning

Uninformed
search

Heuristic
search
Heuristics
Systematic
search
Local search

Properties of heuristics

A heuristic h is called

safe if h⇤(�) = 1 for all � 2 ⌃ with h(�) = 1
goal-aware if h(�) = 0 for all goal nodes � 2 ⌃
admissible if h(�)  h⇤(�) for all nodes � 2 ⌃
consistent if h(�)  h(�0) + 1 for all nodes �,�0 2 ⌃
such that �0 is a successor of �

Relationships?
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Greedy best-first search

Greedy best-first search (with duplicate detection)

open := new min-heap ordered by (� 7! h(�))
open.insert(make-root-node(init()))
closed := ;
while not open.empty():

� = open.pop-min()
if state(�) /2 closed:

closed := closed [ {state(�)}
if is-goal(state(�)):

return extract-solution(�)
for each ho, si 2 succ(state(�)):

�0 := make-node(�, o, s)
if h(�0) < 1:

open.insert(�0)
return unsolvable
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Properties of greedy best-first search

one of the three most commonly used algorithms for
satisficing planning

complete for safe heuristics (due to duplicate detection)

suboptimal unless h satisfies some very strong
assumptions (similar to being perfect)

invariant under all strictly monotonic transformations of h
(e. g., scaling with a positive constant or adding a
constant)
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A⇤

A⇤ (with duplicate detection and reopening)

open := new min-heap ordered by (� 7! g(�) + h(�))
open.insert(make-root-node(init()))
closed := ;
distance := ;
while not open.empty():

� = open.pop-min()
if state(�) /2 closed or g(�) < distance(state(�)):

closed := closed [ {state(�)}
distance(�) := g(�)
if is-goal(state(�)):

return extract-solution(�)
for each ho, si 2 succ(state(�)):

�0 := make-node(�, o, s)
if h(�0) < 1:

open.insert(�0)
return unsolvable
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A⇤ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8
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Terminology for A⇤

f value of a node: defined by f(�) := g(�) + h(�)
generated nodes: nodes inserted into open at some point

expanded nodes: nodes � popped from open for which the
test against closed and distance succeeds

reexpanded nodes: expanded nodes for which
state(�) 2 closed upon expansion (also called reopened
nodes)
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Properties of A⇤

the most commonly used algorithm for optimal planning

rarely used for satisficing planning

complete for safe heuristics (even without duplicate
detection)

optimal if h is admissible and/or consistent (even without
duplicate detection)

never reopens nodes if h is consistent

Implementation notes:

in the heap-ordering procedure, it is considered a good
idea to break ties in favour of lower h values

can simplify algorithm if we know that we only have to
deal with consistent heuristics

common, hard to spot bug: test membership in closed at
the wrong time
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Weighted A⇤

Weighted A⇤ (with duplicate detection and reopening)

open := new min-heap ordered by (� 7! g(�) + W · h(�))
open.insert(make-root-node(init()))
closed := ;
distance := ;
while not open.empty():

� = open.pop-min()
if state(�) /2 closed or g(�) < distance(state(�)):

closed := closed [ {state(�)}
distance(�) := g(�)
if is-goal(state(�)):

return extract-solution(�)
for each ho, si 2 succ(state(�)):

�0 := make-node(�, o, s)
if h(�0) < 1:

open.insert(�0)
return unsolvable
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Properties of weighted A⇤

The weight W 2 R+
0 is a parameter of the algorithm.

for W = 0, behaves like breadth-first search

for W = 1, behaves like A⇤

for W !1, behaves like greedy best-first search

Properties:

one of the three most commonly used algorithms for
satisficing planning

for W > 1, can prove similar properties to A⇤, replacing
optimal with bounded suboptimal: generated solutions are
at most a factor W as long as optimal ones
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Hill-climbing

Hill-climbing

� := make-root-node(init())
forever:

if is-goal(state(�)):
return extract-solution(�)

⌃0 := {make-node(�, o, s) | ho, si 2 succ(state(�)) }
� := an element of ⌃0 minimizing h (random tie breaking)

can easily get stuck in local minima where immediate
improvements of h(�) are not possible

many variations: tie-breaking strategies, restarts
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Enforced hill-climbing

Enforced hill-climbing: procedure improve

def improve(�0):
queue := new fifo-queue
queue.push-back(�0)
closed := ;
while not queue.empty():

� = queue.pop-front()
if state(�) /2 closed:

closed := closed [ {state(�)}
if h(�) < h(�0):

return �
for each ho, si 2 succ(state(�)):

�0 := make-node(�, o, s)
queue.push-back(�0)

fail

 breadth-first search for more promising node than �0
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Enforced hill-climbing (ctd.)

Enforced hill-climbing

� := make-root-node(init())
while not is-goal(state(�)):

� := improve(�)
return extract-solution(�)

one of the three most commonly used algorithms for
satisficing planning

can fail if procedure improve fails (when the goal is
unreachable from �0)

complete for undirected search spaces (where the
successor relation is symmetric) if h(�) = 0 for all goal
nodes and only for goal nodes


