Applications of planning,
Hierarchical Task Network

Jiri Vokrinek
A4M36PAH - 30.3.2015

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:
* many combinations of vehicles and routes

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:
* many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

* Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:
* many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
* Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

15. Slight left onto N Northlake Way

16. Sail across the Pacific Ocean
Entering Hawaii

17. Continue straight

M. Take the 1st left onto Kalakaua Ave

32. Sail across the Pacific Ocean
Entering Japan

33. Turn left toward EBLE 275558

7 Seattle
>olod Waste m

n-w Wallmgf rds

AP

Ola At Tunle\-ﬁ
= Bay Re-qon‘ -

~ e 2

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:
* many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
* Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

15. Slight left onto N Northlake Way

16. Sail across the Pacific Ocean
Entering Hawaii

17. Continue straight

M. Take the 1st left onto Kalakaua Ave

32. Sail across the Pacific Ocean
Entering Japan

33. Turn left toward EBLE 275558

Motivation

 Example: travel to a destination that’s far away:

— Domain-independent planner:
* many combinations of vehicles and routes

— Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

Motivation

Example: travel to a destination that’s far away:

— Domain-independent planner:
* many combinations of vehicles and routes

— Experienced human: small number of “recipes”

e.g., flying:
1. buy ticket from local airport to remote airport

2. travel to local airport/
3. fly to remote airport

4. travel to final destination

Motivation

Example: travel to a destination that’s far away:

— Domain-independent planner:
* many combinations of vehicles and routes

— Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

Motivation

Hierarchical Task Network (HTN)

— Classical planning representation — states (set of
atoms) and actions (deterministic state transition)

— HTN differs in approach — set of tasks instead of set of
goals

— Non-primitive (compound) vs. primitive tasks

— Methods — prescriptions to decompose a task into
sub-tasks

— Widely used for practical applications (intuitive
representation)

HTN Planning

* Problem reduction

— Tasks (activities) rather than goals

— Methods to decompose tasks into subtasks
— Enforce constraints

e E.g., taxi not good for long distances

— Backtrack if necessary

Task:

travel(x,y)

W\ -

f Method: taxi-travel(x,y) Method: air-travel(x,y) A
get-taxi— ride(x,y) |[—|pay-driver get-ticket(a(x),a(y))) fly(a(x),a(y)) || travel(a(y),y)
_ / | travel(x,a(x)) Y,

HTN Planning

* Problem reduction
— Tasks (activities) rather than goals
— Methods to decompose tasks into subtasks

— Enforce constraints
e E.g., taxi not good for long distances

— Backtrack if necessary

Task: | travel(x,y)

W\ -

: : : t-ticket(a(x),
get-taxif—=| ride(x,y) |—|pay-driver — a(y);; fly(a(x).a(y)) —{ travel(a(y).y)

- / _ (| travel(x,a(x)))
\/

4)

Method: taxi-travel(x,y) Method: air-travel(x,y)

HTN Planning

travel(UMD, LAAS)

get-ticket(UMD, LAAS)Y } \ get-ticket(1IAD, TLS)
go-to-travel-web-site /' \go-to-travel—web—site
find-flights(UMD,LAAS) 93 find-flights(IAD,TLS)

BACKTRACK L=~ buy-ticket(IAD,TLS)

travel(UMD, IAD)
\get—taxi
ride(UMD, IAD)
pay-driver
fly(BWI, Toulouse)
travel(TLS, LAAS)

\ get-taxi

ride(TLS, Toulouse)
pay-driver

HTN Planning

* Objective: perform a given set of tasks
* Input includes:

— Set of operators
— Set of methods: recipes for decomposing a complex task
into more primitive subtasks
* Planning process:

— Decompose nhon-primitive tasks recursively until primitive
tasks are reached

Simple Task Network (STN)

e A special case of HTN planning
e States and operators

— The same as in classical planning

* Task: an expression of the form t(u,,...,u,)
— tis a task symbol, and each u; is a term
— Two kinds of task symbols (and tasks):

* primitive: tasks that we know how to execute directly
— task symbol is an operator name

* non-primitive: tasks that must be decomposed into
subtasks

— use methods (next slide)

Methods

* Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

— name(m): an expression of the form n(x,,...,x,)

* X,,..,X,are parameters - variable symbols

— task(m): a non-primitive task

— precond(m): preconditions (literals)

— subtasks(m): a sequence
of tasks (t, ..., t,)

travel(x,y)

/‘

air-travel(x,y)

long-distance(x,y)

B ——

buy-ticket (a(x), a(y))

travel (x, a(x))

fly (a(x), a(y))

Iravel afy), y)

Methods

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)

subtasks: (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y))

/‘

travel(x,y)

long-distance(x,y)

B

buy-ticket (a(x), a(y))

travel (x, a(x))

fly (a(x), a(y))

Iravel afy), y)

Methods

Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

— name(m): an expression of the form n(x,,...,x,)

* X,,..,X,are parameters - variable symbols

— task(m): a nonprimitive task

— precond(m): preconditions (literals)

— subtasks(m): a partially ordered

set of tasks {t,, ..., t;}

travel(x,y)

/‘

air-travel(x,y)

long-distance(x,y)

buy-ticket (a(x), a(y))

travel (x, a(x))

fly (a(x), a(y))

Iravel (afy), y)

N~ —

N—_

Methods

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)

network: u,=buy-ticket(a(x),a(y)), u,= travel(x,a(x)), us=fly(a(x),
a(y)), U4= trave|(a(y),y), {(Ul,U3), (UZ,U3), (u3 ,U4)}

travel(x,y)

/‘

air-travel(x,y)

long-distance(x,y)

buy-ticket (a(x), a(y))

travel (x, a(x))

fly (a(x), a(y))

Iravel (afy), y)

N~ —

N—_

Domains, Problems, Solutions

STN planning domain: methods, operators

STN planning problem: methods, operators, initial
state, task list

Total-order STN planning domain and planning
problem:

— Same as above except that
all methods are totally ordered

Domains, Problems, Solutions

STN planning domain: methods, operators

STN planning problem: methods, operators, initial
state, task list

Total-order STN planning domain and planning
problem:

— Same as above except that
all methods are totally ordered

Solution: any executable plan that can be generated
by recursively applying

— Methods to non-primitive tasks

— Operators to primitive tasks

Domains, Problems, Solutions

nonprimitive task

precond
7-/ \ >
~

primitive task primitive task

@tor ins@ @tor ins@
2~ N\ N\

So | |precond| |effects| |s;| |precond| |effects| | s,

DWR Stack Moving Example

e Suppose we want to move three stacks of containers
in a way that preserves the order of the containers

e

cranel crang2 cranel
c31
/7| c21 /7| c32 7
clil plc c22 p2c c33 p3c
cl12 & c23 g 7 c34 g 7
3 plb | SVE p2h 3a p3b _
locl loc2 loc3
(a) initial state
cranel crane2 * crane3 c31
c21 c32
cli cl22 c33
clz2 c23 c34
plc p2c p3c
— S 7 — YA 4 — s 7
1 plb pZ2b p3b
pla pla : p3a ;
locl loc2 loc3

(b) goal

tEkE-Eﬂd-pUt(C, k: Ilazgaplapgamlamﬂl: | d
task: move-topmost-container(p1, p2) TOta - O r e r
precond: top(c,p1), on(c,z1), ; true if p1 is not empty

attached(pi, 1), belong(k,l1), ; bindl; and k FOrm U Iat|0n

attached(pg, fg), tDp(.&‘:z,pg] : bind o and xo
subtasks: <t3k&(k,£1, Camlapl]- pUt(ka fzsﬂaiﬂzaﬁz)}

recursive-move(p, q, ¢, T):

task: move-stack(p, q) T,
precond: top(e,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, g)) J—
:: the second subtask recursively moves the rest of the stack g; #“ .:
pla
do-nothing(p, q) jocl
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done]
move-each-twice() F
task: move-all-stacks() pic
precond: ; no preconditions GanthE :
subtasks: ; move each stack twice: loct

(move-stack(pla,plb), move-stack(plb,plc),
move-stack(p2a,p2b), move-stack(p2b,p2c),
move-stack(p3a,p3b), move-stack(p3b,p3c))

take'and'pUt(ca k: Ela Egaplapﬂa L1, 'Tfi]:
task: move-topmost-container(p1, p2) :
precond: top(e,p1), on(e,z1), , true if p1 is not empty Pa rt I a | O rd e r
attached(pi, 1), belong(k,l1), ; bindly and k

attached(pa, 1), top(z2p2) ;s bindz and . FOMUlAtion

subtasks: (tEkE(.JG, "!11 C, -Tflapl)- pUt(k‘: EE! c, mﬁa??))

recursive-move(p, q, ¢, T):
task: move-stack(p, q)
precond: top(e,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, q), move-stack(p, q))

ra

cranel

:; the second subtask recursively moves the rest of the stack — Cam—
C
: PP, & a—
do-nothing(p, q) p1z pib

task: move-stack(p, q) loct

precond: top(pallet,p) , true if p is empty
subtasks: () ; no subtasks, because we are done

cranel

move-each-twice()

cll

task: move-all-stacks() ci2

. 1

precond: ; no preconditions # ;
network: ; move each stack twice: pla i

locl

u; =move-stack(pla,plb), us =move-stack(plb,plc),
ug =move-stack(p2a,p2b), us =move-stack(p2b,p2c),
us =move-stack(p3a,p3b), ug =move-stack(p3b,p3c),
{(u1,u2), (u3,ua), (us, ug) }

Decomposition Tree: DWR Example

move-stack(pl,q)

RN _

move-topmost(pl,p2) move-stack(pl,p2)

~

v

v

move-topmost(p1,p2) move-stack(pl1,p2)

P
-
-

1
1
v

/ / "
move-topmost(pl,p2) move-stack(pl,p2)
it ey IR

Comparison to F/B Search

In state-space planning, must choose whether to search

forward or backward

<

-

L

Sy |

In HTN planning, there are two choices to make about direction:

— forward or backward

— up or down

TFD goes
down and
forward

task t,

1

N

task t,

Comparison to F/B Search

: task t
Like a backward search, 0
TFD is goal-directed / \
— Goals task t., cos task t,
correspond /<>\
to tasks >\
8081 @ 82_>_’ ;

Like a forward search, it generates actions
in the same order in which they’ll be executed

Whenever we want to plan the next task
— We've already planned everything that comes befor
— Thus, we know the current state of the world

Limitation of Ordered-Task
Planning

TFD requires totally ordered get-both(p,q)

methods / \

walk(a,b) pickup(p) walk(b,a) walk(a,b) pickup(p) walk(b,a)
Can’t interleave subtasks of different tasks

Sometimes this makes things awkward
— Need to write methods that reason get-both(p,q)

globally instead of locally //Y\

goto(b) pickup-both(p,q) goto(a)

AN
N

walk(a,b) pickup(p) pickup(q) walk(b,a)

Partially Ordered Methods

With partially ordered methods, the subtasks can be

interleaved
get-both(p,q)

get(p) get(q)
—_— N\ —]~

walk(a,b) stay-at(b) pickup(p) pickup(q) walk(b,a) stay-at(a)

Fits many planning domains better
Requires a more complicated planning algorithm

Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

* Several ways to do this. One is roughly as follows:
— For each goal or precondition e, create a task t,
— For each operator o and effect e, create a method m,
* Task: t,

* Subtasks:t_, t, ..., t,, o, wherec, ¢, ..., ¢, are the
preconditions of o

* Partial-ordering constraints: each t_ precedes o

Comparison to Classical Planning

Some STN planning problems aren’t expressible in classical planning

Example:
— Two STN methods:

* No arguments 9@ @;@
7 X

* No preconditions
P Z) t b a b

t t

— Two operators, aand b
* Again, no arguments and no preconditions

— Initial state is empty, initial task is t

— Set of solutions is {a"b" | n > 0}

— No classical planning problem has this set of solutions
* The state-transition system is a finite-state automaton
* No finite-state automaton can recognize {a"b” | n > 0}

Can even express undecidable problems using STNs

Example

method travel-by-foot * Simple travel-planning domain
precond: distance(z,y) < 2 — State-variable formulation
task: travel(a,z,y) * Planning problem:

subtasks: walk(a, z,y) — I’'m at home, | have S20

method travel-by-taxi — Want to go to a park 8 miles
task: travel(a, z, y) away

precond: cash(a) > 1.5+ 0.5 x distance(z,y)
subtasks: (call-taxi(a, z), ride(a, z,y), pay-driver(a, z,y))

operator walk
precond: location(a) = x @ >
effects: location(a) «— y
)

operator call-taxi(a, = _
effects: location(tazi) «— x — 5o = {location(me) = home,
cash(me) = 20,

operator ride-taxi(a, X) distance(home,park) = 8}

precond: location(taxi) = x, location(a) = x

effects: location(taxi) « vy, location(a) — y t, = travel(me,home,park)
— t,=) ,

operator pay-driver(a, z,y)
precond: cash(a) > 1.5+ 0.5 x distance(z, y)
effects: cash(a) «— cash(a) — 1.5 — 0.5 x distance(z,y)

Example, Continued

Initial task: | travel(me,home,park) @ ——>
_ home park
travel-by-foot

Precond: distance(home,park) <2 Precond: cash(me) > 1.50 + 0.50*distance(home,park)

yd 1
<Precondition fails> < Precondition succeeds >

>é / meosition into subtasks
call-taxi(me,home) @ ride(me,home,park) @ pay-driver(me,home,park) @
| | b

Inltla I ! B [—
! Precond: Precond: ...] Precond: ... ; Final
state | _ i _ ! _ /
, Effects: ... ! Effects: ... / Effects: ... / State
:I r’ e I,. ________ /’_/,
LT TTTTTTT A=mmmmmm s ~ ', ~° \\\ /!
. ! 7 location(me)=park, /
/location(me)=home, | ' . () P \ !
........ location(taxi)=park,

cash(me)=20, i 7)
\ distance(home,park)=8 N cash(me)=20, i

1

___________________ 1
1

1

1

N e, e e, e, ——————

|Ocati0n(taxi):h0me, ‘: L 1: |Ocati0n(taxi)=park,
- cash(me)=20, / . cash(me)=14.50,
\\d|stance(home,park):§,/ \ distance(home,park)=8

-

1
1
1
1
1

\

~

HTN Planning

 STN planning constraints:
— ordering constraints: maintained in network

— preconditions:
* enforced by planning procedure
* must know state to test for applicability
* must perform forward search

* HTN planning can be even more general
— Can have constraints associated with tasks and methods
* Things that must be true before, during, or afterwards

— Some algorithms use causal links and threats like those in
PSP

Methods in STN

* Let M. be a set of method symbols. An STN method is
a 4-tuple
m=(name(m),task(m),precond(m),network(m)) where:

— name(m):
* the name of the method
* syntactic expression of the form n(x,...,x,)
— neM,: unique method symbol
— Xq,..,X;: all the variable symbols that occur in m;
— task(m): a non-primitive task;

— precond(m): set of literals called the method’s
preconditions;

— network(m): task network (U,E) containing the set of
subtasks U of m

Methods in HTN

* Let M. be a set of method symbols. An HTN method
is a 4-tuple
m=(name(m),task(m),subtasks(m),constr(m)) where:

— name(m):
* the name of the method

* syntactic expression of the form n(x,...,x,)
— neM,: unique method symbol
— Xq,..,X;: all the variable symbols that occur in m;

— task(m): a non-primitive task;
— (subtasks(m),constr(m)): a task network.

STN Methods: DWR Example (1)

* move topmost: take followed by put action
* take-and-put(c,k,/,p,,p4X,,X,)
— task: move-topmost(p_,p,)

— precond: top(c,p,), on(c,x,), attached(p,,/),
belong(k,/), attached(p /), top(x,,p,)

— subtasks: (take(k,/,c,x_,p,),put(k,/,c,x,p,))

HTN Methods: DWR Example (1)

* move topmost: take followed by put action
* take-and-put(c,k,/,p,,p4X,,X,)

— task: move-topmost(p,_,p,)

— network:

* subtasks: {t,=take(k,/,c,x.,p,), t,=put(k,/,c,x,,p)}

* constraints: {t;<t,, before({t,}, top(c,p,)),
before({t,}, on(c,x,)), before({t,}, attached(p,,/)),
before({t,}, belong(k,l)), before({t,}, attached(p,,/)),

before({t,}, top(x,,p4))}

STN Methods: DWR Example (2)

move stack: repeatedly move the topmost container
until the stack is empty

recursive-move(p,,p,,C,X,)

— task: move-stack(p,,p,)

— precond: top(c,p,), on(c,x,)

— subtasks: (move-topmost(p,,p,), move-stack(p,,p,))
no-move(p,,p,)

— task: move-stack(p,,p,)

— precond: top(pallet,p,)

— subtasks: ()

HTN Methods: DWR Example (2)

move stack: repeatedly move the topmost container
until the stack is empty

recursive-move(p,,p,,C,X,)
— task: move-stack(p,,p,)

— network:
* subtasks: {t;=move-topmost(p,,p,), t,=move-stack(p,,p4)}
* constraints: {t,;<t,, before({t,}, top(c,p,)), before({t,}, on(c,x,))}

move-one(p,,pC)
— task: move-stack(p,,p,)

— network:
* subtasks: {t;=move-topmost(p_,p,)}
* constraints: {before({t,}, top(c,p,)), before({t,}, on(c,pallet))}

Some Planning Features

Expansion of a high level abstract plan into greater
detail where necessary.

High level ‘chunks’ of procedural knowledge at a
human scale - typically 5-8 actions - can be
manipulated within the system.

Ability to establish that a feasible plan exists, perhaps
for a range of assumptions about the situation, while
retaining a high level overview.

Analysis of potential interactions as plans are
expanded or developed.

Some Planning Features

aspects of problem solving behaviour observed
in expert humans (Gary Klein, “Sources of
Power”, MIT Press, 1998.)

Some Planning Features

aspects of problem solving behaviour observed
in expert humans (Gary Klein, “Sources of
Power”, MIT Press, 1998.)

also describe the hierarchical and mixed
initiative approach to planning in Al

Application Example

* |-globe —a distributed HTN planner and
simulator for disaster relief scenarios

medic unit [agent

strategic layer

(M)

transport{M, city A)

commander agent
:r
r

K

dealWithlnjured()

tactical layer

|
|
wait() > atPosition(s} | dealWithinjured()
) I | I) A
individual Iayer: : : : : :
wait() | | prepare() | dealWith|njured()
| | |
f f I
transport unit / agent (T} | i ;
. | | |
trat
strategic |ayer : transport(M, city A) |
: i = :
tactical layer - | Te -l
moveTo(s) > load(M) = moveTo(city A) = unload{M)
)) X Iy causal
| | | | ol
individual layer : ! !
—————————— -

3 Pointer: X 388,671 Y: 314,843
CUTTERATeS 87 .

B A
s

N | "
¥ hed> . 3 13
to ouses in I

R R

Logistics

plural noun: logistics

1. the detailed coordination of a complex operation involving many people, facilities, or supplies.
"the logistics and costs of a vaccination campaign’
synonyms. organization, planning, plans, management, arrangement, administration, orchestration
coordination, execution, handling, running Mare

« MILTARY

the organization of moving, housing, and supplying troops and equipment.
noun: logistics

» the commercial activity of transporting goods to customers.
"Germany’s largest beverage logistics organization’

Source: google search

Logist

1 600 km
60 000 mfantry, 1

iIcs — 218 B.C.

0 000 cavalry, 37 elephants

Ll Hannibal's route
o 100 200 milles of Invasion
(Third century B.C.)
=i Hannibal's route
/5 Major Battles
{J'—Qﬂ\
g
|
|
/-"':?:_:H—."f_\“‘”\-—”
7
JaatE—_
E. 5 P A |
I—J
1
T~ ,«""rqlq_"_ Sardinia

4,

\ p— = ~ Cartagena .)
AU T e na, | cnal)
o ' E N { Rh
AN rmae B x, « -

= e //_,—‘_.._‘__,_-(_ Q%J;%ge & & .

.4 N UMIDI A i‘?ﬂ"}a |\l =rb /,]‘ 203]
o) MAADRITANIA \3;
Source: Wikimedia Commons y.

L

Logistics

Production, storage, transportation

When should the resource to be produced
— Resource planning, production scheduling

Where should the resource to be produced
— Facility location optimization, layout planning

Inventory vs. location vs. transportation

Cost of Transportation

* Time, money, comfort, ecology ...

1= L1

rR B f o

* Graph search on the traffic model for a trip

£ drio

Source: www.google.com/maps

6:46 am (49 min)

Cost of Transportation

e Personal (car) navigation — bike example

{0| 1 " | [+ | lfn_‘-flze{tp:)rk marenfel

Source: Wikimedia Commons, Gosmore

Cost of Transportation in Logistics

“Time is money ...”

High number of trips to be planned
(shared) Transport resources to be optimized
Large amount of constraints to be addressed

Distribution networks and mail services

-> Hard planning problem

Cost of Transportation in Logistics

* Fixed
— Terminals, hubs, administration
— Transport equipment
— Infrastructure (rail, pipelines, ...)
* Variable
— Fuel, labour, maintenance

— Taxes, fees, handling, pickup/delivery

* Varies for different mode of transport

Vehicle Routing Problem

m vehicles with defined capacity to deliver to
n customers required volumes

Using minimal m — bin-packing (BP) problem
Using shortest trajectories — m-TSP problem

Goal is to find a set of routes -
keeping given constraints and “

serving all the costumers

Vehicle Routing Problem

* Exact algorithms
— Integer programming
— Branch and bound

— Optimal, but may be slow on large problems
— Difficult to include additional constraints

Vehicle Routing Problem

* Heuristic
— Construction h. — building feasible routes
— Improvement h. — improve feasible routes

— Consistency and feasibility given by a set of
constraints

— Not optimal, but efficient
— Usually modifications of TSP heuristics
— In practical cases m is given by strategic planning

Vehicle Routing Problem

e Construction heuristics
— Cluster methods

* Cluster first, route second (BP -> m-TSP)
* Route first, cluster second (TSP -> satisfy BP)

* Routing
— Nearest neighbour
— Cheapest insertion
— Sweep algorithm
— Savings method

Vehicle Routing Problem

* Nearest neighbour
— Start with the closest customer

— Add unserved customer nearest to the end of the
route

— Start a new route when vehicle is full
— Re-optimize each route at the end

— Easy to build
— Good TSP heuristic
— Overlapping routes

Vehicle Routing Problem

* Cheapest insertion
— Start with empty routes

— Add an unserved customer to the route with
minimal route cost increase

— Stop using a new route when vehicle is full
— Re-optimize each route at the end

— Incremental method
— Good TSP heuristic
— Overlapping routes

Vehicle Routing Problem

* Sweep algorithm
— Draw a ray starting from depot
— Sweep clockwise and add customers to the route
— Start a new route when vehicle is full
— Re-optimize each route at the end

— Geometrically easy understanding
— Not overlapping routes
— Such clustering is good for TSP

Vehicle Routing Problem

e Savings method (Clarke and Wright)
— Build a route for each customer separately
— Calculate savings for joining two routes
— Join the routes for the best savings
— Stop using a route when vehicle is full
— Stop when no routes can be joined

— |terative construction keeping feasibility of the
solution

— Good results, more complex than previous ones

Vehicle Routing Problem

* Improvement heuristics

— Given (feasible) set of routes find an improved
solution

— Exchange within a route
* k-opt arc exchange, customer position switch
— Exchange between routes

* Move customer, switch two (three) customers

— Local search
e Simulated annealing, tabu search, genetic algorithms

Vehicle Routing Problem

e Solution constraints

— Affect feasibility, consistency and cost of the
solution
— Enrich problem variants

* Time windows, heterogeneous vehicles, multiple-
depots, drivers working hours, demands compatibility,
priorities, pick-up and deliveries, on demand delivery,
backhauls, ...

* Alot of problem variants — very complex and
(often) unique constraints in the real world

Future Transport Planning?

Development is fast
Need a good planning

Source: www.amazon.com, www.transportjournal.com/uploads/pics/Goodman-Amazon-Poland.jpg

Materials

 Malik Ghallab, Dana Nau, Paolo Traverso: Automated
Planning: Theory and Practice, 2004
http://projects.laas.fr/planning/

e Dana Nau's lecture slides
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

e Gerhard Wickler’s lecture slides (A4M36PAH 2010/2011)
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp
lan-Slides.pdf

SOME RIGHTS RESERVED

http://projects.laas.fr/planning/
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

