
POPF2: a Forward-Chaining Partial Order Planner
Amanda Coles, Andrew Coles, Maria Fox and Derek Long

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, UK
firstname.lastname@cis.strath.ac.uk

Please direct all citations for this planner to one of the following two papers:
(i) To refer to the search approach of POPF2 (or POPF), cite:

Coles, Coles, Fox and Long, ‘Forward-Chaining Partial-Order Planning’, ICAPS 2010

(ii) To refer to the cost-optimisation approach used in POPF2 (or Stochastic-POPF), cite:
Coles, Coles, Clark and Gilmore, ‘Cost-Sensitive Concurrent Planning under

Duration Uncertainty for Service Level Agreements’, ICAPS 2011

Abstract

This paper gives an overview of the planner POPF2, as com-
peting in the 2011 International Planning Competition. POPF
employs forward-chaining search, expanding a partial-order
rather than the conventional total-order: steps added to the
plan are ordered after a subset of those in the plan so far,
rather than after every step in the plan so far. POPF2 adopts
this search approach, extending it in two ways. First, it has a
number of changes to allow it to make fewer commitments to
ordering constraints, and hence find more makespan-efficient
plans. Second, it borrows the cost-optimisation approach of
Stochastic-POPF, where modifications to the temporal re-
laxed planning graph heuristic, and the use of anytime-search,
allow it to improve upon the first plan found.

This paper describes the planner POPF2, the latest revi-
sion of POPF (Coles et al. 2010). The aim of POPF is to
preserve the benefits of partial-order plan construction, in
terms of producing makespan-efficient, flexible plans; whilst
avoiding explicit conflict resolution by always expanding the
plan in a forwards direction.

We begin by giving an overview of how POPF works, be-
fore describing a number of modifications that further re-
duce the number of ordering constraints introduced during
search in certain situations. We then briefly describe how
anytime search is used to find plans of successive quality,
through direct application of techniques used in Stochastic-
POPF (Coles et al. 2011).

1 Background
POPF (Coles et al. 2010) is a temporal planner, working un-
der the semantics of PDDL 2.1 (Fox & Long 2003). Each
durative action A has:

• duration constraints, placing lower and/or upper bounds
on duration of the action.

• instantaneous conditions that must hold either at the start
or end of its execution;

• instantaneous propositional and numeric effects that oc-
cur at the start and/or end of its execution;

• conditions that must hold continuously over all its ex-
ecution (in the interval between the start and the end);

• numeric effects that occur continuously throughout its ex-
ecution. In POPF, we insist that such numeric effects are
linear, i.e. increase or decrease a numeric variable by a
constant amount per unit time.

Under these semantics, each durative action A can be
thought of as two instantaneous snap-actions:A`, represent-
ing the start of the action, with the associated instantaneous
conditions and effects; and Aa, similarly representing the
end of the action. Applying A` then begins an interval dur-
ing which the over all conditions ofAmust be respected,
and its continuous numeric effects occur; this interval can
then be terminated by applying Aa. With this representa-
tion, one additional requirement needs to be introduced: for
a state to be a goal state, no actions can be executing.

In the general case, states in a temporal planning problem
can be characterised by a tuple 〈F, V,Q, P,C〉, where:

• F is the set of propositions that hold in the state.

• V is the vector of values of the task numeric variables.

• Q is the event queue: is a list of actions whose execution
has started but not yet finished. For each (a, i) ∈ Q, a
identifies a ground action, and i the step at which it began.

• P is the plan to reach the current state.

• C is a list of temporal constraints over the steps in P .

The temporal constraints in C arise from one of two
sources. First, clearly, the duration constraints of actions
must be obeyed: the amount of time between A` and Aa
must respect the duration constraint ofA. Second, as in non-
temporal planning, ordering constraints are needed to ensure
the plan is causally sound. In the absence of continuous nu-
meric effects (or instantaneous effects that depend on the du-
ration of actions), these temporal constraints take the form of
a Simple Temporal Problem (Dechter, Meiri, & Pearl 1991)
(STP), and POPF employs an incremental STP solver (Cesta
& Oddi 1996) to check that the temporal constraints at each
state are satisfied. In the presence of either or both of these,

then if the continuous numeric change is linear, a Linear
Programming (LP) encoding is used, where additional con-
straints encode the relationship between the times at which
actions are scheduled and the values of numeric variables
at each point in the plan, with the LP constrained to ensure
preconditions are met.

2 POPF Forwards Partial-Order Expansion
The search in POPF is based around the idea of expanding
a partial-order plan in a forwards direction. Simply, when
applying a snap-action in a given state S, it is ordered only
after a subset of the actions in the plan to reach S: those
with which there is some sort of causal interaction in terms
of facts or numeric variables. This is in contrast to its pre-
decessor, COLIN (Coles et al. 2009a), where each new snap-
action would be ordered after all the actions in the plan to
reach S.

To support partial-order expansion, the general case defi-
nition of a state given in Section 1 is augmented with addi-
tional information, recording which steps in the plan interact
with a given fact p or numeric variable v. For full details, in-
cluding how POPF supports continuous numeric effects, we
refer the reader to (Coles et al. 2010). In the case where all
effects are instantaneous, as is the case in the competition,
the state annotations can be summarised as follows:
• F+(p) (F−(p)) records the step in the plan that most

recently had an add effect (resp. delete effect) on the fact
p;

• FP(p), a set of pairs, each 〈i, d〉, records preconditions
involving p. For each pair, i is a step index in the plan,
and d is 0 or ε:
– If d = 0, then p can be deleted in parallel to step i.

This arises where step i is the end of an action with
an over all condition on p: under the PDDL 2.1 se-
mantics, deleting p at this point would not be mutually
exclusive with ending the action requiring p.

– In all other cases (start or end conditions of temporal
actions, or the preconditions of non-temporal actions),
d = ε, and hence p can only be deleted epsilon after
step i.

• V eff (v) records the step in the plan that most recently had
a numeric effect upon the variable v;

• VP(v) is a set, recording which steps in the plan depend
on v. A step i depends on v in one of three cases:

1. i has a precondition referring to v
2. i has an effect whose outcome depends on the current

value of v (e.g. assigning w = v);
3. i is the start of an action whose duration depends on v.
When an action is applied, as step i of a plan, these anno-

tations are first used to ensure the preconditions of the action
are met:
• To satisfy a propositional precondition p, we add the or-

dering constraint t(i)− t(F+(p)) ≥ t. If step i is the start
of an action, and p is only needed as an over all condi-
tion of the action, then t = 0. In all other cases, t = ε: the
effect must complete strictly before step i.

• To satisfy a numeric precondition referring to the variable
v, we add the ordering constraint t(i) − t(V eff (v)) ≥ t
(where, again, the value of t depends on the nature of the
precondition).

• If i is the start of an action, with a duration constraint
referring to v, then t(i)− t(V eff (v)) ≥ ε.
Following this, the annotations are used and updated to

reflect the effects of the action:

• For a propositional delete effect on p, prior to setting
F−(p) = i, we add the ordering constraints:

t(i)− t(F+(p)) ≥ ε
∀〈j,d〉∈FP(p) t(i)− t(j) ≥ d

• For a propositional add effect on p, we add the ordering
constraint t(i) − t(F−(p)) ≥ ε, and then set F+(p) = i.
(As a special case, if F−(p) = i then no ordering con-
straint is added, as the action is adding a fact it has just
deleted.)

• For a numeric effect referring to v, t(i)− t(V eff (v)) ≥ ε;
• For a numeric effect acting on v, prior to setting
V eff (v) = i and VP(v) = ∅, we add the ordering con-
straints:

t(i)− t(V eff (v)) ≥ ε
∀j∈VP(v) t(i)− t(j) ≥ ε

POPF exploits the approach introduced in (Coles et al.
2009b) where if an action A is ‘compression-safe’, Aa is
immediately added to the plan whenever A` is applied. An
action is considered compression safe in this setting if its end
preconditions are subsumed by the action’s over all con-
ditions, and the only end effects are to add propositions (i.e.
no numeric effects or delete effects). The state annotations
ensure immediately adding Aa does not have a catastrophic
effect on makespan: actions will only be ordered after Aa if
they require one of its effects, or violate one of the action’s
over all conditions, which are both circumstances under
which they would previously have had to follow Aa.

3 Introducing Fewer Ordering Constraints
The treatment of numeric variables in the search approach
taken in POPF, as described in Section 2, is quite limited.
In the interests of generality, effects on numeric variables
are totally ordered, and steps requiring a value of v (but not
changing its value) are scheduled to occur after all the steps
prior to them that modified v, and before all the steps fol-
lowing that modify v. The rationale behind this is that the
ordering constraints ensure the value of v is known at every
relevant point, and the interleaving of actions with effects
and/or preconditions on v cannot be changed in such a way
that renders the plan invalid.

To seek to reduce the number of ordering constraints in-
troduced through the use of numeric preconditions and ef-
fects, POPF2 performs static analyses on the problem struc-
ture to identify patterns of numeric behaviour that can be
handled more favourably. The remainder of this section will
go through these cases.

3.1 Metric-Tracking Variables with
Order-Independent Effects

In various domains, the metric cost function to seek to
minimise when planning comprises a number of ‘metric-
tracking variables’. These are only ever modified by the ef-
fects of actions, and the correctness of the plan does not de-
pend on their values: they never appear in preconditions and
duration constraints, nor are their values used as a basis for
numeric effects. (Indeed, if these variables did not appear
in the metric function, they would be irrelevant and could
be disregarded entirely.) One example of such a metric-
tracking variable can be found in the Time formulation of
the ZenoTravel domain from the 2002 International Plan-
ning Competition (Long & Fox 2003). Here, the variable
total-fuel-used is updated by the fly and zoom ac-
tions to record how much fuel has been used so far when
constructing the plan. In the problem file set for this do-
main, the metric is then to minimise a weighted sum of
total-fuel-used and plan makespan.

If the final value of a metric-tracking variable v does not
depend on the order in which the effects upon it are applied,
then there is no need to totally order actions affecting v:
it suffices that applying all the relevant effects will yield a
value of v, which can then be used when determining the
quality of the plan found. In other words, the effects on v are
‘order independent’. Order-independence can be guaranteed
if all effects on v can be written in the form:

v+=c+ w0.v0 + w1.v1 + ...+ wn.vn

...where c, w0..wn ∈ < , and each vi ∈ [v0..vn] de-
notes a state numeric variable. Through the definition of a
metric-tracking variable (specifically, that the value of v can-
not be used as the basis of a numeric effect), we know that
v 6∈ [v0..vn]. So long as appropriate ordering constraints are
added for each vi (as discussed in Section 2), each effect on
v will then have a known value at the point of being intro-
duced, and the sum of these effect values gives the net effect
on v by the plan.

In POPF2, once static analysis has identified a metric-
tracking variable v, effects on v will update its value with-
out adding ordering constraints; and when a goal state has
been found, the value of v is then available for use in cal-
culating the plan metric. Thus, returning to ZenoTravel, the
total-fuel-used is increased by the constant-valued ef-
fect of each fly/zoom action, without insisting that these
effects are totally ordered.

3.2 As-Needed Ordering after Beneficial Effects
For a given numeric variable v, larger (smaller) values of
v may always be preferable, in terms of how the actions in
the domain interact with v. Larger values of v are always
preferable if:

1. all preconditions (or goals) on v are of the form
v{≥, >}w.v + c, i.e. a larger value of v is more likely to
meet the condition;

2. no action has a duration constraint depending on v;

3. the value of v is never used as the basis for a numeric
effect.
The first of these is key: for meeting preconditions or

goals, a larger v is better. The latter two ensure there are
no circumstances in which this might not be the case, and
are introduced for simplicity: more sophisticated analyses
may be able to relax these, but we leave this to future work.
To identify where smaller values of v are preferable, condi-
tions 1 is altered such that all preconditions and goals on v
must use a ≤ or < operator (rather than ≥ or >). For the
remainder of this subsection, in the interests of clarity, we
will discuss only the case where larger is preferable.

If larger values of v are preferable, then we can conclude
that increase effects on v are beneficial, and decrease effects
on v are not. Returning to the treatment of numeric effects
in POPF, the effects on such a variable v are totally ordered,
with the most recent effect on v in a given state denoted
V eff (v). An action at step i with a precondition on v is then
ordered after V eff (v), i.e. after all previous effects on v. In
the absence of any assignment effects on v, we can do a little
better than this: rather than ordering step i after all previous
increase effects on v and all previous decrease effects on
v, we order it after all previous decrease effects, and some
increase effects — enough to satisfy the precondition1.

In POPF2 the state annotations in POPF are extended to
support this. For a variable v where larger values are prefer-
able, the state now also contains V inc(v): a queue of step–
effect pairs, each 〈j, c〉. These correspond to beneficial ef-
fects on v: that step j has a (calculated) increase effect v+=c.
Preconditions and effects on v interact with V inc(v), and the
existing annotations V eff (v) and VP(v), as follows:

• For a new step i with a decrease effect on v , calculated
as v-=c , the effect is handled as before: i is ordered af-
ter each of VP(v) and V eff (v), V eff (v) = i, and the
recorded value of v is decreased by c.

• For a new step i with an increase effect on v, calculated
as v+=c (based on the values of the variable in the state),
a pair 〈i, c〉 is added to V inc(v), and the recorded value of
v is increased by c.

• For a new step i with precondition v{≥, >}k, the order-
ing constraints are determined according to Algorithm 1,
ordering the step after all decrease effects, and some of
the increase effects (avoiding ordering i after those later
in V inc(v)) .

For this approach to be reasonable, the effects in V inc(v)
must occur in chronological order. Otherwise, woefully in-
efficient ordering constraints could be introduced, using far
later actions to satisfy the precondition than was necessary.
As such, we only apply this special-case reasoning to the
case where once a given plan step i has been added to the
plan, and its minimum timestamp t(i) found, step i will oc-
cur at t(i) in all states subsequently reached by extending

1It could, in theory, be possible to satisfy a precondition on v by
ordering step i before some of the existing decrease effects, but this
would contradict the ethos of POPF: the partial-order is only ever
expanded in a forwards direction, ordering new steps after existing
ones, to avoid the issues of conflict resolution.

Algorithm 1: Ordering after beneficial increase effects
on an as-needed basis

Data: a step index i; a numeric precondition v ≥ k; the
recorded value value of v in S, S[v]; annotations
V eff (v), VP(v) and V inc(v)

C ← {t(i)− t(V eff (v)) ≥ ε};1
residual ← S[v];2

remaining ← V inc(v);3
while residual ≥ k ∧ remaining 6= ∅ do4
〈j, c〉 ← the back element of remaining ;5
residual ← residual − c;6
if residual ≥ k then7

remove back element of remaining ;8

for each 〈j, c〉 ∈ remaining do9
C ← C ∪ {t(i)− t(j) ≥ ε};10

VP(v)← VP(v) ∪ {i};11
return additional temporal constraints C, and the12
updated annotations

this plan. Then, it suffices to order the elements in V inc(v),
each 〈j, c〉, according to t(j), in ascending order from small-
est t(j) to largest t(j). The necessary guarantee about t(i)
being fixed once the step is added to the plan can only be
made if the domain does not require the starts and ends of
actions to be coordinated, i.e. if the domain does not con-
tain required concurrency (Cushing et al. 2007). For our pur-
poses, we detect that a domain has no required concurrency
by observing that all its actions are compression-safe.

4 Special Cases of Compression-Safe Action
Detection

POPF inherited the basic notation of compression-safety in-
troduced in (Coles et al. 2009b). As noted earlier in this pa-
per, a durative action is ‘basically’ compression safe if:
• Its end effects only add propositions, i.e. it has no end

numeric effects or end propositional delete effects;
• Its at end preconditions are a subset of its over all

conditions, and hence ending the action does not require
facts that are not already true through virtue of it execut-
ing.
This analysis is somewhat basic: scrutiny of domains will

reveal actions that are not considered to be compression-safe
according to this definition, but are compression-safe with
respect to the current problem. Two such cases that we de-
termine analytically in POPF2 are detailed below.

4.1 Compression Safety of Some End Numeric
Effects

The intuition behind the general-case definition of compres-
sion safety used in POPFis to isolate actions where the end
effects are only ever a good idea. As POPF does not sup-
port negative preconditions, adding a proposition is only
ever beneficial: it does not preclude any actions from tak-
ing place. For numeric effects, though, it is not always clear
whether a numeric effect is beneficial, so in the general case,

an action cannot be compression safe if it has an end numeric
effect.

In Section 3.1 we discussed the case where order-
independent effects on metric-tracking variables need not be
explicitly ordered. We can exploit this to relax the definition
of compression safety. Simply, if an action has an end nu-
meric effect v+=c, c ∈ < on a metric-tracking variable upon
which all effects are order independent then we can move
that effect can be moved to the start of the action. The effect
was inevitably going to occur, once the action had started;
and the order in which it occurs (with respect to other effects
on v) is irrelevant. This is a prime example of where actions
can violate the basic definition of compression safety, but are
compression safe in the current problem due to the nature of
the variables upon which their end numeric effects act.

In Section 3.2, we discussed the case where certain nu-
meric effects can be identified as being beneficial; specif-
ically, those increasing (decreasing) a variable v, where
larger (smaller) values of v are definitely preferable. We
can also use this here to relax the constraints that deter-
mine whether an action is compression safe, by allowing
compression-safe actions to have end numeric effects which
are definitely beneficial. There is an additional consideration
we must make, however: there is a risk that by deeming an
action to be compression safe, and hence adding its end to
the plan as soon as its start is added, we preclude concurrent
activity that was previously possible. For instance, the action
A, with start effect v-=c and end effect v+=c, can be applied
concurrently alongside itself in a plan ordered:

[A`, A`, Aa, Aa]

The total order arises due to each having an effect on
v, leading to each updating V eff (v). The action A is typ-
ical of the actions involving catalysts in the Pathways do-
main (Gerevini et al. 2009), where the amount of available
catalyst is decreased at the start of the action, but then in-
creased at the end. Allowing A to occur in parallel to itself
allows the resulting compounds to be obtained sooner, sub-
ject to sufficient catalyst being available.

If larger values of v are preferable, A is in theory
compression-safe. Exploiting this as in the propositional
case, we would then add Aa to the plan immediately, as step
i + 1, whenever A` is added as step i. In POPF, this would
result in V eff (v) = (i+ 1), forcing the second copy of A to
start after Aa rather than being able to start after A`, as in
the total-order fragment above.

To address this potential issue, we only mark actions with
end numeric effects as being compression safe if the do-
main does not contain required concurrency (Cushing et
al. 2007), and we then exploit this in combination with
the ‘as-needed’ ordering constraint approach described in
Section 3.2. Again, for our purposes, we detect that a do-
main has no required concurrency if all its actions are
compression-safe, though there is, ostensibly, a circular ar-
gument here: an end numeric effect is compression-safe if all
actions are compression-safe. To address this, we first loop
over the actions, marking them as compression safe (accord-
ing to the basic definition of POPF) or hypothetically com-
pression safe (subject to all other actions being compression

safe). Then, if there is one non-compression-safe action, the
hypothetically compression-safe actions are marked as be-
ing non-compression-safe. Otherwise, they are considered to
be compression-safe, as the increase-effect-queue described
in Section 3.2 is sufficient to preserve opportunities for con-
currency.

4.2 The Over-All, End-Delete-Effect Idiom
In general, in the absence of negative preconditions (as in
POPF) delete effects are never beneficial: deleting a fact can
only preclude actions from being applied. As such, in the
basic definition of compression safety, end delete effects
are prohibited. But, consider two durative actions A and B,
each with condition (over all (p)) and effect (at end
(not (p))), and an instantaneous action C with precondi-
tion (over all (p)) and effect (at end (not (p))).
It is clear that:

• Aa,Ba andC are mutually exclusive (all deleting the fact
p), so cannot occur at the same time;

• Neither Aa nor C can fall within the execution of B, or
as it would violate the over all condition. (Similarly,
neither Ba nor C can fall within the execution of A.)

In common between all three of these actions is the notion
that p is required for some amount of time (instantaneously,
in the case of C) but then inevitably destroyed. If this idiom
covers all the uses of p in the problem, then we can allow end
delete effects on p to be considered to be compression safe.
In effect, deleting p can be moved to the start of the actions
such as A or B. There is no point maintaining p throughout
actions such as A, as no action referring to p can be applied.
Such an action would either:

• follow the pattern of C, immediately deleting p and hence
violating the active over all condition of A;

• follow the pattern of B, thereby leading to a guaranteed
future conflict between either the over all condition of
A and the effect of Ba, or the over all condition of B
and the effect of Aa.

5 Anytime Search
In its original form, POPF terminated after the first plan
found. A derivative of POPF, Stochastic-POPF (Coles et al.
2011), has recently extended this to both search in domains
where action durations are uncertain, but also to seek to min-
imise plan cost. The techniques of Stochastic-POPFcan be
applied in here, in a deterministic setting, unaltered. For full
details, we refer the reader to the paper on Stochastic-POPF,
but we will sketch the approach here. The search algorithm
can be summarised as follows:

• Search begins with an upper-bound on acceptable plan
quality of∞

• Attempts to find a plan using enforced hill-climbing
(EHC). If a plan is found, it is stored, and the upper-bound
on acceptable plan quality is then set to the quality of this
plan;

• Irrespective of whether a plan is found by EHC, then
search using WA* (where W = 5, g(n) is the plan length
to node n and h(n) is its heuristic value). If the vari-
ables used to record plan cost are monotonically wors-
ening, then nodes in the search space are discarded if the
cost of the plan to reach that state equals or exceeds the
acceptable upper-bound on plan quality. This is similar
to MIPS-XXL (Edelkamp, Jabbar, & Nazih 2006), where
each time a new best solution plan is found, an additional
goal is added to ensure the next plan is of better quality;
but the planner does not start search from the initial state
each time a new best plan is found.
Stochastic-POPF also contains an updated temporal re-

laxed planning graph (RPG) heuristic, where admissible es-
timates on the cost of reaching each fact are maintained. The
approach taken is based on the costed RPG of Sapa (Do &
Kambhampati 2003), extended to handle the case where cer-
tain costs are only relevant to achieving facts that only ap-
pear as goals. This further supports state pruning: if the cost
of reaching the goals from a given state would definitely
lead to a plan being found that is worse than the incumbent,
the state can be pruned. extended to perform pruning (rather
than preferring

Acknowledgements
The authors would like to thank Allan Clark and Stephen
Gilmore for motivating the development of Stochastic-
POPF, and David Smith for helpful discussions regarding a
problem-specific notion of compression-safe actions. This
work was supported by SICSA, and EPSRC fellowship
EP/H029001/1.

References
Cesta, A., and Oddi, A. 1996. Gaining Efficiency and Flex-
ibility in the Simple Temporal Problem. In Proceedings of
the Third International Workshop on Temporal Represen-
tation and Reasoning (TIME-96).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009a.
Temporal planning in domains with linear processes. In
IJCAI ’09.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009b.
Extending the Use of Inference in Temporal Planning as
Forwards Search. In Proc. ICAPS.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In ICAPS.
Coles, A. J.; Coles, A. I.; Clark, A.; and Gilmore, S. T.
2011. Cost-sensitive concurrent planning under duration
uncertainty for service level agreements. In ICAPS.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D.
2007. When is temporal planning really temporal plan-
ning? In Proc. of Int. Joint Conf. on AI (IJCAI), 1852–
1859.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.
Do, M. B., and Kambhampati, S. 2003. Sapa: Multi-
objective Heuristic Metric Temporal Planner. JAIR
20:155–194.

Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-
Scale Optimal PDDL3 Planning with MIPS-XXL. In
IPC5 booklet, ICAPS.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension of
PDDL for Expressing Temporal Planning Domains. JAIR
20:61–124.
Gerevini, A. E.; Long, D.; Haslum, P.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning in the Fifth
International Planning Competition: PDDL3 and Experi-
mental Evaluation of the Planners. AIJ.
Long, D., and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and Analysis. J. of Art. Int. Res.
20:1–59.

