
The Roamer Planner
Random-Walk Assisted Best-First Search

Qiang Lu
University of Science and Technology of China

Hefei, Anhui, China
rczx@mail.ustc.edu.cn

You Xu, Ruoyun Huang, Yixin Chen
Washington University in St. Louis

St. Louis, MO, USA
{yx2,ruoyun.huang,chen}@cse.wustl.edu

Abstract

Best-first search is one of the most fundamental techniques
for planning. A heuristic function is used in best-first search
to guide the search. A well-observed phenomenon on best-
first search for planning is that for most of the time dur-
ing search, it explores a large number of states without
reducing the heuristic function value. This phenomenon,
called “plateau exploration”, has been extensively studied for
heuristic search algorithms for satisfiability (SAT) and con-
straint satisfaction problems (CSP).
In planning, plateau exploration consists of most of the search
time in state-of-the-art best-first search planners. Therefore,
their performance can be improved if we can reduce the
plateau exploration time by finding an exit state (a state with
better heuristic value than the best one found so far). In this
paper, we present a random-walk assisted best-first search
algorithm for planning, which invokes a random walk pro-
cedure to find exits when the best-first search is stuck on
a plateau. The resulting planner, Roamer, building on the
LAMA and Fast-Downward planning system, uses a best-first
search in first iteration to find a plan and a weighted A∗ search
to iteratively decreasing weights of plans. Roamer is an any-
time planner which continues to search for plans with better
quality until exhausting the whole state space or being termi-
nated because of time limits.

Introduction
Roamer is a best-first state space search planner based
on Fast-Downward and LAMA planners (Helmert 2006;
Richter and Westphal 2010). The core feature of Roamer
is the use of Monte-Carlo Random Walks assisted heuristic
search to escape from plateaus. The Monte-Carlo random
exploration method for deterministic planning is introduced
in (Nakhost and Msller 2009).

One of the most successful approaches to planning is best-
first search. Best-first search typically employs a heuristic
function that maps any state to a real number that estimates
the distance to goal. The number of states expanded by
best-first search depends largely on the quality of the heuris-
tic function. Best-first search with a perfect heuristic func-
tion only needs to expandO(|L|) states whereL is the so-
lution path from the initial state to a goal state (Russell and
Norvig 2003). On the other hand, best-first search for plan-
ning with almost perfect heuristic may still explore an expo-
nential number of states before finding a goal (Helmert and

Röger 2008). In practice, since the length of the solution
pathL is much smaller than the number of expanded states,
it is easy to see that most of the states explored by a best-first
search are not on the solution path.

During the best-first search, for any states explored, we
define the incumbent heuristic valueh∗(s) as the smallest
heuristic function value of all states explored so far tills.
Evidently,h∗ decreases monotonically during search and fi-
nally reaches0 when a goal is found.

For a given planning problem, letS be the set of all gen-
erated states, since we have|S| ≫ h∗(s0), andh∗(s) is a
monotonic mapping fromS to [0, h∗(s0)], we see that for
most of the state pairs(s, s′) wheres′ is explored right after
s during the search,h∗(s) = h∗(s′).

The reasoning above shows that most of the time a best-
first search for planning explores states without reducing
h∗. This phenomenon is namedplateau explorationas it
involves state exploration without changingh∗. Therefore,
to improve the performance of best-first search for planning,
it is important to find a way that can reduce plateau explo-
ration.

To address this challenge, in the Roamer planner, we use
random walks to assist best-first search for planning to es-
cape from plateau more quickly. Specifically, when the best-
first search makes no progress onh∗ for an extended period,
we use a random walk algorithm to explore the search space
and help escape from the plateau.

There are three advantages of using random walks to as-
sist best-first search for planning. First, a random walk has
the potential to directly and quickly jump out of a local min-
ima region where it is not likely to find an “exit” state that re-
ducesh∗, whereas a best-first search will have to explore all
possible states around the local minima. Second, comparing
to best-first search in which heuristic functions are evaluated
at each state, the random walk algorithm can skip heuristic
evaluations of most of the intermediate states during explo-
ration, making space exploration more efficient. Third, ran-
dom walks require little memory, and therefore do not add
space complexity to the original best-first search.

Plateau Explorations
Plateaus during search have been well studied for both SAT
and CSP problems (Hampson and Kibler 1993). In SAT
and CSP problems, a plateau is defined as a set of neigh-

boring variable assignments that lead to the same number
of unsatisfied constraints or clauses (Frank, Cheeseman, and
Stutz 1997; Russell and Norvig 2003). Plateau structures
have also been studied in planning under the context of local
search. A detailed analysis on why some planning problems
are simple and how long the maximum exiting distance is in
enforced hill-climb are presented in (Hoffmann 2002). G-
value plateau in planning has also been studied in (Benton
et al. 2010).

Many works have been done to accelerate plateau ex-
ploration for local search algorithms. In CSP and SAT,
tabu search (Glover and Laguna 1997) can be used to avoid
falling back to the same states on a plateau. WalkSAT (Kautz
and Selman 1996) is a random-walk based algorithm that
can find an exit to escape from a local minima.

There are several lines of work to accelerate plateau ex-
ploration in best-first search. First, space reduction tech-
niques like preferred operations (Richter and Helmert 2009)
and partial order reduction (Chen and Yao 2009; Chen, Xu,
and Yao 2009) can effectively reduce the number of states
explored by the search algorithm, and subsequently reduce
the number of states on a plateau. However, space reduc-
tion approaches are indirect approaches to accelerate plateau
exploration. These approaches cannot efficiently accelerate
plateau exploration when preferred operators or partial or-
der reductions are not effective. Second, Monte Carlo ran-
dom walk (MRW) algorithms have been used to solve plan-
ning problems with good performance (Nakhost and Msller
2009). It is capable of escaping from local minima. How-
ever, it is slower comparing to deterministic best-first search
when heuristic functions are informative.

Our proposed random-walk assisted best-first search
(RW-BFS) for planning is inspired by both the MRW ap-
proach and best-first heuristic search approach. We use
a best-first search procedure for planning to conduct state
space search for most of the time, as best-first search gives
good performance when the heuristic functions are informa-
tive. In addition, under certain conditions, a random-walk
procedure is invoked to assist the best-first search.

Random-Walk Assisted Best-First Search
Algorithm

Now we introduce our random walk assisted best-first search
(RW-BFS) algorithm framework.

Our proposed RW-BFS algorithm is presented in Algo-
rithm 1. It is a variant of a standard best-first search pro-
cedure. In addition to the original best-first search algo-
rithm, RW-BFS adds adetect plateaucheck after expand-
ing a new state (Line 13 in Algorithm 1). If a plateau is de-
tected, therandom walk explorationprocedure will be called
to explore the search space in order to find a state that can
reduceh∗. Meanwhile,h∗, the incumbent heuristic value,
is updated whenever a state with a smaller heuristic value is
found (Line 6-7 in Algorithm 1).

Algorithm 2 presents therandom walk explorationpro-
cedure. It essentially adopts the Monte-Carlo exploration
algorithm proposed in (Nakhost and Msller 2009). Given a
states andh∗, it exploress’s neighbors using a sequence of

Algorithm 1: The RW-BFS Algorithm
input : Initial states0

1 open← s0 ;
2 while open is not emptydo
3 s← fetch(open);
4 if s is goalthen
5 return solution found;

6 if h(s) ≤ h∗ then
7 h∗ ← h(s) ;

8 if s is not a dead endthen
9 closed← s;

10 foreach si ∈ successor(s) do
11 evaluateh(si);
12 open← (si, h(si)) ;

13 if detect plateauthen
14 open← random walk exploration(s, h∗);

15 return no solution

Algorithm 2: Random Walk Exploration

input : a states, the incumbent heuristic valueh∗

1 s′ ← s;
2 for j ← 1 to t do
3 decide parametersl, n ;
4 s′ ← walk(s′, l, n) ;
5 if s′ is dead-endthen
6 s′ ← s;

7 else if h(s′) < h∗ then
8 return s′;

Algorithm 3: Walk
input : a states, the parameterl, the parametern

1 c← 0 ;
2 s′ ← s ;
3 for c← 1 to n do
4 for j ← 1 to l do
5 o← a random applicable action ins′ ;
6 s′ ← apply(s′, o) ;

7 if h(s′) < hmin then
8 smin ← s′ ;

9 return smin ;

(t) random walks. A state is returned if its heuristic function
value is lower thanh∗ (Line 7-8 in Algorithm 2).

At each iteration, it initializes parametersl, n that are used
in walk. Then, it invokeswalk to visit a new states′ (Line 4).
If s′ is a dead-end, this algorithm will restart from the input
states (Line 5-6). If s′ has even smaller heuristic value than
h∗, this state will be returned to Algorithm 1. Otherwise,s′

will be used as a new starting state for the next walk. The
number of walks is bounded byt, so that this algorithm al-
ways returns in finite time, whether a better states′ is found
or not.

Algorithm 3 gives a detailed view of thewalk procedure.
Given a starting states and two parametersl andn, Algo-
rithm 3 will try n paths, where each path is a random se-
quence ofl actions. The procedure will return the best end-
ing state among then paths. Note that for any path yielded
by Algorithm 3, heuristic functions are evaluated only at the
end of thel actions (Line 7).
Plateau Detection. The performance of our algorithm also
depends on the performance of thedetect plateauprocedure
used in Algorithm 1.

This plateau detection test can neither be too sensitive nor
too unresponsive. If it is too sensitive, therandom walk
explorationprocedure will be invoked frequently and the
progress of the best-first search may be hindered by con-
stant interruption. On the other hand, if this detection is
unresponsive, our designed random walks cannot help the
best-first search as desired. Therefore, a balanced plateau
detection mechanism is needed. In our proposed algorithm,
the best-first search is currently on a plateau if the value of
h∗ is not reduced form consecutive states. In Roamer, we
setm = 3000+ (np− 1) ∗ 1000, wherenp is the number of
plateaus found so far.
Parameter settings. The Random Walk Exploration algo-
rithm has a few parameters affecting its performance, among
which n and l are the most important since they directly
control the process of escaping from extensive local min-
ima and plateaus. Ifn andl are too small, the local search
method is greedy as it tries to immediately exploit their local
knowledge instead of exploring the neighborhood of current
state. Following a misleading heuristic value may quickly
lead to a much worse state than what could be achieved
with a little more exploration. On the other hand, if they
are too large, the search may take a long time on explor-
ing the neighborhood of the current state. In our algorithm,
we sett = 4 and letl = 1 + (10 − 1) ∗ j/(t − 1), n =
200 + (1000− 200) ∗ j/(t− 1) for j = 1 · · · t.

Multiple Heuristic Evaluations
Using multiple heuristic functions in search usually gives
better performance than a single one. Since different
heuristic functions sort states inopen lists in different or-
ders (Helmert 2006), it involves different search topologies.
When one heuristic function becomes uninformative on its
value plateau, other heuristics may give informative guid-
ance and find exits on a plateau. However, extra heuristic
function calculation and extra open lists may increase the
overall time and space complexity of the search algorithm.

The default heuristic evaluation of LAMA planner adapts
action costs, which estimates the minimum cost of a relaxed
plan from current state to goal. In our experimental results,
it performs not as good in domains which some actions have
large costs while others are small as other domains. In our
planner, we add a heuristic evaluation which estimates the
length of the relaxed plan besides estimating the minimum
cost of the relaxed plan. Respectively, we add anopenlist in
our planner which sorts states by the order of the length of
the relaxed plan. This synthetic heuristic evaluations achieve
a good trade-off performance in our experimental results.

Experimental Results
In this section, we report experimental results of our plan-
ner. We evaluate performances for four planners, i.e.,
a baseline planner - LAMA, Roamer with random walk
(Roamerrw), Roamer with multiple heuristic evaluations
(Roamermh), and Roamer which integrating these two tech-
niques. We test all domains in IPC-6 (The Sixth Interna-
tional Planning Competition 2008), including Elevators (El-
evator), Openstacks (Open), PARC printer (Parc), Peg soli-
taire (Peg), Scanalyzer-3D (Scan), Sokoban (Sokoban),
Transport (Trans) and Woodworking (Wood). All experi-
ments are ran on a PC workstation with a 2.40 GHz CPU
and 2GB memory. The running time limit for each instance
is set to 300 seconds.

0 50 100 150 200 250 300
search time (seconds)

120

140

160

180

200

220

240

nu
m

be
r o

f s
ol

ve
d

in
st

an
ce

s

baseline
Roamerrw

Roamermh

Roamer

Figure 1: Number of instances (out of all the instances in the
testing domains) that are solvable for a given time limit.

In Figure 1, we present the number of instances that are
solvable in the testing domains with respect to a given time
limit. Clearly, both Roamerrw and Roamermh both solve
more problem instances than the baseline planner. Roamer
gives the best performance in these three algorithms.

Conclusions
In this paper, we have presented a random walk assisted
best-first search algorithm, which can improve the efficacy

of heuristic search, and a multiple heuristic evaluations tech-
nique to balance the performance in different problem do-
mains. Comparing to the baseline planner, the experimental
results show that our planner, Roamer, outperforms in num-
ber of solved instances in testing domains.

Acknowledgments
This research was supported by China Scholarship Council,
NSF grants IIS-0535257, DBI-0743797, IIS-0713109, and
Microsoft Research New Faculty Fellowship.

References
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.;
and Kambhampati, S. 2010. G-value plateaus: A challenge
for planning. InProc. ICAPS, 259–262.
Chen, Y., and Yao, G. 2009. Completeness and optimality
preserving reduction for planning. InProc. IJCAI.
Chen, Y.; Xu, Y.; and Yao, G. 2009. Stratified planning. In
Proc. IJCAI.
Frank, J. D.; Cheeseman, P.; and Stutz, J. 1997. When
gravity fails: Local search topology.Journal of Artificial
Intelligence Research7:249–281.
Glover, F., and Laguna, M. 1997.Tabu Search. Norwell,
MA, USA: Kluwer Academic Publishers.
Hampson, S., and Kibler, D. 1993. Plateaus and plateau
search in boolean satisfiability problems: When to give up
searching and start again. InThe 2nd DIMACS Implemen-
tation Challenge, 437–456.
Helmert, M., and Röger, G. 2008. How good is almost
perfect. InProc. AAAI, 944–949.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research26:191–246.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. InAIPS, 92–100.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proc. AAAI.
Nakhost, H., and Msller, M. 2009. Monte-carlo exploration
for deterministic planning. InProc. IJCAI, 1766–1771.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. InProc. ICAPS.
Richter, S., and Westphal, M. 2010. The lama plan-
ner: Guiding cost-based anytime planning with landmarks.
Journal of Artificial Intelligence Research.
Russell, S. J., and Norvig, P. 2003.Artificial Intelligence:
A Modern Approach. Pearson Education.
The Sixth International Planning Competition. 2008.
http://ipc.informatik.uni-freiburg.de/.

