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Introduction

• Hierarchical Task Network (HTN)

– Classical planning representation – states (set of 
atoms) and actions (deterministic state transition)

– Differs in approach – set of tasks instead of set of 
goals

– Methods – prescriptions to decompose a task into 
sub-tasks

– Non-primitive (abstract) vs. primitive tasks 

– Widely used for practical applications (intuitive 
representation)



Some Planning Features

• Expansion of a high level abstract plan into greater 
detail where necessary.

• High level ‘chunks’ of procedural knowledge at a 
human scale - typically 5-8 actions - can be 
manipulated within the system.

• Ability to establish that a feasible plan exists, perhaps 
for a range of assumptions about the situation, while 
retaining a high level overview.

• Analysis of potential interactions as plans are 
expanded or developed.
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also describe the hierarchical and mixed 
initiative approach to planning in AI
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Motivation

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

– Experienced human: small number of “recipes”

e.g., flying:

1. buy ticket from local airport to remote airport

2. travel to local airport

3. fly to remote airport

4. travel to final destination



HTN Planning

• Problem reduction

– Tasks (activities) rather than goals

– Methods to decompose tasks into subtasks

– Enforce constraints

• E.g., taxi not good for long distances

– Backtrack if necessary

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))
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HTN Planning

travel(UMD, LAAS)

get-ticket(IAD, TLS)

travel(UMD, IAD)

fly(BWI, Toulouse)

travel(TLS, LAAS)

get-taxi

ride(TLS,Toulouse)

pay-driver

go-to-travel-web-site

find-flights(IAD,TLS)

buy-ticket(IAD,TLS)

get-taxi

ride(UMD, IAD)

pay-driver

get-ticket(BWI, TLS)

go-to-travel-web-site

find-flights(BWI,TLS)

BACKTRACK



HTN Planning

• Objective: perform a given set of tasks

• Input includes:
– Set of operators

– Set of methods: recipes for decomposing a complex task 
into more primitive subtasks

• Planning process: 
– Decompose non-primitive tasks recursively until primitive 

tasks are reached



Simple Task Network (STN)

• A special case of HTN planning

• States and operators

– The same as in classical planning

• Task: an expression of the form  t(u1,…,un)

– t is a task symbol, and each ui is a term

– Two kinds of task symbols (and tasks):

• primitive: tasks that we know how to execute directly
– task symbol is an operator name

• non-primitive: tasks that must be decomposed into 
subtasks
– use methods (next slide)



Methods

• Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters - variable symbols

– task(m): a nonprimitive task

– precond(m): preconditions (literals)

– subtasks(m): a sequence
of tasks t1, …, tk

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)



Methods

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

subtasks: buy-ticket(a(x), a(y)),  travel(x,a(x)),  fly(a(x), a(y)),

travel(a(y),y)

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)



Methods

• Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters - variable symbols

– task(m): a nonprimitive task

– precond(m): preconditions (literals)

– subtasks(m): a partially ordered
set of tasks {t1, …, tk}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)



Methods

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x), 
a(y)), u4= travel(a(y),y),  {(u1,u3), (u2,u3), (u3 ,u4)}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)



Domains, Problems, Solutions

• STN planning domain: methods, operators

• STN planning problem: methods, operators, initial 
state, task list

• Total-order STN planning domain and planning 
problem:

– Same as above except that
all methods are totally ordered



Domains, Problems, Solutions

• STN planning domain: methods, operators

• STN planning problem: methods, operators, initial 
state, task list

• Total-order STN planning domain and planning 
problem:

– Same as above except that
all methods are totally ordered

• Solution: any executable plan that can be generated 
by recursively applying 

– Methods to non-primitive tasks

– Operators to primitive tasks



Domains, Problems, Solutions

nonprimitive task

precond

method instance

s0 precond effects precond effectss1 s2

primitive taskprimitive task

operator instance operator instance



DWR Stack Moving Example

• Suppose we want to move three stacks of containers 
in a way that preserves the order of the containers



DWR Stack Moving Example

• task symbols: TS = {t1,…,tn}
– operator names ⊊ TS: primitive tasks
– non-primitive task symbols: TS - operator names

• task: ti(r1,…,rk)
– ti: task symbol (primitive or non-primitive)
– r1,…,rk: terms, objects manipulated by the task
– ground task: are ground

• action a accomplishes ground primitive task 
ti(r1,…,rk) in state s iff
– name(a) = ti and 
– a is applicable in s



DWR Stack Moving Example

• A simple task network w is an acyclic directed graph 
(U,E) in which 
– the node set U = {t1,…,tn} is a set of tasks and 

– the edges in E define a partial ordering of the tasks in U.

• A task network w is ground/primitive if all tasks tu∈U
are ground/primitive, otherwise it is unground/non-
primitive.



DWR Stack Moving Example

• Ordering: tu≺tv in w=(U,E) iff there is a path from tu

to tv

• STN w is totally ordered iff E defines a total order on 
U

– w is a sequence of tasks: 〈t1,…,tn〉

• Let w = 〈t1,…,tn〉 be a totally ordered, ground, 
primitive STN. Then the plan π(w) is defined as:
– π(w) = 〈a1,…,an〉 where ai = ti; 1 ≤ i ≤ n



DWR Stack Moving Example

• STN Methods
– Let MS be a set of method symbols. An STN method is a 4-

tuple m=(name(m),task(m),precond(m),network(m)) where:
• name(m): 

– the name of the method

– syntactic expression of the form n(x1,…,xk)

» n∈MS: unique method symbol

» x1,…,xk: all the variable symbols that occur in m;

• task(m): a non-primitive task;

• precond(m): set of literals called the method’s preconditions;

• network(m): task network (U,E) containing the set of subtasks U of m



Decomposition Tree: DWR Example

move-stack(p1,q)

move-stack(p1,p2)move-topmost(p1,p2)

recursive-move(p1,p2,c1,c2)

take(crane,loc,c1,c2,p1) put(crane,loc,c1,pallet,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c2,c3,p1) put(crane,loc,c2,c1,p2) move-stack(p1,p2)move-topmost(p1,p2)

take(crane,loc,c3,pallet,p1) put(crane,loc,c3,c2,p2) 〈〉

recursive-move(p1,p2,c2,c3)take-and-put(…)

no-move(p1,p2)

recursive-move(p1,p2,c3,pallet)take-and-put(…)

take-and-put(…)



Total-Order 
Formulation



Partial-Order 
Formulation



Solving Total-Order STN Planning 
Problems

state s; task list T=( t1 ,t2,…)

action a

state (s,a) ; task list T=(t2, …)

task list T=( u1,…,uk ,t2,…)

task list T=( t1 ,t2,…)

method instance m



Comparison to F/B Search

• In state-space planning, must choose whether to search
forward or backward

• In HTN planning, there are two choices to make about direction:

– forward or backward

– up or down

• TFD goes
down and
forward

s0 s1 s2 … …op1 op2 opiSi–1

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0



s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

Comparison to F/B Search

• Like a backward search,
TFD is goal-directed
– Goals

correspond
to tasks

• Like a forward search, it generates actions
in the same order in which they’ll be executed

• Whenever we want to plan the next task
– We’ve already planned everything that comes before it

– Thus, we know the current state of the world



Limitation of Ordered-Task 
Planning

• TFD requires totally ordered
methods

• Can’t interleave subtasks of different tasks

• Sometimes this makes things awkward
– Need to write methods that reason

globally instead of locally

goto(b)

pickup(p) pickup(q)

get-both(p,q)

pickup-both(p,q)

walk(a,b)

goto(a)

walk(b,a)

get(p) get(q)

get-both(p,q)

pickup(p)walk(a,b) walk(b,a) pickup(p)walk(a,b) walk(b,a)



Partially Ordered Methods

• With partially ordered methods, the subtasks can be 
interleaved

• Fits many planning domains better

• Requires a more complicated planning algorithm

walk(a,b) pickup(p)

get(p)

stay-at(b) pickup(q)

get(q)

get-both(p,q)

walk(b,a) stay-at(a)



Algorithm for Partial-Order STNs

π={a1 …, ak,  a };  w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak};  w={ t1 ,t2, t3…}

operator instance  a
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π={a1 …, ak,  a };  w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak};  w={ t1 ,t2, t3…}

operator instance  a

 Intuitively, w is a partially ordered set of tasks {t1, t2, …}

 But w may contain a task more than once

» e.g., travel from UMD to LAAS twice

 The mathematical definition of a set doesn’t allow this

 Define w as a partially ordered set of task nodes {u1, u2, …}

 Each task node u corresponds to a task tu

 In my explanations, I’ll talk about t and ignore u
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Algorithm for Partial-Order STNs

π={a1 …, ak,  a };  w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak};  w={ t1 ,t2, t3…}

operator instance  a

(w, u, m, ) has a complicated definition in the book.  Here’s what 

it means:

We nondeterministically selected t1 as the task to begin first

•  i.e., do t1’s first subtask before the first subtask of every ti ≠ t1

Insert ordering constraints to ensure that this happens



Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

• Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

• Several ways to do this.  One is roughly as follows:

– For each goal or precondition e, create a task te

– For each operator o and effect e, create a method mo,e

• Task: te

• Subtasks: tc1, tc2, …, tcn, o, where c1, c2, …, cn are the 
preconditions of o

• Partial-ordering constraints: each tci precedes o



Comparison to Classical Planning

• Some STN planning problems aren’t expressible in classical planning

• Example:

– Two STN methods:

• No arguments

• No preconditions

– Two operators, a and b

• Again, no arguments and no preconditions

– Initial state is empty, initial task is t

– Set of solutions is {anbn | n > 0}

– No classical planning problem has this set of solutions

• The state-transition system is a finite-state automaton

• No finite-state automaton can recognize {anbn | n > 0}

• Can even express undecidable problems using STNs

method1

bta

t

method2

ba

t



–

(a, x)         

Example
• Simple travel-planning domain

– State-variable formulation

• Planning problem:

– I’m at home, I have $20

– Want to go to a park 8 miles 
away

– s0 = {location(me) = home, 
cash(me) = 20, 
distance(home,park) = 8}

– t0 = travel(me,home,park)



Precond: distance(home,park) ≤ 2 Precond: cash(me) ≥ 1.50 + 0.50*distance(home,park)

Initial task: travel(me,home,park)

Precondition succeeds

travel-by-foot travel-by-taxi

Precondition fails

Decomposition into subtasks

home park

Example, Continued

location(me)=home, 

location(taxi)=home, 

cash(me)=20, 

distance(home,park)=8

Initial

state

location(me)=home,

cash(me)=20,

distance(home,park)=8

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …

Effects: …

Precond: …

Effects: …

Precond: …

Effects: …

location(me)=park, 

location(taxi)=park, 

cash(me)=20, 

distance(home,park)=8 location(me)=park, 

location(taxi)=park, 

cash(me)=14.50,

distance(home,park)=8

Final  

state

s1 s2 s3s0



HTN Planning

• STN planning constraints:
– ordering constraints: maintained in network

– preconditions: 
• enforced by planning procedure

• must know state to test for applicability

• must perform forward search

• HTN planning can be even more general

– Can have constraints associated with tasks and methods
• Things that must be true before, during, or afterwards

– Some algorithms use causal links and threats like those in 
PSP



Methods in STN

• Let MS be a set of method symbols. An STN method is 
a 4-tuple 
m=(name(m),task(m),precond(m),network(m)) where:
– name(m): 

• the name of the method

• syntactic expression of the form n(x1,…,xk)
– n∈MS: unique method symbol

– x1,…,xk: all the variable symbols that occur in m;

– task(m): a non-primitive task;

– precond(m): set of literals called the method’s 
preconditions;

– network(m): task network (U,E) containing the set of 
subtasks U of m



Methods in HTN

• Let MS be a set of method symbols. An HTN method 
is a 4-tuple 
m=(name(m),task(m),subtasks(m),constr(m)) where:
– name(m): 

• the name of the method

• syntactic expression of the form n(x1,…,xk)
– n∈MS: unique method symbol

– x1,…,xk: all the variable symbols that occur in m;

– task(m): a non-primitive task;

– (subtasks(m),constr(m)): a task network.



STN Methods: DWR Example (1)

• move topmost: take followed by put action

• take-and-put(c,k,l,po,pd,xo,xd)

– task: move-topmost(po,pd)

– precond: top(c,po), on(c,xo), attached(po,l), 
belong(k,l), attached(pd,l), top(xd,pd)

– subtasks: 〈take(k,l,c,xo,po),put(k,l,c,xd,pd)〉



HTN Methods: DWR Example (1)

• move topmost: take followed by put action

• take-and-put(c,k,l,po,pd,xo,xd)
– task: move-topmost(po,pd)

– network: 
• subtasks: {t1=take(k,l,c,xo,po), t2=put(k,l,c,xd,pd)}

• constraints: {t1≺t2, before({t1}, top(c,po)), 
before({t1}, on(c,xo)), before({t1}, attached(po,l)), 
before({t1}, belong(k,l)), before({t2}, attached(pd,l)), 
before({t2}, top(xd,pd))}



STN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container 
until the stack is empty

• recursive-move(po,pd,c,xo)
– task: move-stack(po,pd)

– precond: top(c,po), on(c,xo)

– subtasks: 〈move-topmost(po,pd), move-stack(po,pd)〉

• no-move(po,pd)
– task: move-stack(po,pd)

– precond: top(pallet,po)

– subtasks: 〈〉



HTN Methods: DWR Example (2)

• move stack: repeatedly move the topmost container 
until the stack is empty

• recursive-move(po,pd,c,xo)
– task: move-stack(po,pd)
– network: 

• subtasks: {t1=move-topmost(po,pd), t2=move-stack(po,pd)}
• constraints: {t1≺t2, before({t1}, top(c,po)), before({t1}, on(c,xo))}

• move-one(po,pd,c)
– task: move-stack(po,pd)
– network: 

• subtasks: {t1=move-topmost(po,pd)}
• constraints: {before({t1}, top(c,po)), before({t1}, on(c,pallet))}



Application Example

• I-globe – a distributed HTN planner and 
simulator for disaster relief scenarios



Application Example


