Hierarchical Task Network

Jiri Vokrinek
A4M36PAH - 22.4.2012

Materials

 Malik Ghallab, Dana Nau, Paolo Traverso: Automated
Planning: Theory and Practice, 2004
http://projects.laas.fr/planning/

e Dana Nau's lecture slides
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

e Gerhard Wickler’s lecture slides (A4M36PAH 2010/2011)
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp
lan-Slides.pdf

SOME RIGHTS RESERVED

http://projects.laas.fr/planning/
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/

Introduction

* Hierarchical Task Network (HTN)

— Classical planning representation — states (set of
atoms) and actions (deterministic state transition)

— Differs in approach — set of tasks instead of set of
goals

— Methods — prescriptions to decompose a task into
sub-tasks

— Non-primitive (abstract) vs. primitive tasks

— Widely used for practical applications (intuitive
representation)

Some Planning Features

Expansion of a high level abstract plan into greater
detail where necessary.

High level ‘chunks’ of procedural knowledge at a
human scale - typically 5-8 actions - can be
manipulated within the system.

Ability to establish that a feasible plan exists, perhaps
for a range of assumptions about the situation, while
retaining a high level overview.

Analysis of potential interactions as plans are
expanded or developed.

Some Planning Features

aspects of problem solving behaviour observed
in expert humans (Gary Klein, “Sources of
Power”, MIT Press, 1998.)

Some Planning Features

aspects of problem solving behaviour observed
in expert humans (Gary Klein, “Sources of
Power”, MIT Press, 1998.)

also describe the hierarchical and mixed
initiative approach to planning in Al

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:

* many combinations of vehicles and routes

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:
* many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

* Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

r L

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:

* many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
* Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

15. Slight left onto N Northlake Way

16. Sail across the Pacific Ocean
Entering Hawaii

17. Continue straight

M. Take the 1st left onto Kalakaua Ave

32. 5ail across the Pacific Ocean
Entering Japan

33. Turn left toward IBLE 275568

7 Seattle
>olod Waste m

n-w Wallmgf rds

AP

Ola At Tunle\-ﬁ
= Bay Re-qon‘ -

~ e 2

Motivation

 Example: travel to a destination that’s far away:
— Domain-independent planner:

* many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo
* Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

15. Slight left onto N Northlake Way

16. Sail across the Pacific Ocean
Entering Hawaii

17. Continue straight

M. Take the 1st left onto Kalakaua Ave

32. 5ail across the Pacific Ocean
Entering Japan

33. Turn left toward IBLE 275568

Motivation

 Example: travel to a destination that’s far away:

— Domain-independent planner:
* many combinations of vehicles and routes

— Experienced human: small number of “recipes”
e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

HTN Planning

e Problem reduction

— Tasks (activities) rather than goals

— Methods to decompose tasks into subtasks
— Enforce constraints

* E.g., taxi not good for long distances

— Backtrack if necessary

Task:

travel(x,y)

W\ -

Method: air-travel(x,y)

~

C Method: taxi-travel(x,y)
get-taxi—| ride(X,y) [—*|pay-driver
. J

-

get-ticket(a(x),a(y))
Y ly.20)

travel(x,a(x))

» travel(a(y),y)

J

HTN Planning

* Problem reduction
— Tasks (activities) rather than goals
— Methods to decompose tasks into subtasks

— Enforce constraints
* E.g., taxi not good for long distances

— Backtrack if necessary

Task: | travel(x,y)

W\ -

1 ; t-ticket(a(x),
get-taxir= ride(x,y) |—>|pay-driver — a(y);; fly(a(x),a(y)) (| travel(a(y),y)

- J _ (| travel(x,a(x)))
u

4)

Method: taxi-travel(x,y) Method: air-travel(x,y)

HTN Planning

travel(UMD, LAAS)

get-ticket(BWI, TLS) W/ * \ get-ticket(1AD, TLS)
go-to-travel-web-site / \ go-to-travel-web-site
find-flights(BWI, TLS) ¥

, find-flights(IAD, TLS)
BACKTRACK F-~ buy-ticket(IAD,TLYS)

travel(UMD, IAD)
\get-taxi
ride(UMD, IAD)
pay-driver
fly(BWI, Toulouse)
travel(TLS, LAAS)

\ get-taxi

ride(TLS, Toulouse)
pay-driver

HTN Planning

* Objective: perform a given set of tasks
* |[nput includes:

— Set of operators

— Set of methods: recipes for decomposing a complex task
into more primitive subtasks

* Planning process:

— Decompose non-primitive tasks recursively until primitive
tasks are reached

Simple Task Network (STN)

e A special case of HTN planning

e States and operators
— The same as in classical planning

* Task: an expression of the form t(u,,...,u,)
— tis a task symbol, and each u; is a term
— Two kinds of task symbols (and tasks):
e primitive: tasks that we know how to execute directly

— task symbol is an operator name

* non-primitive: tasks that must be decomposed into
subtasks
— use methods (next slide)

Methods

* Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

— name(m): an expression of the form n(x,...,x,)

* X,,..,X, are parameters - variable symbols

— task(m): a nonprimitive task

— precond(m): preconditions (literals)

— subtasks(m): a sequence
of tasks (t,, ..., to)

travel(x,y)

/

air-travel(x,y)

long-distance(x,y)

e~

buy-ticket (a(x), a(y))

travel (X, a(x))

fly (a(x), a(y))

travel (a(y), y)

Methods

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)

subtasks: (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y))

/

travel(x,y)

long-distance(x,y)

i~

buy-ticket (a(x), a(y))

travel (X, a(x))

fly (a(x), a(y))

travel (a(y), y)

Methods

e Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

— name(m): an expression of the form n(x,...,x,)

* X,,..,X, are parameters - variable symbols

— task(m): a nonprimitive task

— precond(m): preconditions (literals)

— subtasks(m): a partially ordered

set of tasks {t,, ..., t;}

travel(x,y)

/

air-travel(x,y)

A 4

long-distance(x,y)

// \\‘

buy-ticket (a(x), a(y))

travel (X, a(x))

fly (a(x), a(y))

travel (a(y), y)

N —

N— A

Methods

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)

network: u,=buy-ticket(a(x),a(y)), u,= travel(x,a(x)), us=fly(a(x),
a(y)), u,=travel(aly),y), {(uy,us), (uyus), (us,u,)}

travel(x,y)

/

air-travel(x,y)

long-distance(x,y)

// \\‘

buy-ticket (a(x), a(y))

travel (X, a(x))

fly (a(x), a(y))

travel (a(y), y)

N —

N— A

Domains, Problems, Solutions

STN planning domain: methods, operators

STN planning problem: methods, operators, initial
state, task list

Total-order STN planning domain and planning
problem:

— Same as above except that
all methods are totally ordered

Domains, Problems, Solutions

STN planning domain: methods, operators

STN planning problem: methods, operators, initial
state, task list

Total-order STN planning domain and planning
problem:

— Same as above except that
all methods are totally ordered

Solution: any executable plan that can be generated
by recursively applying

— Methods to non-primitive tasks

— Operators to primitive tasks

Domains, Problems, Solutions

nonprimitive task

method instance

precond

/ \\:

primitive task primitive task

@tor ins@ @tor ins@
2~ N\ Z _\

So | |precond| |effects| |s; | |precond| |effects| |s,

DWR Stack Moving Example

e Suppose we want to move three stacks of containers
in a way that preserves the order of the containers

e

cranel crane2 crane3
c31
/7| 1 /7| c32 g7
cll plc c22 p2c c33 p3cC
c12 A €23 L7 c34 L7
3 plb | VE p2h 3a p3b _
locl loc2 loc3
(a) initial state
cranel crane2 * crane3 c31l
21 c32
cll c22 c33
clz2 c23 c34
plc p2c p3c
— L ___ 7 A AEEnyG
1 plb pZb p3b
pla pla p3a ;
locl loc2 loc3

(b) goal

DWR Stack Moving Example

task symbols: T, = {t,,...,t }
— operator names & T: primitive tasks
— non-primitive task symbols: T, - operator names

task: t(ry,...,r,)
— t:: task symbol (primitive or non-primitive)
— ry,.., e terms, objects manipulated by the task
— ground task: are ground

action a accomplishes ground primitive task
t(ry,...,r;) in state s iff

— name(a) = t;and

— ais applicable in s

DWR Stack Moving Example

* A simple task network w is an acyclic directed graph
(U,E) in which
— the node set U = {t,,...,t,} is a set of tasks and
— the edges in E define a partial ordering of the tasks in U.

* A task network w is ground/primitive if all tasks t U
are ground/primitive, otherwise it is unground/non-
primitive.

DWR Stack Moving Example

Ordering: t <t in w=(U,E) iff there is a path from ¢,
tot,

STN w is totally ordered iff E defines a total order on
U

— w is a sequence of tasks: (t,,...,t,)

Let w = (t,,...,t,) be a totally ordered, ground,
primitive STN. Then the plan rt(w) is defined as:
— ni(w) ={ay,..,a,)y where g,=t; 1<i<n

DWR Stack Moving Example

e STN Methods

— Let M be a set of method symbols. An STN method is a 4-
tuple m=(name(m),task(m),precond(m),network(m)) where:
* name(m):
— the name of the method
— syntactic expression of the form n(x,...,x,)

» neM,: unique method symbol
» Xy,...,X,: all the variable symbols that occur in m;
e task(m): a non-primitive task;
» precond(m): set of literals called the method’s preconditions;
* network(m): task network (U,E) containing the set of subtasks U of m

Decomposition Tree: DWR Example

move-stack(pl,q)

\

move-topmost(pl,p2) move-stack(pl,p2)

R N . -
— \] '
move-stack(pl,p2)

\

— .- \

/ — / > >
) move-stack(pl,p2)

tEkE-Eﬂd-pUt(C, k: Ilazgaplapgamlamﬂl: I d
task: move-topmost-container(p1, p2) TOta _O r e r
precond: top(c,p1), on(c,z1), ; true if p1 is not empty

attached(pi,l1), belong(k,l1), ; bind 1y and k FOrm U Iat|0n

attached(pg, fg), tDp(.&‘:z,pg] : bind o and xo
subtasks: <t3k&(k,£1, Camlapl]- pUt(ka fzsﬂaiﬂzaﬁz)}

recursive-move(p, q, ¢, T):

task: move-stack(p, q) p—
precond: top(e,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, g)) Jp—
:: the second subtask recursively moves the rest of the stack Ei; %"lc .:
Dla
do-nothing(p, q) loc1
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done cranel
move-each-twice() <
task: move-all-stacks() pic
precond: ; no preconditions GanthE :
subtasks: ; move each stack twice: loct

(move-stack(pla,plb), move-stack(plb,plc),
move-stack(p2a,p2b), move-stack(p2b,p2c),
move-stack(p3a,p3b), move-stack(p3b,p3c))

take'and'pUt(C? ka IE1:| EE:plan: £, -T’?]:
task: move-topmost-container(pi, p2) : _
precond: top(e,p1), on(e,z1), , true if p1 is not empty Pa rt I a I O rd e r
attached(pi,11), belong(k,l1), ; bindl; and k

attached(ps, l2), top(z2,p2) bind I3 and 2 FO Fmu IatiO N

subtasks: (take(k,ly,c,x1,p1), put(k,ls,c, z9,p2))

recursive-move(p, g, ¢, T):

task: move-stack(p, q)
precond: top(c,p), on(c,z) ; true if p is not empty Toranet
subtasks: (move-topmost-container(p, g), move-stack(p, q))
:; the second subtask recursively moves the rest of the stack — C—
do-nothing(p, q) %'7 b
task: move-stack(p, q) oct

precond: top(pallet,p) , true if p is empty
subtasks: () ; no subtasks, because we are done

cranel

move-each-twice()

cl1

task: move-all-stacks() c12

. 1

precond: ; no preconditions # ;
network: ; move each stack twice: pla i

locl

u; =move-stack(pla,plb), us =move-stack(plb,plc),
ug =move-stack(p2a,p2b), us =move-stack(p2b,p2c),
us =move-stack(p3a,p3b), ug =move-stack(p3b,p3c),
{(u1,u2), (u3,ua), (us, ug) }

Solving Total-Order STN Planning
TFD(s, (t1,...,), O, M) PrOblemS

if k = 0 then return () (i.e., the empty plan)
if t; 1s primitive then
active < {(a,o) | a is a ground instance of an operator in O,
o is a substitution such that a is relevant for o (#;),
and a is applicable to s}

if active = @ then return failure state s; task list T=([t; |t,,...)
nondeterministically choose any (a,0) € active _
w <« TFD(y(s,a),o((t2, ..., 1)), O, M) action a

if = failure then return failure
else return a.m
else if #; is nonprimitive then

active < {m | m is a ground instance of a method in M,

o is a substitution such that m is relevant for o (1),

and m is applicable to s} task list T=(t,|,t,,...)
if active = @ then return failure
nondeterministically choose any (m, o) € active
w < subtasks(m).o ({t2,...,
return TFD(s, “E D), M(){ 222) task list T=(|Uyye.ooty ps...)

state|y(s,a); task list T=(t,, ...)

method instancg m

Comparison to F/B Search

In state-space planning, must choose whether to search
forward or backward < >

S S Sy = ee. 1 Si

In HTN planning, there are two choices to make about direction:

— forward or backward >

— up or down task t,
TFD goes / \
down and task t coe task t,
forward /<—>\ /@\

Comparison to F/B Search

. task t
Like a backward search, b
TFD is goal-directed / \
— Goals task t,, cos task t,
correspond /4)\
to tasks /4>\

Like a forward search, it generates actions
in the same order in which they’ll be executed

Whenever we want to plan the next task
— We've already planned everything that comes befor
— Thus, we know the current state of the world

Limitation of Ordered-Task
Planning

TFD requires totally ordered get-both(p,q)

methods / \
get(p) get(q)

walk(a,b) pickup(p) walk(b,a) walk(a,b) pickup(p) walk(b,a)

Can’t interleave subtasks of different tasks

Sometimes this makes things awkward
— Need to write methods that reason get-both(p,q)

lobally instead of locally //Y >
Bone \

goto(b) pickup-both(p,q) goto(a)

YA NN
N

walk(a,b) pickup(p) pickup(gq) walk(b,a)

Partially Ordered Methods

With partially ordered methods, the subtasks can be

interleaved
get-both(p,q)

get(p) get(q)
—_— N\ —

walk(a,b) stay-at(b) pickup(p) pickup(g) walk(b,a) stay-at(a)

Fits many planning domains better
Requires a more complicated planning algorithm

Algorithm for Partial-Order

PFD(s, w, O, M)
if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t, is a primitive task then
active < {(a,o) | ais a ground instance of an operator in O,
o is a substitution such that name(a) = o (t,),
and a is applicable to s}

if active = @ then return failure =14y, Al

STNSs

W:{ tl ,t2, t3---}

nondeterministically choose any (a, o) € active operator instance| a
m <« PFD(y (s, a), o (w — {u}), O, M)
if = = failure then return failure ={a, ...,a,|a}; w={t,t,, ..
else return a.
else

active < {(m, o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (¢t,),
and m is applicable to s}

if active = @ then return failure

nondeterministically choose any (m, o) € active method instance|m

nondeterministically choose any task network w' € 8(w, u, m,o)

w={t|.t,,...

/

return(PFD(s, w', O, M)

w' ={

tll""’tlk ,tz,. . .}

.}

Algorithm for Partial-Order

PED(s, W, O, M)
if w = @ then return the empty plan

STNSs

® Intuitively, wis a partially ordered set of tasks {t,, t,, ...}
4 But w may contain a task more than once
» e.g., travel from UMD to LAAS twice
€ The mathematical definition of a set doesn’t allow this
® Define w as a partially ordered set of task nodes {u,, u,, ...}
¢ Each task node u corresponds to a task t,
® |n my explanations, I'll talk about t and ignore u

T T TTT & 76

else

active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (t,),
and m is applicable to s}

if active = @ then return failure

nondeterministically choose any (m, o) € active method instance|m

nondeterministically choose any task network w' € 8(w, u, m,o)

w={t|.t5,...}

/

return(PFD(s, w', O, M) w' ={

tll""’tlk ,t2,. . .}

Algorithm for Partial-Order

PFD(s, w, O, M)
if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if t, is a primitive task then
active < {(a,o) | ais a ground instance of an operator in O,
o is a substitution such that name(a) = o (t,),
and a is applicable to s}

if active = @ then return failure =14y, Al

STNSs

W:{ tl ,t2, t3---}

nondeterministically choose any (a, o) € active operator instance| a
m <« PFD(y (s, a), o (w — {u}), O, M)
if = = failure then return failure ={a, ...,a,|a}; w={t,t,, ..
else return a.
else

active < {(m, o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (¢t,),
and m is applicable to s}

if active = @ then return failure

nondeterministically choose any (m, o) € active method instance|m

nondeterministically choose any task network w' € 8(w, u, m,o)

w={t|.t,,...

/

return(PFD(s, w', O, M)

w' ={

tll""’tlk ,tz,. . .}

.}

Algorithm for Partial-Order STNs

PFD(s, w, O, M)
if w = @ then return the empty plan
nnndetermmwhcaﬂy EhﬂDSE any u € w that has no predecessors in w
ift,isap
active

o(w, u, m, G) has a complicated definition in the book. Here’s what
It means:

e\\/e nondeterministically selected t, as the task to begin first
ifactiva « je, dot,’s first subtask before the first subtask of every t. # t,

;“EE; eInsert ordering constraints to ensure that this happens

if & = railure then return failure
else return a.
else

active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that nametln) = o (t,),
and m is applicable to s}

if active = @ then return failure

nondeterministically choose any (m, o) € active

nondeterministically choose any task network w' € 8(w, u, m, o) /
return(PFD(s, w’, O, M L
[(] W _{ tll,...,tlk ’t2’--o}

n={a; ..., &, |afp; W ={l, t;, ...}

w={t|.t5,...}

method instance|m

Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

e Several ways to do this. One is roughly as follows:
— For each goal or precondition e, create a task t,
— For each operator o and effect e, create a method m,
* Task: t,

* Subtasks: t_, t, ..., t, 0, wherec,, c,, ..., ¢, are the
preconditions of o

* Partial-ordering constraints: each t_ precedes o

Comparison to Classical Planning

Some STN planning problems aren’t expressible in classical planning

Example:
— Two STN methods:

* No arguments f methodl > @

* No preconditions
P 2 t b a b

t t

— Two operators, aand b
* Again, no arguments and no preconditions

— Initial state is empty, initial task is t

— Set of solutions is {a"b" | n > 0}

— No classical planning problem has this set of solutions
* The state-transition system is a finite-state automaton
* No finite-state automaton can recognize {a"b” | n > 0}

Can even express undecidable problems using STNs

Example

method travel-by-foot * Simple travel-planning domain
precond: distance(z,y) < 2 — State-variable formulation
task: travel(a,z,y) * Planning problem:

subtasks: walk(a, z,7) — I’'m at home, | have S20

method travel-by-taxi — Want to go to a park 8 miles
task: travel(a, z, y) away

precond: cash(a) > 1.5+ 0.5 x distance(zx,y)
subtasks: (call-taxi(a, z), ride(a, z,y), pay-driver(a, z,y))

operator walk
precond: location(a) = x @ E—>

effects: location(a) — y
)

operator call-taxi(a, = _
effects: location(tazi) «— x — 5o = {location(me) = home,
cash(me) = 20,

operator ride-taxi(, X) distance(home,park) = 8}

precond: location(taxi) = x, location(a) = x

effects: location(taxi) « vy, location(a) «— y t, = travel(me,home,park)
— t,= , ,

operator pay-driver(a, z,y)
precond: cash(a) > 1.5+ 0.5 x distance(z, y)
effects: cash(a) «— cash(a) — 1.5 — 0.5 x distance(z,y)

Example, Continued

Initial task: | travel(me,home,park) @ —— >
home park
travel-by-foot

Precond: cash(me) > 1.50 + 0.50*distance(home,park)

Precond: distance(home,park) <2

pd
<Precondition fails >

call-taxi(me,home) @ ride(me,home,park) @ pay-driver(me,home,park) @
| |)
/Final

I
/ Precond: ...

1
< Precondition succeeds >
Decomposition into subtasks

! recond: ... | recond: ... J
State,f Effects: ... i Effects: ... - Effects: ... / state
l,l l,’ PR I,' """"" /’_//
P d--mmm o ~ ! ,// \\\\ /,
. " 7 location(me)=park, /
/location(me)=home, : / : () P \ /
Lemmmmoo location(taxi)=park, R

——————— -

.‘ cash(me)=20, Vo o cash(me)=20,

_distance(home,park)=8 ,/ /* location(me)=home, distance(home, park)=8 .
. - location(taxi)=home, ’ . location(taxi)=park,

cash(me)=20, poo T cash(me)=14.50,

 distance(home,park)=8 - ._distance(home,park)=8 ,/

~

1

N e e e e e, —————— 1
1

1

1

\

HTN Planning

 STN planning constraints:
— ordering constraints: maintained in network

— preconditions:
* enforced by planning procedure
* must know state to test for applicability
* must perform forward search

e HTN planning can be even more general
— Can have constraints associated with tasks and methods
* Things that must be true before, during, or afterwards

— Some algorithms use causal links and threats like those in
PSP

Methods in STN

* Let M, be a set of method symbols. An STN method is
a 4-tuple
m=(name(m),task(m),precond(m),network(m)) where:

— name(m):
* the name of the method
* syntactic expression of the form n(xg,...,x,)
— neMg: unique method symbol
— Xq,..,X,: all the variable symbols that occur in m;
— task(m): a non-primitive task;

— precond(m): set of literals called the method’s
preconditions;

— network(m): task network (U,E) containing the set of
subtasks U of m

Methods in HTN

* Let M, be a set of method symbols. An HTN method
is a 4-tuple
m=(name(m),task(m),subtasks(m),constr(m)) where:

— name(m):
e the name of the method

* syntactic expression of the form n(xg,...,x,)
— neMg: unique method symbol
— Xq,..,X,: all the variable symbols that occur in m;

— task(m): a non-primitive task;
— (subtasks(m),constr(m)): a task network.

STN Methods: DWR Example (1)

* move topmost: take followed by put action
* take-and-put(c,k,/p,,pX,.X,)
— task: move-topmost(p,,p,)

— precond: top(c,p,), on(c,x,), attached(p,,/),
belong(k,/), attached(p,,/), top(x,p,)

— subtasks: (take(k,/,c,x,,p,),put(k,l,c,x,,p0,))

HTN Methods: DWR Example (1)

* move topmost: take followed by put action
* take-and-put(c,k,/p,,pX,.X,)
— task: move-topmost(p,,p,)
— network:
* subtasks: {t,=take(k,/,c,x,,p,), t,=put(k,/,c,x, ,p)}
* constraints: {t,;<t,, before({t,}, top(c,p,)),
before({t,}, on(c,x,)), before({t,}, attached(p,,/)),

before({t,}, belong(k,/)), before({t,}, attached(p,,/)),
before({t,}, top(x,,p,))}

STN Methods: DWR Example (2)

move stack: repeatedly move the topmost container
until the stack is empty

recursive-move(p,,p4C,X,)

— task: move-stack(p,,p,)

— precond: top(c,p,), on(c,x,)

— subtasks: (move-topmost(p,,p,), move-stack(p,,p,))
no-move(p,,p,)

— task: move-stack(p,,p,)

— precond: top(pallet,p,)

— subtasks: ()

HTN Methods: DWR Example (2)

move stack: repeatedly move the topmost container
until the stack is empty

recursive-move(p,,p4C,X,)
— task: move-stack(p,,p,)

— network:
* subtasks: {t;=move-topmost(p,,p,), t,=move-stack(p,,p,)}
* constraints: {t;<t,, before({t,}, top(c,p,)), before({t,}, on(c,x,))}

move-one(p,,p,,C)
— task: move-stack(p,,p,)

— network:
* subtasks: {t;=move-topmost(p,,p,)}
* constraints: {before({t,}, top(c,p,)), before({t,}, on(c,pallet))}

Application Example

* |-globe —a distributed HTN planner and
simulator for disaster relief scenarios

medic unit / agent

strategic layer

(M)

transport{M, city A)

commander agent
¥
Fd

[}

dealWithlnjured()

tactical layer

|
|
wait() > atPosition(s) | dealWithinjured()
1 I | I S) A
individual Ia:.rer: : : : : :
wait() : | prepare() | dealWith|njured()
| | |
f f I
transport unit / agent (T) | i ;
. | | |
trat
strategic layer : transport(M, city A) |
0 i — —'T — :
tactical layer - | T e
moveTo(s) > load(M) = moveTo(city A) = unload{M)
) A)) causal
| | | | ol
individual layer! ! ! :
—————————— -

SHEEdR GTTE]
CUrrEntiHERSZY

Application Example

Visualization Agent
Pointer: 3 6393.077 Y: 750.198

(4

0
s e

g
u& d
O

- toggle communication: - togole entityinfae ~ - toggle agentdata
- togale node [DsfE-tongle'events: 1i- togale 2D/3D

EEE

»: lagent

AOLREACEY CIaTE

