Graphplan

Jiri Vokrinek
A4M36PAH - 15.4.2012

Materials

Steven M. LaValle: Planning Algorithms, 2006
http://planning.cs.uiuc.edu/

Malik Ghallab, Dana Nau, Paolo Traverso: Automated
Planning: Theory and Practice, 2004
http://projects.laas.fr/planning/

Dana Nau's lecture slides
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

Gerhard Wickler’s lecture slides
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp
lan-Slides.pdf

SOME RIGHTS RESERVED

http://planning.cs.uiuc.edu/
http://projects.laas.fr/planning/
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/

History

Before Graphplan came out, most planning researchers
were working on PSP-like planners

— POP, SNLP, UCPQOP, etc.

Graphplan caused a sensation because it was so much
faster

Many subsequent planning systems have used ideas from
it
— |IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG

— Many of them are much faster than the original
Graphplan

Motivation

* A big source of inefficiency in search algorithms is the
branching factor

— the number of children of each node
* e.g., a backward search may try lots of actions
that can’t be reached from the initial state

91 a,
J4 A
O «
SO) / a2
Os as
as

O3

Motivation

* One way to reduce branching factor:
* First create a relaxed problem
— Remove some restrictions of the original problem

* Want the relaxed problem to be easy to solve
(polynomial time)

— The solutions to the relaxed problem will include all
solutions to the original problem

 Then do a modified version of the original search

— Restrict its search space to include only those actions that
occur in solutions to the relaxed problem

Reachability Tree

Tree structure, where:
— Nodes are states
— Edges correspond to actions
— Root is initial state s,
— Children of node s are I(s)

All nodes in reachability tree are I™(s,)
— All nodes to depth d are I(s,)
— Solves problems with up to d actions in solution

Problem: O(k?) nodes;
k = applicable actions per state

Reachability Tree

rl, q2, al, b2, ur, ug
' Lbqg?2
Mr12 Va2l g
/ Larl
, q1, al, b2, ur, uq rl, g2, al, bq, ur
r2, 92, al, b2, ur, uqg 1‘\ rl, g2, ar, b2, ur 1‘\

“

vrog Ma2l Lbr2

r2, g1, al, b2, ur, r2, 92, al, bq, ur
rl, g2, al, b2, ur, uqg r2, q2, al, br, uq

Reachability with Planning Graph

e Layered directed graph G=(N,E):
— Nodes-P,UA,UP,UA,UP, U ..
* state proposition layers: Py, P, ...
* action layers: A, A, ...
— Edges
* from proposition peP;, to action a€A;:
* from action a€A; to layer peP;:

Reachability with Planning Graph

Reachability with Planning Graph

* Reachability analysis:
— if a goal g is reachable from initial state s,

— then there will be a proposition layer P, in the planning
graph such that g<P,

* Necessary condition, but not sufficient

* Low complexity:
— planning graph is of polynomial size and
— can be computed in polynomial time

The Planning Graph

e Search space for a relaxed version of the planning problem

» Alternating layers of ground literals and actions
— Nodes at action-level i: actions that might be possible to execute at time i
— Nodes at state-level i: literals that might possibly be true at time J
— Edges: preconditions and effects

state-level i1-1 | | action-level 1 || state-level i

state-level O (the literals true in s) \ |

preconditions —

effects

Maintenance action: for the case
where a literal remains unchanged

Planning Graph Construction

The planning graph is constructed layer by layer

Every positive literal in s, is placed into state-level 0, along with
the negation of every positive literal notin s,

Every i-th action-level contains all operators for which their
preconditions are a subset of state-level i-1

For each possible literal | a trivial operator is constructed for
which I'is the only precondition and effect in every action-level

Every i-th state-level is the union of the effect of operators of
action-level j

For every level, maintain conflicts (mutex condition)

The iterations continue until the planning graph stabilizes, i.e.
both action-level and state-level in i+1 is the same as in i-th
iteration

Mutex Condition

O W Q o l O

X N . .T\ D“'-...,___.TD - o .< A

O . Q O 0 O

o o] o 0 Cr:: o

o B—:C O B—0 O J—:C

o o o 0 0
Inconsistent Competing Inconsistent
Effects Interference Needs Support

 Two actions at the same action-level are mutex if
— Inconsistent effects: an effect of one negates an effect of the other
— Interference: one deletes a precondition of the other
— Competing needs: they have mutually exclusive preconditions
Otherwise they don’t interfere with each other
— Both may appear in a solution plan
Two literals at the same state-level are mutex if

— Inconsistent support: one is the negation of the other,
or all ways of achieving them are pairwise mutex

Graph Stabilization

* Flashlight example
— L, expenses initial state
— O, contains RemoveCap operator and three trivial operators

— -O(C,F) enables application
of Insertion operators

— O; contains all possible

OperatOrS ; ;
' WPy LT —~HiT, F
— L3=L, . , A
e (e, F o F
=IHL, -f[B1, F =J[H1, F

~I(B2, ~f(B2, F -2, F —f(H2, F

Ly o L 2y Ly) Ly

Graphplan

Procedure Graphplan:
e fork=0,1,2,..

/Graph expansion: N
* create a “planning graph” that contains k “levels”

Check whether the planning graph satisfies a necessary
\(but insufficient) condition for plan existence)
If it does, then
"« do solution extraction: N
— backward search, modified to consider only the
actions in the planning graph
\ if we find a solution, then return it)

— If the graph is stabilized, solution is unreachable

relaxed
problem

hard
part

Solution Extraction

The set of goals we
are trying to achieve

procedure Solution-extraction(g,j)
if j=0 then return the solution
for each literal /in g

\ / The level of the state S

A real action or a maintenance action

/

nondeterministically choose an action

to use in state s, to achieve /
if any pair of chosen actions are mutex

then backtrack

g' := {the preconditions of
the chosen actions}

Solution-extraction(g’, j-1)
end Solution-extraction

state- action- state-
level level level
-1 [i
® ..o ® -
oy | s
@ - ® -

Example

e Suppose you want to prepare dinner as a surprise for your
sweetheart (who is asleep)

s, = {garbage, cleanHands, quiet}
g = {dinner, present, —garbage}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present
carry() none —garbage, —cleanHands
dolly() none —garbage, —quiet

Also have the maintenance actions: one for each literal

Example (continued)

e state-level O:

{all atoms in s,} U state-level O | action-level 1 | state-level 1
{negations of all atoms not in s,} 0 o
. gar A ar
e action-level 1: carry d
{all actions whose preconditions 1garb
are satisfied and non-mutex in s,} dolly
* state-level 1: cleant C—wm= cleant
{all effects of all of the \ ~cleanH
actions in action-level 1} cook
quiet SR w— quiet
Action Preconditions Effects \ wrap 1 quiet
uie
cook() cleanHands dinner d
wrap() quiet present dinner
carry() none —garbage, —cleanHands present
dolly() none —garbage, —quiet
—dinner T —dinner

Also have the maintenance actions
—present = —present

Example (continued)

 Augment the graph to indicate mutexes

e carry is mutex with the maintenance
action for garbage (inconsistent effects)

state-level O | action-level 1 | state-level 1

: . garb —— garb
* dollyis mutex with wrap carry \
— interference TJgarb
o ~riof - dolly
qu1-et is mutex with present cleanH cleanH
— inconsistent support
* each of cook and wrap is mutex with TcleanH
a maintenance operation _
quiet quiet
Action _ Preconditions Effects Tquiet
cook() cleanHands dinner
wrap() quiet present dinner
carry() none —garbage, —cleanHands present
dolly() none —garbage, —quiet
Also have the maintenance actions —dinner = —dinner

—present = —present

Example (continued)

Check to see whether there’s a possible
solution

Recall that the goal is

— {—=garbage, dinner, present}
Note that in state-level 1,

— All of them are there

— None are mutex with each other
Thus, there’s a chance that a plan exists
Try to find it

— Solution extraction

state-level O | action-level 1 | state-level 1

garb —— garb
carry
dolly

cleanH cleanH

T1cleanH

quiet quiet

—dinner

—present = —present

Example (continued)

Two sets of actions for the goals at
state-level 1

Neither of them works

— Both sets contain actions that are

mutex

state-level O | action-level 1 | state-level 1

garb —— garb

(Carrym | —lgarb

cleanH = cleanH
‘\ “cleanH
|{ cook
quiet ‘ quiet

Tquiet
present].

—dinner

—dinner =

—present S —present

Recall what the algorithm does

procedure Graphplan:
e fork=0,1,?2,..
— Graph expansion:
* create a “planning graph” that contains k “levels”

— Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

— If it does, then
e do solution extraction:

— backward search, modified to consider only the
actions in the planning graph

— if we find a solution, then return it
— If the graph is stabilized, solution is unreachable

Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2
arb — — arb
Go backanddo ° carry gam\ g \
more graph 1garb —garb
: dolly
€xpansion cleanH — cleanH cleanH \
“1cleanH —1cleanH
Generate cook
another guiet — quiet quiet
, \
action-level quiet — Tquiet
and another % 4
' r — inner
state-level dinne \
presen — present
—dinner S —dinner e —dinner
—present — —|present/ = —present

Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

e Solution garb —— garb —— garb
extraction camy \
—1garb
 Twelve dolly
L. cleanH — cleanH cleanH
combinations \
at level 4 “cleanH TcleanH
cook
— Three ways to quiet — quiet quiet
achieve —garb wrap | |
“lquiet — quiet
— Two ways to %
achieve dinner dinner =
— Two ways to presen L
achieve present __ ;.. — —_dinner —
—present = —|present/ = —present

Example (continued)

state-level O | action-level 1 | state-level 1 | action-level 2 | state-level 2

* Several ofthe 9™ — garb garb
o carry \ carry
combinations ~garb — ‘
look OK at level dolly 1 dol!
) cleanH — cleanH (— GleanH\
1cleanH ‘\ —— “1cleanH
cook 1 Cook
e Here’s one of quiet — ‘ quiet
wrap \
them N\ quiet
= o)
—dinner — —dinner = —dinner
—present — —|present/ = —present

Example (continued)

* Call Solution- | state-level 0 | action-level 1 | state-level 1 | action-level 2 | state-level 2

Extraction garb —— garb garb
recursively carry \ carryf
at level 2 (dolly garb _d T ’
GlE!EiI'IH ‘(cleanH — cleanH\
* |t succeeds » T1cleanH ‘\ —— —cleanH
| cook
m *-‘ m ‘ quiet
* Solution wrap . \ \
T quiet Tquiet
whose
parallel dinner
/ength is 2 presen \ — \
—dinner e —dinner S —dinner
—present — —|present/ = —present

Comparison with Plan-Space
Advantage: Plannlng

— The backward-search part of Graphplan—which is the hard part—will only
look at the actions in the planning graph

— smaller search space than PSP; thus faster

Disadvantage:

— To generate the planning graph, Graphplan creates a huge number of ground
atoms

— Many of them may be irrelevant

Can alleviate (but not eliminate) this problem by assigning data types to the
variables and constants

— Only instantiate variables to terms of the same data type

For classical planning, the advantage outweighs the disadvantage
— GraphPlan solves classical planning problems much faster than PSP

