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Materials

• Steven M. LaValle: Planning Algorithms, 2006 
http://planning.cs.uiuc.edu/

• Malik Ghallab, Dana Nau, Paolo Traverso: Automated 
Planning: Theory and Practice, 2004 
http://projects.laas.fr/planning/

• Dana Nau's lecture slides 
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

• Gerhard Wickler’s lecture slides 
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp
lan-Slides.pdf

http://planning.cs.uiuc.edu/
http://projects.laas.fr/planning/
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/


History

• Before Graphplan came out, most planning researchers 
were working on PSP-like planners

– POP, SNLP, UCPOP, etc.

• Graphplan caused a sensation because it was so much 
faster

• Many subsequent planning systems have used ideas from 
it

– IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG

– Many of them are much faster than the original 
Graphplan



Motivation

• A big source of inefficiency in search algorithms is the 
branching factor

– the number of children of each node

• e.g., a backward search may try lots of actions

that can’t be reached from the initial state
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Motivation

• One way to reduce branching factor:

• First create a relaxed problem

– Remove some restrictions of the original problem 

• Want the relaxed problem to be easy to solve 
(polynomial time)

– The solutions to the relaxed problem will include all 
solutions to the original problem

• Then do a modified version of the original search

– Restrict its search space to include only those actions that 
occur in solutions to the relaxed problem



Reachability Tree

• Tree structure, where:
– Nodes are states 
– Edges correspond to actions
– Root is initial state s0

– Children of node s are Γ(s)

• All nodes in reachability tree are Γ>(s0) 
– All nodes to depth d are Γd(s0) 
– Solves problems with up to d actions in solution

• Problem: O(kd) nodes; 
k = applicable actions per state



Reachability Tree
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Reachability with Planning Graph

• Layered directed graph G=(N,E): 

– Nodes - P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ … 

• state proposition layers: P0, P1, …

• action layers: A1, A2, …

– Edges

• from proposition p∈Pj-1 to action a∈Aj:

• from action a∈Aj to layer p∈Pj:



Reachability with Planning Graph
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Reachability with Planning Graph

• Reachability analysis:

– if a goal g is reachable from initial state s0

– then there will be a proposition layer Pg in the planning 
graph such that g⊆Pg

• Necessary condition, but not sufficient

• Low complexity: 

– planning graph is of polynomial size and 

– can be computed in polynomial time



state-level i

effects
Maintenance action: for the case 

where a literal remains unchanged

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
• Search space for a relaxed version of the planning problem

• Alternating layers of ground literals and actions

– Nodes at action-level i: actions that might be possible to execute at time i

– Nodes at state-level i: literals that might possibly be true at time i

– Edges: preconditions and effects

action-level i

preconditions



Planning Graph Construction
• The planning graph is constructed layer by layer

• Every positive literal in s0 is placed into state-level 0, along with 
the negation of every positive literal not in s0

• Every i-th action-level contains all operators for which their 
preconditions are a subset of state-level i-1

• For each possible literal l a trivial operator is constructed for 
which I is the only precondition and effect in every action-level

• Every i-th state-level is the union of the effect of operators of  
action-level i

• For every level, maintain conflicts (mutex condition)

• The iterations continue until the planning graph stabilizes, i.e. 
both action-level and state-level in i+1 is the same as in i-th
iteration



Mutex Condition

• Two actions at the same action-level are mutex if

– Inconsistent effects: an effect of one negates an effect of the other

– Interference: one deletes a precondition of the other

– Competing needs: they have mutually exclusive preconditions

• Otherwise they don’t interfere with each other

– Both may appear in a solution plan

• Two literals at the same state-level are mutex if

– Inconsistent support: one is the negation of the other,
or all ways of achieving them are pairwise mutex

Recursive 

propagation

of mutexes



Graph Stabilization

• Flashlight example

– L1 expenses initial state

– O1 contains RemoveCap operator and three trivial operators

– -O(C,F) enables application 
of Insertion operators

– O3 contains all possible 
operators

– L3=L4

– O3=O4



Graphplan
Procedure Graphplan:

• for k = 0, 1, 2, …

– Graph expansion:

• create a “planning graph” that contains k “levels”

– Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

– If it does, then

• do solution extraction:

– backward search, modified to consider only the 
actions in the planning graph

– if we find a solution, then return it

– If the graph is stabilized, solution is unreachable

relaxed

problem

hard

part



Solution Extraction

procedure Solution-extraction(g,j)

if j=0 then return the solution

for each literal l in g

nondeterministically choose an action
to use in state s j–1 to achieve l

if any pair of chosen actions are mutex

then backtrack

g' := {the preconditions of
the chosen actions}

Solution-extraction(g', j–1)

end Solution-extraction

The level of the state sj

The set of goals we 
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Example
• Suppose you want to prepare dinner as a surprise for your 

sweetheart (who is asleep)

s0 = {garbage, cleanHands, quiet}

g = {dinner, present, garbage}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none garbage, cleanHands

dolly() none garbage, quiet

Also have the maintenance actions: one for each literal



Example (continued)
• state-level 0:

{all atoms in s0} U
{negations of all atoms not in s0}

• action-level 1:
{all actions whose preconditions

are satisfied and non-mutex in s0}

• state-level 1:
{all effects of all of the

actions in action-level 1}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none garbage, cleanHands

dolly() none garbage, quiet

Also have the maintenance actions dinner

present

dinner

present

state-level 0 state-level 1action-level 1



Example (continued)
• Augment the graph to indicate mutexes

• carry is mutex with the maintenance
action for garbage (inconsistent effects)

• dolly is mutex with wrap

– interference

• ~quiet is mutex with present

– inconsistent support

• each of cook and wrap is mutex with
a maintenance operation

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none garbage, cleanHands

dolly() none garbage, quiet

Also have the maintenance actions dinner

present

dinner

present

state-level 0 state-level 1action-level 1



dinner

present

dinner

present

Example (continued)

• Check to see whether there’s a possible 
solution

• Recall that the goal is

– {garbage, dinner, present}

• Note that in state-level 1,

– All of them are there

– None are mutex with each other

• Thus, there’s a chance that a plan exists

• Try to find it

– Solution extraction

state-level 0 state-level 1action-level 1



Example (continued)

• Two sets of actions for the goals at 
state-level 1

• Neither of them works

– Both sets contain actions that are 
mutex

dinner

present

dinner

present

state-level 0 state-level 1action-level 1



Recall what the algorithm does

procedure Graphplan:

• for k = 0, 1, 2, …

– Graph expansion:

• create a “planning graph” that contains k “levels”

– Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

– If it does, then

• do solution extraction:

– backward search, modified to consider only the 
actions in the planning graph

– if we find a solution, then return it

– If the graph is stabilized, solution is unreachable



Example (continued)

• Go back and do 
more graph
expansion

• Generate 
another
action-level
and another 
state-level
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Example (continued)

• Solution
extraction

• Twelve 
combinations
at level 4

– Three ways to 
achieve garb

– Two ways to 
achieve dinner

– Two ways to 
achieve present dinner

present

dinner
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Example (continued)

• Several of the 
combinations 
look OK at level 
2

• Here’s one of 
them
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Example (continued)
• Call Solution-

Extraction 
recursively 
at level 2

• It succeeds

• Solution 
whose 
parallel 
length is 2
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Comparison with Plan-Space 
Planning• Advantage: 

– The backward-search part of Graphplan—which is the hard part—will only 
look at the actions in the planning graph

– smaller search space than PSP; thus faster

• Disadvantage: 

– To generate the planning graph, Graphplan creates a huge number of ground 
atoms

– Many of them may be irrelevant

• Can alleviate (but not eliminate) this problem by assigning data types to the 
variables and constants

– Only instantiate variables to terms of the same data type

• For classical planning, the advantage outweighs the disadvantage

– GraphPlan solves classical planning problems much faster than PSP


