
Graphplan

Jiří Vokřínek
A4M36PAH - 15.4.2012

Materials

• Steven M. LaValle: Planning Algorithms, 2006
http://planning.cs.uiuc.edu/

• Malik Ghallab, Dana Nau, Paolo Traverso: Automated
Planning: Theory and Practice, 2004
http://projects.laas.fr/planning/

• Dana Nau's lecture slides
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

• Gerhard Wickler’s lecture slides
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphp
lan-Slides.pdf

http://planning.cs.uiuc.edu/
http://projects.laas.fr/planning/
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf
http://creativecommons.org/licenses/by-nc-sa/2.0/

History

• Before Graphplan came out, most planning researchers
were working on PSP-like planners

– POP, SNLP, UCPOP, etc.

• Graphplan caused a sensation because it was so much
faster

• Many subsequent planning systems have used ideas from
it

– IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG

– Many of them are much faster than the original
Graphplan

Motivation

• A big source of inefficiency in search algorithms is the
branching factor

– the number of children of each node

• e.g., a backward search may try lots of actions

that can’t be reached from the initial state

g0

g1

g2

g3

a1

a2

a3

g4

g5

s0

a4

a5

Motivation

• One way to reduce branching factor:

• First create a relaxed problem

– Remove some restrictions of the original problem

• Want the relaxed problem to be easy to solve
(polynomial time)

– The solutions to the relaxed problem will include all
solutions to the original problem

• Then do a modified version of the original search

– Restrict its search space to include only those actions that
occur in solutions to the relaxed problem

Reachability Tree

• Tree structure, where:
– Nodes are states
– Edges correspond to actions
– Root is initial state s0

– Children of node s are Γ(s)

• All nodes in reachability tree are Γ>(s0)
– All nodes to depth d are Γd(s0)
– Solves problems with up to d actions in solution

• Problem: O(kd) nodes;
k = applicable actions per state

Reachability Tree

r1, q2, a1, b2, ur, uq

r1, q2, a1, bq, ur

r1, q2, ar, b2, ur

r1, q1, a1, b2, ur, uq

r2, q2, a1, b2, ur, uq

r2, q2, a1, bq, ur

r2, q2, a1, br, uq

r2, q1, a1, b2, ur, uq

r1, q2, a1, b2, ur, uq

Mq21
Mr12

Lar1

Lbq2

Mr21
Mq21

Lbq2

Lbr2

Reachability with Planning Graph

• Layered directed graph G=(N,E):

– Nodes - P0 ∪ A1 ∪ P1 ∪ A2 ∪ P2 ∪ …

• state proposition layers: P0, P1, …

• action layers: A1, A2, …

– Edges

• from proposition p∈Pj-1 to action a∈Aj:

• from action a∈Aj to layer p∈Pj:

Reachability with Planning Graph

r1
q2
a1
b2
ur
uq

r1
r2
q1
q2
a1
ar
b2
bq
ur
uq

r1
r2
q1
q2
a1
ar

b2

bq
ur
uq

aq

br

r1
r2
q1
q2
a1

ar

b2

bq
ur
uq

aq

br

a2

b1

Mr12

Mq21

Lbq2

Lar1

Mr12

Mq21

Lbr2

Lar1

Mr21

Mq12

Lbq2

Laq1

Uar1

Ubq2

Mq21

Lbr2

Lar1

Mr21
Mq12

Lbq2

Laq1

Uar1

Ubq2

Uar2

Ubq1

Uaq1
Ubr2

P0 A1 P3P2P1 A3A2

Reachability with Planning Graph

• Reachability analysis:

– if a goal g is reachable from initial state s0

– then there will be a proposition layer Pg in the planning
graph such that g⊆Pg

• Necessary condition, but not sufficient

• Low complexity:

– planning graph is of polynomial size and

– can be computed in polynomial time

state-level i

effects
Maintenance action: for the case

where a literal remains unchanged

state-level i-1

state-level 0 (the literals true in s0)

The Planning Graph
• Search space for a relaxed version of the planning problem

• Alternating layers of ground literals and actions

– Nodes at action-level i: actions that might be possible to execute at time i

– Nodes at state-level i: literals that might possibly be true at time i

– Edges: preconditions and effects

action-level i

preconditions

Planning Graph Construction
• The planning graph is constructed layer by layer

• Every positive literal in s0 is placed into state-level 0, along with
the negation of every positive literal not in s0

• Every i-th action-level contains all operators for which their
preconditions are a subset of state-level i-1

• For each possible literal l a trivial operator is constructed for
which I is the only precondition and effect in every action-level

• Every i-th state-level is the union of the effect of operators of
action-level i

• For every level, maintain conflicts (mutex condition)

• The iterations continue until the planning graph stabilizes, i.e.
both action-level and state-level in i+1 is the same as in i-th
iteration

Mutex Condition

• Two actions at the same action-level are mutex if

– Inconsistent effects: an effect of one negates an effect of the other

– Interference: one deletes a precondition of the other

– Competing needs: they have mutually exclusive preconditions

• Otherwise they don’t interfere with each other

– Both may appear in a solution plan

• Two literals at the same state-level are mutex if

– Inconsistent support: one is the negation of the other,
or all ways of achieving them are pairwise mutex

Recursive

propagation

of mutexes

Graph Stabilization

• Flashlight example

– L1 expenses initial state

– O1 contains RemoveCap operator and three trivial operators

– -O(C,F) enables application
of Insertion operators

– O3 contains all possible
operators

– L3=L4

– O3=O4

Graphplan
Procedure Graphplan:

• for k = 0, 1, 2, …

– Graph expansion:

• create a “planning graph” that contains k “levels”

– Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

– If it does, then

• do solution extraction:

– backward search, modified to consider only the
actions in the planning graph

– if we find a solution, then return it

– If the graph is stabilized, solution is unreachable

relaxed

problem

hard

part

Solution Extraction

procedure Solution-extraction(g,j)

if j=0 then return the solution

for each literal l in g

nondeterministically choose an action
to use in state s j–1 to achieve l

if any pair of chosen actions are mutex

then backtrack

g' := {the preconditions of
the chosen actions}

Solution-extraction(g', j–1)

end Solution-extraction

The level of the state sj

The set of goals we

are trying to achieve

state-

level

i-1

action-

level

i

state-

level

i

A real action or a maintenance action

Example
• Suppose you want to prepare dinner as a surprise for your

sweetheart (who is asleep)

s0 = {garbage, cleanHands, quiet}

g = {dinner, present, garbage}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none garbage, cleanHands

dolly() none garbage, quiet

Also have the maintenance actions: one for each literal

Example (continued)
• state-level 0:

{all atoms in s0} U
{negations of all atoms not in s0}

• action-level 1:
{all actions whose preconditions

are satisfied and non-mutex in s0}

• state-level 1:
{all effects of all of the

actions in action-level 1}

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none garbage, cleanHands

dolly() none garbage, quiet

Also have the maintenance actions dinner

present

dinner

present

state-level 0 state-level 1action-level 1

Example (continued)
• Augment the graph to indicate mutexes

• carry is mutex with the maintenance
action for garbage (inconsistent effects)

• dolly is mutex with wrap

– interference

• ~quiet is mutex with present

– inconsistent support

• each of cook and wrap is mutex with
a maintenance operation

Action Preconditions Effects

cook() cleanHands dinner

wrap() quiet present

carry() none garbage, cleanHands

dolly() none garbage, quiet

Also have the maintenance actions dinner

present

dinner

present

state-level 0 state-level 1action-level 1

dinner

present

dinner

present

Example (continued)

• Check to see whether there’s a possible
solution

• Recall that the goal is

– {garbage, dinner, present}

• Note that in state-level 1,

– All of them are there

– None are mutex with each other

• Thus, there’s a chance that a plan exists

• Try to find it

– Solution extraction

state-level 0 state-level 1action-level 1

Example (continued)

• Two sets of actions for the goals at
state-level 1

• Neither of them works

– Both sets contain actions that are
mutex

dinner

present

dinner

present

state-level 0 state-level 1action-level 1

Recall what the algorithm does

procedure Graphplan:

• for k = 0, 1, 2, …

– Graph expansion:

• create a “planning graph” that contains k “levels”

– Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence

– If it does, then

• do solution extraction:

– backward search, modified to consider only the
actions in the planning graph

– if we find a solution, then return it

– If the graph is stabilized, solution is unreachable

Example (continued)

• Go back and do
more graph
expansion

• Generate
another
action-level
and another
state-level

dinner

present

dinner

present

dinner

present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

Example (continued)

• Solution
extraction

• Twelve
combinations
at level 4

– Three ways to
achieve garb

– Two ways to
achieve dinner

– Two ways to
achieve present dinner

present

dinner

present

dinner

present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

Example (continued)

• Several of the
combinations
look OK at level
2

• Here’s one of
them

dinner

present

dinner

present

dinner

present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

Example (continued)
• Call Solution-

Extraction
recursively
at level 2

• It succeeds

• Solution
whose
parallel
length is 2

dinner

present

dinner

present

dinner

present

state-level 0 state-level 1action-level 1 state-level 2action-level 2

Comparison with Plan-Space
Planning• Advantage:

– The backward-search part of Graphplan—which is the hard part—will only
look at the actions in the planning graph

– smaller search space than PSP; thus faster

• Disadvantage:

– To generate the planning graph, Graphplan creates a huge number of ground
atoms

– Many of them may be irrelevant

• Can alleviate (but not eliminate) this problem by assigning data types to the
variables and constants

– Only instantiate variables to terms of the same data type

• For classical planning, the advantage outweighs the disadvantage

– GraphPlan solves classical planning problems much faster than PSP

