Graphplan Dinner Date Example

Jiří Vokřínek \& Michal Čáp A4M36PAH
Tutorial 22.4.2012

Materials

- These slides and the example used is based on Dana Nau's lecture slides
http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf

Example

- Suppose you want to prepare dinner as a surprise for your sweetheart (who is asleep)
$s 0=$ \{garbage, cleanHands, quiet $\}$
$g=\{$ dinner, present, \neg garbage $\}$

Action Preconditions Effects

cook() cleanHands dinner
wrap() quiet present
carry() none \neg garbage, $\neg c l e a n H a n d s$
dolly() none \neg garbage, \neg quiet

Also have the maintenance actions: one for each literal

Example (continued)

- state-level 0:
\{all atoms in s 0$\} \mathrm{U}$

$$
\begin{array}{|l|l|l|}
\hline \text { state-level 0 } & \text { action-level 1 } & \text { state-level 1 } \\
\hline
\end{array}
$$

$\{$ negations of all atoms not in SO \}arb

- action-level 1:
\{all actions whose preconditions are satisfied and non-mutex in 50$\}$
- state-level 1:
\{all effects of all of the actions in action-level 1$\}$

Action Preconditions Effects

cook()
wrap()
carry()
dolly()
Also have the maintenance actions
cleanHands dinner
quiet present
none \neg garbage, \neg cleanHands
none \neg garbage, $\neg q u i e t$

Example (continued)

- Augment the graph to indicate	- state-level 0	action-level 1	state-level 1
- carry is mutex with the maintenamer action for garbage (inconsistent effertal
- dolly is mutex with wrap - interference
- ~quiet is mutex with present - inconsistent support
- each of cook and wrap is mutex witl a maintenance operation

Action Preconditions Effects

 cook() cleanHands dinner wrap() quiet present carry() none \neg garbage, \neg cleanHa dolly() none \neg garbage, $\neg q u i e t$ Also have the maintenance actions

Example (continued)

$$
\begin{array}{|l|l|l|}
\hline \text { state-level 0 } & \text { action-level 1 } & \text { state-level 1 } \\
\hline
\end{array}
$$

- Check to see whether there's a possible solution
- Recall that the goal is
- \{ \neg garbage, dinner, present\}
- Note that in state-level 1,
- All of them are there
- None are mutex with each other
- Thus, there's a chance that a plan exists
- Try to find it
- Solution extraction

Example (continued)

$$
\begin{array}{|l|l|l|}
\hline \text { state-level 0 } & \text { action-level 1 } & \text { state-level 1 } \\
\hline
\end{array}
$$

- Two sets of actions for the goals at state-level 1
- Neither of them works
- Both sets contain actions that are mutex

Recall what the algorithm does

procedure Graphplan:

- for $k=0,1,2, \ldots$
- Graph expansion:
- create a "planning graph" that contains k "levels"
- Check whether the planning graph satisfies a necessary
(but insufficient) condition for plan existence
- If it does, then
- do solution extraction:
- backward search, modified to consider only the actions in the planning graph
- if we find a solution, then return it
- If the graph is stabilized, solution is unreachable

Example (continued)

state-level 0	action-level 1	state-level 1	action-level 2	state-level 2

- Go back and do more graph expansion
- Generate another action-level and another state-level

Example (continued)

- Solution extraction
- Twelve
combinations at level 4
- Three ways to achieve \neg garb
- Two ways to achieve dinner
- Two ways to achieve present

Example (continued)

- Solution extraction
- Twelve
combinations at level 4
- Three ways to achieve \neg garb
- Two ways to achieve dinner
- Two ways to achieve present

Example (continued)

- Several of the combination s look OK at level 2
- Here's one of them

state-level 0	action-level 1	state-level 1	action-level 2	state-level 2

Example (continued)

- Call SolutionExtraction recursively at level 2
- It succeeds
- Solution whose parallel length is 2

state-level 0	action-level 1	state-level 1	action-level 2	state-level 2

