STRIPS Representation Example

Assume that there is a monkey in a room with some bananas hanging out of reach from the ceiling, but a box is available that
will enable the monkey to reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the box at
C. The monkey and box have height LOW, but if the monkey climbs onto the box, he will have height HIGH, the same as the
bananas. The actions available to the monkey include GO from one place to another, PUSH an object from one place to
another, CLIMB onto an object, and GRASP an object. Grasping results in holding the object if the monkey and object are

in the same place at the same height. The monkey wants to get the bananas.

Initial State:
At(Monkey,A)
At(Bananas,B)
At(Box,C)
Height(Monkey,Low)
Height(Box,Low)
Height(Bananas,High)
Pushable(Box)
Climbable(Box)
Graspable(Bananas)
Goal State:
Have(Monkey, Bananas)
Operators:
Go(x.y)
Precond: At(Monkey,x) AND Height(Monkey,Low)
Effect: At(Monkey,y) AND NOT At(Monkey,x)
Push(b,x,y)
Precond: At(Monkey,x) AND Height(Monkey,Low) AND At(b,x) AND Pushable(b) AND Height(b,Low)
Effect: At(b,y) AND At(Monkey,y) AND NOT At(b,x) AND NOT At(Monkey,x)
ClimbUp(b)
Precond: At(Monkey,x) AND Height(Monkey,Low) AND At(b,x) AND Climbable(x) AND Height(b,Low)
Effect: On(Monkey,b) AND NOT Height(Monkey,Low) AND Height(Monkey,High)
Grasp(b)

Precond: At(Monkey,x) AND Height(Monkey,h) AND At(b,x) AND Graspable(b) AND Height(b,h)
Effect: Have(Monkey,b)

Heuristics
General procedure for obtaining a heuristic
Solve an easier version of the problem. Two common methods:
o relaxation: consider less constrained version of the problem
e abstraction: consider smaller version of real problem
Both have been very successfully applied in planning (separately and together).
Today relaxation:
General idea = (Admissible) heuristic functions obtained as (optimal) cost functions of relaxed problems

From the last time:
A heuristic £ is called
e safe if h*(o) = oo for all o € X with A(o) = ¢
e goal-aware if h(a) = 0 for all goal nodes o € ¥
e admissible if h(o) < h*(o) for all nodes o € &
°

consistent if h(o) < h(o’) + 1 for all nodes 0,0’ € &
such that ¢’ is a successor of o



Precision matters

Given two admissible heuristics iy, ha, if ha(o) = hi(o) for all
search nodes o, then ho dominates hy and is better for
optimizing search

Combining admissible heuristics

For any admissible heuristics hy. ..., hg,

h(o) = maxt_, {hi(o)}

is also admissible and dominates all individual A;

Towards domain-independent agents: How to get heuristics automatically?
Domain specific heuristic examples:

e Straight-line heuristic (route planning): Ignore the fact that one must stay on roads.

e Manhattan heuristic (15-puzzle): Ignore the fact that one cannot move through occupied tiles.
We want to apply the idea of relaxations to planning.

Informally, we want to ignore bad side effects of applying actions. 1 5 3

In STRIPS, good and bad effects are easy to distinguish: )
Effects that make atoms true are good (add effects). 6 7 9

Effects that make atoms false are bad (delete effects).

Idea for the heuristic: Ignore all delete effects. © € .

How can we use relaxations for heuristic planning in practice?

Different possibilities:

@ Implement an optimal planner for relaxed planning tasks
and use its solution lengths as an estimate, even though it
is NP-hard.
~+ h™ heuristic (not that realistic. why?)

@ Do not actually solve the relaxed planning task, but
compute an estimate of its difficulty in a different way.
~= hmax heuristic, hadq heuristic

@ Compute a solution for relaxed planning tasks which is not
necessarily optimal, but “reasonable”.
~+ hefp heuristic

Relaxed planning graph & generic template for heuristics

e Build a layered reachability graph Py, Ag, P, Ay, ...

o= {pel}
A = {ae A|pre(a) C B}
P = PU{;)&addu|aE4}

I
| _,| —

@ Terminate when GG C P, E o]
C
e i 5

Initial state Goal



Blackboard: Relaxed planning graph for this example (*)
s ={a,b}, g={b,e,f}

ar = ({a},d,{b,ch

a, = ({a,cL.I,{d}

a; =({b,c},J,{ep

a;=({b,d}.<,{ef,gh

Computing heuristics from relaxed planning graphs

def generic-rpg-heuristic({P, 1.0, G), s):
I+ = (P, s.0".G)
for k€ {0,1,2,... }:
rpg := RPGL(IIT)
if G C Py:
Annotate nodes of rpg.
if termination criterion is true:
return heuristic value from annotations
else if k = |P|:
return o

Many planning heuristics fit the generic template: hmax, hadd, hFF

Forward cost heuristics
The simplest relaxed planning graph heuristics are forward cost heuristics. Examples: hmax, hadd
e Here, node annotations are cost values (natural numbers).
e The cost of a node estimates how expensive (in terms of required operators) it is to make this node true.

Forward cost heuristics
Computing annotations:

@ Propagate cost values bottom-up using a combination rule
for action nodes and a combination rule for proposition
nodes.

@ At action nodes, add 1 after applying combination rule.
Termination criterion:

@ stability: terminate if P, = P._; and cost for each
proposition node p¥ € P, equals cost for pF=! € P,_;

Heuristic value:

@ The heuristic value is the cost of the auxiliary goal node.




The max heuristic

Forward cost heuristics: max heuristic hmax

Combination rule for action nodes:

e cost(u) = max({cost(v1),. .., cost(vy)})
(with max(9) := 0)

Combination rule for proposition nodes:

o cost(u) = min({cost(v1),. .., cost{vy)})
In both cases, {v1,.... vy} is the set of immediate predecessors
of u. )
Intuition:

@ Action rule: If we have to achieve several preconditions,
estimate this by the most expensive cost.

@ Proposition rule: If we have a choice how to achieve a
proposition, pick the cheapest possibility.

EXAMPLE (*) — calculate hmax heuristic

The additive heuristic
Forward cost heuristics: additive heuristic haqd
Combination rule for action nodes:

@ cost(u) = cost(vy) + ...+ cost(vy)
(with > (0) := 0)

Combination rule for proposition nodes:

o cost(u) = min({cost(vy),. .., cost(vy)})
In both cases, {vy,..., v} is the set of immediate predecessors
of u. )
Intuition:

@ Action rule: If we have to achieve several preconditions,
estimate this by the cost of achieving each in isolation.

@ Proposition rule: If we have a choice how to achieve a
proposition, pick the cheapest possibility.

EXAMPLE (*) — calculate hadd heuristic

FF heuristic

The FF heuristic hgg

Computing annotations:
@ Annotations are Boolean values, computed top-down.

A node is marked when its annotation is set to 1 and
unmarked if it is set to 0. Initially, the goal node is
marked, and all other nodes are unmarked.

We say that an action node is justified if all its true
immediate predecessors are marked, and that a proposition
node is justified if at least one of its immediate
predecessors is marked.




Apply these rules until all marked nodes are justified:
@ Mark all immediate predecessors of a marked unjustified
ACTION node.
@ Mark the immediate predecessor of a marked unjustified
PROP node with only one immediate predecessor.
© Mark an immediate predecessor of a marked unjustified
PROP node connected via an idle arc.
@ Mark any immediate predecessor of a marked unjustified
PROP node.
The rules are given in priority order: earlier rules are
preferred if applicable.
Termination criterion:
@ Always terminate at first layer where goal node is true.
Heuristic value:

@ The heuristic value is the number of marked action nodes.

EXAMPLE (*) — calculate hadd heuristic



