Hierarchical Task Network

Jiří Vokřínek A4M36PAH - 24.3.2014

Materials

- Malik Ghallab, Dana Nau, Paolo Traverso: Automated Planning: Theory and Practice, 2004 http://projects.laas.fr/planning/
- Dana Nau's lecture slides
 http://www.cs.umd.edu/~nau/planning/slides/chapter06.pdf
- Gerhard Wickler's lecture slides (A4M36PAH 2010/2011)
 <u>http://www.inf.ed.ac.uk/teaching/courses/plan/slides/Graphplan-Slides.pdf</u>

Introduction

- Hierarchical Task Network (HTN)
 - Classical planning representation states (set of atoms) and actions (deterministic state transition)
 - HTN differs in approach set of *tasks* instead of set of *goals*
 - Non-primitive (compound) vs. primitive tasks
 - Methods prescriptions to decompose a task into sub-tasks
 - Widely used for practical applications (intuitive representation)

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes

Example: travel from Los Angeles to Tokyo

Google maps: 7,869 mi, 286 hours through Seattle and Hawai (by car)

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes"
 e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes"
 e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination

- Example: travel to a destination that's far away:
 - Domain-independent planner:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes"
 e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints
 - E.g., taxi not good for long distances
 - Backtrack if necessary

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints
 - E.g., taxi not good for long distances
 - Backtrack if necessary

- Objective: perform a given set of tasks
- Input includes:
 - Set of operators
 - Set of methods: recipes for decomposing a complex task into more primitive subtasks
- Planning process:
 - Decompose non-primitive tasks recursively until primitive tasks are reached

Simple Task Network (STN)

- A special case of HTN planning
- States and operators
 - The same as in classical planning
- Task: an expression of the form $t(u_1,...,u_n)$
 - t is a **task symbol**, and each u_i is a term
 - Two kinds of task symbols (and tasks):
 - *primitive*: tasks that we know how to execute directly
 - task symbol is an operator name
 - non-primitive: tasks that must be decomposed into subtasks
 - use *methods* (next slide)

- Totally ordered method: a 4-tuple
 m = (name(m), task(m), precond(m), subtasks(m))
 - name(m): an expression of the form $n(x_1,...,x_n)$
 - $x_1,...,x_n$ are parameters variable symbols
 - task(m): a non-primitive task
 - precond(m): preconditions (literals)
 - subtasks(m): a sequence of tasks $\langle t_1, ..., t_k \rangle$

als) travel(x,y)air-travel(x,y)

long-distance(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

```
air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

subtasks: \langle buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)), travel(a(y),y) \rangle
```


- Partially ordered method: a 4-tuple
 m = (name(m), task(m), precond(m), subtasks(m))
 - name(m): an expression of the form $n(x_1,...,x_n)$
 - $x_1,...,x_n$ are parameters variable symbols
 - task(m): a nonprimitive task
 - precond(m): preconditions (literals)
 - subtasks(m): a partially ordered set of tasks $\{t_1, ..., t_k\}$

als) travel(x,y)long-distance(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

```
air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

network: u_1=buy-ticket(a(x),a(y)), u_2= travel(x,a(x)), u_3= fly(a(x), a(y)), u_4= travel(a(y),y), \{(u_1,u_3),(u_2,u_3),(u_3,u_4)\}
```


Domains, Problems, Solutions

- STN planning domain: methods, operators
- STN planning problem: methods, operators, initial state, task list
- Total-order STN planning domain and planning problem:
 - Same as above except that all methods are totally ordered

Domains, Problems, Solutions

- STN planning domain: methods, operators
- STN planning problem: methods, operators, initial state, task list
- Total-order STN planning domain and planning problem:
 - Same as above except that all methods are totally ordered
- Solution: any executable plan that can be generated by recursively applying
 - Methods to non-primitive tasks
 - Operators to primitive tasks

Domains, Problems, Solutions

 Suppose we want to move three stacks of containers in a way that preserves the order of the containers

- *task symbols*: $T_S = \{t_1, ..., t_n\}$
 - operator names $\subsetneq T_s$: primitive tasks
 - non-primitive task symbols: T_s operator names
- $task: t_i(r_1,...,r_k)$
 - $-t_i$: task symbol (primitive or non-primitive)
 - $-r_1,...,r_k$: terms, objects manipulated by the task
 - ground task: are ground
- action a accomplishes ground primitive task $t_i(r_1,...,r_k)$ in state s iff
 - name(a) = t_i and
 - a is applicable in s

- A simple task network w is an acyclic directed graph (U,E) in which
 - the node set $U = \{t_1,...,t_n\}$ is a set of tasks and
 - the edges in E define a partial ordering of the tasks in U.
- A task network w is **ground/primitive** if all tasks $t_u \in U$ are ground/primitive, otherwise it is unground/non-primitive.

- Ordering: $t_u \prec t_v$ in w = (U, E) iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on
 - w is a sequence of tasks: $\langle t_1,...,t_n \rangle$

- Let $w = \langle t_1, ..., t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $-\pi(w) = \langle a_1,...,a_n \rangle$ where $a_i = t_i$; $1 \le i \le n$

STN Methods

- Let M_S be a set of method symbols. An **STN method** is a 4-tuple m=(name(m),task(m),precond(m),network(m)) where:
 - name(*m*):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - » $n ∈ M_s$: unique method symbol
 - » $x_1,...,x_k$: all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - precond(m): set of literals called the method's preconditions;
 - network(m): task network (U,E) containing the set of subtasks U of m

Decomposition Tree: DWR Example


```
take-and-put(c, k, l_1, l_2, p_1, p_2, x_1, x_2):
   task: move-topmost-container(p_1, p_2)
   precond: top(c, p_1), on(c, x_1), ; true if p_1 is not empty
              attached(p_1, l_1), belong(k, l_1), ; bind l_1 and k
              \mathsf{attached}(p_2, l_2), \mathsf{top}(x_2, p_2) ; bind l_2 and x_2
   subtasks: \langle \mathsf{take}(k, l_1, c, x_1, p_1), \, \mathsf{put}(k, l_2, c, x_2, p_2) \rangle
recursive-move(p, q, c, x):
   task:
              move-stack(p,q)
   precond: top(c, p), on(c, x); true if p is not empty
   subtasks: \langle move-topmost-container(p, q), move-stack(p, q) \rangle
              ;; the second subtask recursively moves the rest of the stack
do-nothing(p,q)
   task:
              move-stack(p, q)
   precond: top(pallet, p); true if p is empty
   subtasks: () ; no subtasks, because we are done
move-each-twice()
              move-all-stacks()
   task:
   precond: ; no preconditions
   subtasks: ; move each stack twice:
              (move-stack(p1a,p1b), move-stack(p1b,p1c),
               move-stack(p2a,p2b), move-stack(p2b,p2c),
               move-stack(p3a,p3b), move-stack(p3b,p3c)
```

Total-Order Formulation


```
take-and-put(c, k, l_1, l_2, p_1, p_2, x_1, x_2):
                 move-topmost-container (p_1, p_2)
    task:
    precond: top(c, p_1), on(c, x_1), ; true if p_1 is not empty
                 \mathsf{attached}(p_1, l_1), \mathsf{belong}(k, l_1), ; \mathsf{bind}\ l_1\ \mathsf{and}\ k
                 \mathsf{attached}(p_2, l_2), \mathsf{top}(x_2, p_2) ; bind l_2 and x_2
    subtasks: \langle \mathsf{take}(k, l_1, c, x_1, p_1), \, \mathsf{put}(k, l_2, c, x_2, p_2) \rangle
recursive-move(p, q, c, x):
    task:
                 move-stack(p, q)
    precond: top(c, p), on(c, x); true if p is not empty
    subtasks: \langle move-topmost-container(p,q), move-stack(p,q) \rangle
                 ;; the second subtask recursively moves the rest of the stack
do-nothing(p,q)
    task:
                 move-stack(p,q)
    precond: top(pallet, p); true if p is empty
    subtasks: () ; no subtasks, because we are done
move-each-twice()
   task:
                 move-all-stacks()
    precond: ; no preconditions
   network: ; move each stack twice:
                 u_1 = \mathsf{move}\mathsf{-stack}(\mathsf{p1a},\mathsf{p1b}), \ u_2 = \mathsf{move}\mathsf{-stack}(\mathsf{p1b},\mathsf{p1c}),
                 u_3 = move-stack(p2a,p2b), u_4 = move-stack(p2b,p2c),
                 u_5 = \mathsf{move}\mathsf{-stack}(\mathsf{p3a},\mathsf{p3b}), \ u_6 = \mathsf{move}\mathsf{-stack}(\mathsf{p3b},\mathsf{p3c}),
                 \{(u_1,u_2),(u_3,u_4),(u_5,u_6)\}
```

Partial-Order Formulation

loc1

Solving Total-Order STN Planning Problems

```
\mathsf{TFD}(s,\langle t_1,\ldots,t_k\rangle,O,M)
    if k = 0 then return \langle \rangle (i.e., the empty plan)
     if t_1 is primitive then
          active \leftarrow \{(a,\sigma) \mid a \text{ is a ground instance of an operator in } O,
                             \sigma is a substitution such that a is relevant for \sigma(t_1),
                             and a is applicable to s}
          if active = \emptyset then return failure
                                                                                      state s; task list T=(|\mathbf{t}_1|, \mathbf{t}_2, ...)
          nondeterministically choose any (a, \sigma) \in active
                                                                                                        action a
          \pi \leftarrow \mathsf{TFD}(\gamma(s,a),\sigma(\langle t_2,\ldots,t_k\rangle),O,M)
          if \pi = failure then return failure
                                                                                      state \gamma(s,a); task list T=(t_2, ...)
          else return a.\pi
     else if t_1 is nonprimitive then
          active \leftarrow \{m \mid m \text{ is a ground instance of a method in } M,
                             \sigma is a substitution such that m is relevant for \sigma(t_1),
                             and m is applicable to s}
                                                                                               task list T=(|\mathbf{t_1}|, \mathbf{t_2},...)
          if active = \emptyset then return failure
                                                                                         method instance m
          nondeterministically choose any (m, \sigma) \in active
          w \leftarrow \text{subtasks}(m). \sigma(\langle t_2, \ldots, t_k \rangle)
                                                                                         task list T=(|\mathbf{u_1},\ldots,\mathbf{u_k}|,t_2,\ldots)
          return \mathsf{TFD}(s, w, O, M)
```

Comparison to F/B Search

 In state-space planning, must choose whether to search forward or backward

In HTN planning, there are two choices to make about direction:

Comparison to F/B Search

task t₀ Like a backward search, TFD is goal-directed task t_m task t_n Goals correspond to tasks Like a forward search, it generates actions in the same order in which they'll be executed Whenever we want to plan the next task

- We've already planned everything that comes before it
- Thus, we know the current state of the world.

Limitation of Ordered-Task Planning

- Can't interleave subtasks of different tasks
- Sometimes this makes things awkward

Partially Ordered Methods

With partially ordered methods, the subtasks can be interleaved

- Fits many planning domains better
- Requires a more complicated planning algorithm

```
PFD(s, w, O, M)
    if w = \emptyset then return the empty plan
    nondeterministically choose any u \in w that has no predecessors in w
    if t_u is a primitive task then
        active \leftarrow \{(a,\sigma) \mid a \text{ is a ground instance of an operator in } O,
                               \sigma is a substitution such that name(a) = \sigma(t_u),
                               and a is applicable to s}
                                                                          \pi = \{a_1, \dots, a_k\}; \ w = \{|\mathbf{t_1}|, \mathbf{t_2}, \mathbf{t_3} \dots\}
        if active = \emptyset then return failure
                                                                             operator instance a
         nondeterministically choose any (a, \sigma) \in active
        \pi \leftarrow \mathsf{PFD}(\gamma(s,a),\sigma(w-\{u\}),O,M)
                                                                         \pi = \{a_1, \ldots, a_k, [a]\}; w' = \{t_2, t_3, \ldots\}
        if \pi = failure then return failure
        else return a.\pi
    else
        active \leftarrow \{(m,\sigma) \mid m \text{ is a ground instance of a method in } M,
                          \sigma is a substitution such that name(m) = \sigma(t_u),
                          and m is applicable to s}
        if active = \emptyset then return failure
                                                                                  method instance m
         nondeterministically choose any (m, \sigma) \in active
         nondeterministically choose any task network w' \in \delta(w, u, m, \sigma)
         return(PFD(s, w', O, M)
```

```
PFD(s, w, O, M)
if w = \emptyset then return the empty plan
```

return(PFD(s, w', O, M)

- Intuitively, w is a partially ordered set of tasks $\{t_1, t_2, ...\}$
 - But w may contain a task more than once
 » e.g., travel from UMD to LAAS twice
 - ◆ The mathematical definition of a set doesn't allow this
- Define w as a partially ordered set of task nodes $\{u_1, u_2, ...\}$
 - lacktriangle Each task node *u* corresponds to a task t_u
- In my explanations, I'll talk about t and ignore u

```
w = \{ \begin{bmatrix} \mathbf{t_1} \\ \mathbf{t_2}, \mathbf{t_3} \dots \} \end{bmatrix}
ance a
```

```
\}; w' = \{t_2, t_3, \ldots\}
```

else

 $active \leftarrow \{(m,\sigma) \mid m \text{ is a ground instance of a method in } M,$ $\sigma \text{ is a substitution such that } name(m) = \sigma(t_u),$ $and m \text{ is applicable to } s\}$ if $active = \emptyset$ then return failure
nondeterministically choose any $(m,\sigma) \in active$ nondeterministically choose any task network $w' \in \delta(w,u,m,\sigma)$

$$w = \{ \begin{array}{c} \mathbf{t}_1 \\ \mathbf{t}_2, \dots \} \end{array}$$

method instance *m*

$$w' = \{ t_{11}, \dots, t_{1k}, t_{2}, \dots \}$$

```
PFD(s, w, O, M)
    if w = \emptyset then return the empty plan
    nondeterministically choose any u \in w that has no predecessors in w
    if t_u is a primitive task then
        active \leftarrow \{(a,\sigma) \mid a \text{ is a ground instance of an operator in } O,
                               \sigma is a substitution such that name(a) = \sigma(t_u),
                               and a is applicable to s}
                                                                          \pi = \{a_1, \dots, a_k\}; \ w = \{|\mathbf{t_1}|, \mathbf{t_2}, \mathbf{t_3} \dots\}
        if active = \emptyset then return failure
                                                                             operator instance a
         nondeterministically choose any (a, \sigma) \in active
        \pi \leftarrow \mathsf{PFD}(\gamma(s,a),\sigma(w-\{u\}),O,M)
                                                                         \pi = \{a_1, \ldots, a_k, [a]\}; w' = \{t_2, t_3, \ldots\}
        if \pi = failure then return failure
        else return a.\pi
    else
        active \leftarrow \{(m,\sigma) \mid m \text{ is a ground instance of a method in } M,
                          \sigma is a substitution such that name(m) = \sigma(t_u),
                          and m is applicable to s}
        if active = \emptyset then return failure
                                                                                  method instance m
         nondeterministically choose any (m, \sigma) \in active
         nondeterministically choose any task network w' \in \delta(w, u, m, \sigma)
         return(PFD(s, w', O, M)
```

```
PFD(s, w, O, M)
   if w = \emptyset then return the empty plan
    nondeterministically choose any u \in w that has no predecessors in w
   if t_u is a pr
                  \delta(w, u, m, \sigma) has a complicated definition in the book. Here's what
                 •We nondeterministically selected t_1 as the task to begin first
        if active
                       • i.e., do t_1's first subtask before the first subtask of every t_i \neq t_1
        nondete
                 •Insert ordering constraints to ensure that this happens
       if \pi = failure then return failure
                                                                  \pi = \{a_1 ..., a_k, |a|\}; w' = \{t_2, t_3, ...\}
        else return a.\pi
   else
        active \leftarrow \{(m,\sigma) \mid m \text{ is a ground instance of a method in } M,
                       \sigma is a substitution such that name(m) = \sigma(t_u),
                        and m is applicable to s}
        if active = \emptyset then return failure
                                                                         method instance m
        nondeterministically choose any (m, \sigma) \in active
        nondeterministically choose any task network w' \in \delta(w, u, m, \sigma)
        return(PFD(s, w', O, M)
```

Comparison to Classical Planning

STN planning is strictly more expressive than classical planning

- Any classical planning problem can be translated into an orderedtask-planning problem in polynomial time
- Several ways to do this. One is roughly as follows:
 - For each goal or precondition e, create a task t_e
 - For each operator o and effect e, create a method $m_{o,e}$
 - Task: *t_e*
 - Subtasks: t_{c1} , t_{c2} , ..., t_{cn} , o, where c_1 , c_2 , ..., c_n are the preconditions of o
 - Partial-ordering constraints: each t_{ci} precedes o

Comparison to Classical Planning

- Some STN planning problems aren't expressible in classical planning
- Example:
 - Two STN methods:
 - No arguments
 - No preconditions

- Two operators, a and b
 - Again, no arguments and no preconditions
- Initial state is empty, initial task is t
- Set of solutions is $\{a^nb^n \mid n > 0\}$
- No classical planning problem has this set of solutions
 - The state-transition system is a finite-state automaton
 - No finite-state automaton can recognize $\{a^nb^n \mid n > 0\}$
- Can even express undecidable problems using STNs

Example

method travel-by-foot precond: $distance(x, y) \leq 2$ travel(a, x, y)task: subtasks: walk(a, x, y)

method travel-by-taxi task: travel(a, x, y)

precond:
$$cash(a) \ge 1.5 + 0.5 \times distance(x, y)$$

subtasks:
$$\langle call-taxi(a, x), ride(a, x, y), pay-driver(a, x, y) \rangle$$

operator walk

```
precond: location(a) = x
effects: location(a) \leftarrow y
```

$operator\ call-taxi(a,x)$

effects:
$$location(taxi) \leftarrow x$$

operator ride-taxi (a, x)

```
precond: location(taxi) = x, location(a) = x
          location(taxi) \leftarrow y, location(a) \leftarrow y
effects:
```

operator pay-driver(a, x, y)

precond:
$$cash(a) \ge 1.5 + 0.5 \times distance(x, y)$$

effects:
$$cash(a) \leftarrow cash(a) - 1.5 - 0.5 \times distance(x, y)$$

- Simple travel-planning domain
 - State-variable formulation
- Planning problem:
 - I'm at home, I have \$20
 - Want to go to a park 8 miles away

- $-s_0 = \{location(me) = home,$ cash(me) = 20,distance(home,park) = 8}
- $-t_0$ = travel(me,home,park)

Example, Continued

HTN Planning

- STN planning constraints:
 - ordering constraints: maintained in network
 - preconditions:
 - enforced by planning procedure
 - must know state to test for applicability
 - must perform forward search
- HTN planning can be even more general
 - Can have constraints associated with tasks and methods
 - Things that must be true before, during, or afterwards
 - Some algorithms use causal links and threats like those in PSP

Methods in STN

- Let M_s be a set of method symbols. An STN method is a 4-tuple
 - m = (name(m), task(m), precond(m), network(m)) where:
 - name(m):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - *n*∈ M_s : unique method symbol
 - $-x_1,...,x_k$: all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - precond(m): set of literals called the method's preconditions;
 - network(m): task network (U,E) containing the set of subtasks U of m

Methods in HTN

• Let M_s be a set of method symbols. An HTN method is a 4-tuple

```
m = (name(m), task(m), subtasks(m), constr(m)) where:
```

- name(m):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - *n*∈ M_s : unique method symbol
 - $-x_1,...,x_k$: all the variable symbols that occur in m;
- task(m): a non-primitive task;
- (subtasks(m),constr(m)): a task network.

STN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - precond: top(c, p_o), on(c, x_o), attached(p_o ,l), belong(k,l), attached(p_d ,l), top(x_d , p_d)
 - subtasks: $\langle take(k,l,c,x_o,p_o),put(k,l,c,x_d,p_d) \rangle$

HTN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - network:
 - subtasks: $\{t_1 = \text{take}(k, l, c, x_o, p_o), t_2 = \text{put}(k, l, c, x_d, p_d)\}$
 - constraints: $\{t_1 \prec t_2$, before($\{t_1\}$, top(c,p_o)), before($\{t_1\}$, on(c,x_o)), before($\{t_1\}$, attached(p_o,l)), before($\{t_1\}$, belong(k,l)), before($\{t_2\}$, attached(p_d,l)), before($\{t_2\}$, top(x_d,p_d))}

STN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move (p_o, p_d, c, x_o)
 - task: move-stack (p_o, p_d)
 - precond: top (c,p_o) , on (c,x_o)
 - subtasks: $\langle move-topmost(p_o, p_d), move-stack(p_o, p_d) \rangle$
- no-move (p_o, p_d)
 - task: move-stack(p_o, p_d)
 - precond: top(pallet, p_o)
 - subtasks: ()

HTN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move (p_o, p_d, c, x_o)
 - task: move-stack(p_o, p_d)
 - network:
 - subtasks: $\{t_1 = move-topmost(p_o, p_d), t_2 = move-stack(p_o, p_d)\}$
 - constraints: $\{t_1 \prec t_2, \text{ before}(\{t_1\}, \text{ top}(c, p_o)), \text{ before}(\{t_1\}, \text{ on}(c, x_o))\}$
- move-one (p_o, p_d, c)
 - task: move-stack(p_o, p_d)
 - network:
 - subtasks: $\{t_1 = move topmost(p_o, p_d)\}$
 - constraints: {before($\{t_1\}$, top(c,p_o)), before($\{t_1\}$, on(c,pallet))}

Some Planning Features

- Expansion of a high level abstract plan into greater detail where necessary.
- High level 'chunks' of procedural knowledge at a human scale - typically 5-8 actions - can be manipulated within the system.
- Ability to establish that a feasible plan exists, perhaps for a range of assumptions about the situation, while retaining a high level overview.
- Analysis of potential interactions as plans are expanded or developed.

Some Planning Features

Expansion of a high level abstract plan into greater detail where necessary.

aspects of problem solving behaviour observed

- in expert humans (Gary Klein, "Sources of Power", MIT Press, 1998.)
- Ability to establish that a feasible plan exists, perhaps for a range of assumptions about the situation, while retaining a high level overview.
- Analysis of potential interactions as plans are expanded or developed.

Some Planning Features

aspects of problem solving behaviour observed in expert humans (Gary Klein, "Sources of Power", MIT Press, 1998.)

- also describe the hierarchical and mixed initiative approach to planning in Al
- Analysis of potential interactions as plans are expanded or developed.

Application Example

 I-globe – a distributed HTN planner and simulator for disaster relief scenarios

Application Example

