
Automated Action Planning
Background

Carmel Domshlak

Carmel Domshlak Automated Action Planning 1 / 63

Automated Action Planning
— Background

NP-hardness

Planning by state-space search
Introduction
Classification of state-space search algorithms

Search algorithms for planning
Search nodes & search states
Common procedures for search algorithms

Uninformed search algorithms

Heuristic search algorithms
Heuristics: definition and properties
Systematic heuristic search algorithms
Heuristic local search algorithms

Propositional logic

Carmel Domshlak Automated Action Planning 2 / 63

Course prerequisites

Course prerequisites:

I computational complexity theory: decision problems, reductions,
NP-completeness

I foundations of AI: search, heuristic search

I propositional logic: syntax and semantics

Carmel Domshlak Automated Action Planning 3 / 63

NP-hardness

A VERY brief guide to NP-hardness
Imagine that ...

You just got a new job. Congratulations!

You are asked to develop an efficient algorithm for determining whether or
not a given set of specifications for a new XXX component can be met,
and if so, constructing a design that meets them

What is efficient: O(poly(n)) vs. O(exp(n))

n = 10 20 30 40 50

n .00001 sec .00002 sec .00003 sec .00004 sec .00005 sec

n2 .0001 sec .0004 sec .0009 sec .0016 sec .0025 sec

n3 .001 sec .008 sec .027 sec .064 sec .125 sec

n5 .1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min

2n .001 sec 1.0 sec 17.9 min 12.7 days 35.7 years

3n .059 sec 58 min 6.5 years 3855 cent 2× 108 cent

Carmel Domshlak Automated Action Planning 4 / 63

NP-hardness

A VERY brief guide to NP-hardness
Imagine that ...

You just got a new job. Congratulations!

You are asked to develop an efficient algorithm for determining whether or
not a given set of specifications for a new XXX component can be met,
and if so, constructing a design that meets them

Bad news
A year after you still have no algorithm that is substantially more efficient
than searching through all possible designs ...

What to do?

Carmel Domshlak Automated Action Planning 5 / 63

NP-hardness

You don’t want to ...

Carmel Domshlak Automated Action Planning 6 / 63

NP-hardness

You would like to say, but ...

Carmel Domshlak Automated Action Planning 7 / 63

NP-hardness

Today you can say

Carmel Domshlak Automated Action Planning 8 / 63

NP-hardness

Some important complexity classes

A class of problems is in ...

P if any problem in the class can be solved in polynomial time

NP if, for any problem in the class, some solutions can be
verified in polynomial time

NPC if (informally) it is one of the “hardest” problem classes in
NP

Obviously, P⊆NP, and it is not likely that P=NP.
However, no proof so far for P6=NP!

Carmel Domshlak Automated Action Planning 9 / 63

NP-hardness

NP-complete problem classes

Definition: NP-completeness

A decision (yes/no) problem class C is NP-complete if:

1. C is in NP, and

2. Every problem class in NP is reducible to C in polynomial time.

Definition: Reducibility

A problem class K is reducible to C if there is a polynomial-time
deterministic algorithm (reduction) that transforms any problem k ∈ K
into a problem c ∈ C such that the answer to c is Yes if and only if the
answer to k is Yes.

Carmel Domshlak Automated Action Planning 10 / 63

NP-hardness

NP-complete problem classes

Definition: NP-completeness

A decision (yes/no) problem class C is NP-complete if:

1. C is in NP, and

2. Every problem class in NP is reducible to C in polynomial time.

I To prove that an NP problem class C is NP-complete it is sufficient
to show that an already known NP-complete problem class K reduces
to C .

I A problem satisfying condition (2) is said to be NP-hard, whether or
not it satisfies condition (1).

I Bottom line: if we had a polynomial time algorithm for C , we could
solve all problems in NP in polynomial time.

Carmel Domshlak Automated Action Planning 11 / 63

NP-hardness

Still, what to do?

The needs to solve a problem won’t disappear overnight simply because
the problem is known to be NP-hard, but knowing the problem is
NP-complete does provide valuable information

I The search for an efficient exact algorithm should certainly be
accorded “low priority”

Carmel Domshlak Automated Action Planning 12 / 63

NP-hardness

Dealing with NP-hard problems

I Less relevant to our course:
I approximation algorithms
I probabilistic algorithms

I More relevant to our course:
I efficient algorithms for interesting subclasses

(special cases) of the general problem
I relaxing the problem so that a fast algorithm will meet most of the

problem’s original properties
I algorithms that do not guarantee to run quickly,

but seem likely to do it “most of the time”

Carmel Domshlak Automated Action Planning 13 / 63

Planning by state-space search Introduction

State-space search

I state-space search: one of the big success stories of AI
I different classes of search algorithms

I uninformed vs. informed
I systematic vs. local

I many planning algorithms based on state-space search

I background on search: Russell & Norvig, Artificial Intelligence – A
Modern Approach, chapters 3 and 4

Carmel Domshlak Automated Action Planning 14 / 63

Planning by state-space search Introduction

Satisficing or optimal planning?

Must carefully distinguish two different problems:

I satisficing planning: any solution is OK
(although shorter solutions typically preferred)

I optimal planning: plans must have shortest possible length

Both are often solved by search, but:

I details are very different

I almost no overlap between good techniques for satisficing planning
and good techniques for optimal planning

I many problems that are trivial for satisficing planners are impossibly
hard for optimal planners

Carmel Domshlak Automated Action Planning 15 / 63

Planning by state-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 1: Search direction

I progression: forward from initial state to goal

I regression: backward from goal states to initial state

I bidirectional search

Carmel Domshlak Automated Action Planning 16 / 63

Planning by state-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 2: Search space representation

I search nodes are associated with states

I search nodes are associated with sets of states

Carmel Domshlak Automated Action Planning 17 / 63

Planning by state-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 3: Search algorithm

I uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

I heuristic search (systematic):
greedy best-first, A∗, Weighted A∗, IDA∗, . . .

I heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .

Carmel Domshlak Automated Action Planning 18 / 63

Planning by state-space search Classification

Planning by state-space search

How to apply search to planning? many choices to make!

Choice 4: Search control

I heuristics for informed search algorithms

I pruning techniques: invariants, symmetry elimination, helpful actions
pruning, . . .

Carmel Domshlak Automated Action Planning 19 / 63

Search algorithms for planning Nodes and states

Search

I Search algorithms are used to find solutions (plans) for transition
systems in general, not just for planning tasks.

I Planning is one application of search among many.

Carmel Domshlak Automated Action Planning 20 / 63

Search algorithms for planning Nodes and states

Planning by forward search: progression

Progression: Computing the successor state appo(s) of a state s with
respect to an operator o.

Progression planners find solutions by forward search:

I start from initial state

I iteratively pick a previously generated state and progress it through
an operator, generating a new state

I solution found when a goal state generated

pro: very easy and efficient to implement

Carmel Domshlak Automated Action Planning 21 / 63

Search algorithms for planning Nodes and states

Search states vs. search nodes

In search, one distinguishes:

I search states s states (vertices) of the transition system

I search nodes σ search states plus information on where/when/how
they are encountered during search

What is in a search node?
Different search algorithms store different information in a search node σ,
but typical information includes:

I state(σ): associated search state

I parent(σ): pointer to search node from which σ is reached

I action(σ): an action/operator leading from state(parent(σ)) to
state(σ)

I g(σ): cost of σ (length of path from the root node)

For the root node, parent(σ) and action(σ) are undefined.

Carmel Domshlak Automated Action Planning 22 / 63

Search algorithms for planning Nodes and states

Required ingredients for search

A general search algorithm can be applied to any transition system for
which we can define the following three operations:

I init(): generate the initial state

I is-goal(s): test if a given state is a goal state

I succ(s): generate the set of successor states of state s, along with the
operators through which they are reached
(represented as pairs 〈o, s ′〉 of operators and states)

Together, these three functions form a search space (a very similar notion
to a transition system).

Carmel Domshlak Automated Action Planning 23 / 63

Search algorithms for planning Nodes and states

Classification of search algorithms

uninformed search vs. heuristic search:

I uninformed search algorithms only use the basic ingredients for
general search algorithms

I heuristic search algorithms additionally use heuristic functions which
estimate how close a node is to the goal

systematic search vs. local search:

I systematic algorithms consider a large number of search nodes
simultaneously

I local search algorithms work with one (or a few) candidate solutions
(search nodes) at a time

I not a black-and-white distinction; there are crossbreeds (e. g.,
enforced hill-climbing)

Carmel Domshlak Automated Action Planning 24 / 63

Search algorithms for planning Nodes and states

Classification: what works where in planning?

uninformed vs. heuristic search:

I For satisficing planning, heuristic search vastly outperforms
uninformed algorithms on most domains.

I For optimal planning, the difference is less pronounced. An efficiently
implemented uninformed algorithm is not easy to beat in most
domains. (But doable! We’ll see that later.)

systematic search vs. local search:

I For satisficing planning, the most successful algorithms are
somewhere between the two extremes.

I For optimal planning, systematic algorithms are required.

Carmel Domshlak Automated Action Planning 25 / 63

Search algorithms for planning Common procedures

Common procedures for search algorithms

Before we describe the different search algorithms, we introduce three
procedures used by all of them:

I make-root-node: Create a search node without parent.

I make-node: Create a search node for a state generated as the
successor of another state.

I extract-solution: Extract a solution from a search node representing a
goal state.

Carmel Domshlak Automated Action Planning 26 / 63

Search algorithms for planning Common procedures

Procedure make-root-node

make-root-node: Create a search node without parent.

Procedure make-root-node
def make-root-node(s):

σ := new node
state(σ) := s
parent(σ) := undefined
action(σ) := undefined
g(σ) := 0
return σ

Carmel Domshlak Automated Action Planning 27 / 63

Search algorithms for planning Common procedures

Procedure make-node

make-node: Create a search node for a state generated as the successor of
another state.

Procedure make-node
def make-node(σ, o, s):

σ′ := new node
state(σ′) := s
parent(σ′) := σ
action(σ′) := o
g(σ′) := g(σ) + 1
return σ′

Carmel Domshlak Automated Action Planning 28 / 63

Search algorithms for planning Common procedures

Procedure extract-solution

extract-solution: Extract a solution from a search node representing a goal
state.

Procedure extract-solution
def extract-solution(σ):

solution := new list
while parent(σ) is defined:

solution.push-front(action(σ))
σ := parent(σ)

return solution

Carmel Domshlak Automated Action Planning 29 / 63

Uninformed search

Uninformed search algorithms
Less relevant for planning, yet not irrelevant

Popular uninformed systematic search algorithms:

I breadth-first search

I depth-first search

I iterated depth-first search

Popular uninformed local search algorithms:

I random walk

Carmel Domshlak Automated Action Planning 30 / 63

Uninformed search

Breadth-first search without duplicate detection

Breadth-first search
queue := new fifo-queue
queue.push-back(make-root-node(init()))
while not queue.empty():

σ = queue.pop-front()
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable

I Possible improvement: duplicate detection (see next slide).

I Another possible improvement: test if σ′ is a goal node; if so,
terminate immediately. (We don’t do this because it obscures the
similarity to some of the later algorithms.)

Carmel Domshlak Automated Action Planning 31 / 63

Uninformed search

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable

Carmel Domshlak Automated Action Planning 32 / 63

Uninformed search

Breadth-first search with duplicate detection

Breadth-first search with duplicate detection
queue := new fifo-queue
queue.push-back(make-root-node(init()))
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

return unsolvable

Carmel Domshlak Automated Action Planning 33 / 63

Uninformed search

Random walk

Random walk
σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Choose a random element 〈o, s〉 from succ(state(σ)).
σ := make-node(σ, o, s)

I The algorithm usually does not find any solutions, unless almost every
sequence of actions is a plan.

I Often, it runs indefinitely without making progress.

I It can also fail by reaching a dead end, a state with no successors.
This is a weakness of many local search approaches.

Carmel Domshlak Automated Action Planning 34 / 63

Heuristic search Heuristics

Heuristic search algorithms: systematic

I Heuristic search algorithms are the most common and overall most
successful algorithms for classical planning.

Popular systematic heuristic search algorithms:

I greedy best-first search

I A∗

I weighted A∗

I IDA∗

I depth-first branch-and-bound search

I breadth-first heuristic search

I . . .

Carmel Domshlak Automated Action Planning 35 / 63

Heuristic search Heuristics

Heuristic search algorithms: local

I Heuristic search algorithms are the most common and overall most
successful algorithms for classical planning.

Popular heuristic local search algorithms:

I hill-climbing

I enforced hill-climbing

I beam search

I tabu search

I genetic algorithms

I simulated annealing

I . . .

Carmel Domshlak Automated Action Planning 36 / 63

Heuristic search Heuristics

Heuristic search: idea

goal
init

dista
nce estim

ate
distance estimate

distance estimate

distance estimate

Carmel Domshlak Automated Action Planning 37 / 63

Heuristic search Heuristics

Required ingredients for heuristic search

A heuristic search algorithm requires one more operation
in addition to the definition of a search space.

Definition (heuristic function)

Let Σ be the set of nodes of a given search space.
A heuristic function or heuristic (for that search space) is a function
h : Σ→ N0 ∪ {∞}.
The value h(σ) is called the heuristic estimate or heuristic value of
heuristic h for node σ. It is supposed to estimate the distance from σ to
the nearest goal node.

Carmel Domshlak Automated Action Planning 38 / 63

Heuristic search Heuristics

What exactly is a heuristic estimate?

What does it mean that h “estimates the goal distance”?

I For most heuristic search algorithms, h does not need to have any
strong properties for the algorithm to work
(= be correct and complete).

I However, the efficiency of the algorithm closely relates to how
accurately h reflects the actual goal distance.

I For some algorithms, like A∗, we can prove strong formal relationships
between properties of h and properties of the algorithm (optimality,
dominance, run-time for bounded error, . . .)

I For other search algorithms, “it works well in practice” is often as
good an analysis as one gets.

Carmel Domshlak Automated Action Planning 39 / 63

Heuristic search Heuristics

Heuristics applied to nodes or states?

I Most texts apply heuristic functions to states, not nodes.
I This is slightly less general than our definition:

I Given a state heuristic h, we can define an equivalent node heuristic as
h′(σ) := h(state(σ)).

I The opposite is not possible. (Why not?)

I There is good justification for only allowing state-defined heuristics:
why should the estimated distance to the goal depend on how we
ended up in a given state s?

I We call heuristics which don’t just depend on state(σ)
pseudo-heuristics.

I In practice there are sometimes good reasons to have the heuristic
value depend on the generating path of σ

Carmel Domshlak Automated Action Planning 40 / 63

Heuristic search Heuristics

Perfect heuristic

Let Σ be the set of nodes of a given search space.

Definition (optimal/perfect heuristic)

The optimal or perfect heuristic of a search space is the heuristic h∗ which
maps each search node σ to the length of a shortest path from state(σ) to
any goal state.

Note: h∗(σ) =∞ iff no goal state is reachable from σ.

Carmel Domshlak Automated Action Planning 41 / 63

Heuristic search Heuristics

Properties of heuristics

A heuristic h is called

I safe if h∗(σ) =∞ for all σ ∈ Σ with h(σ) =∞
I goal-aware if h(σ) = 0 for all goal nodes σ ∈ Σ

I admissible if h(σ) ≤ h∗(σ) for all nodes σ ∈ Σ

I consistent if h(σ) ≤ h(σ′) + 1 for all nodes σ, σ′ ∈ Σ
such that σ′ is a successor of σ

Relationships?

Carmel Domshlak Automated Action Planning 42 / 63

Heuristic search Systematic search

Greedy best-first search

Greedy best-first search (with duplicate detection)
open := new min-heap ordered by (σ 7→ h(σ))
open.insert(make-root-node(init()))
closed := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) <∞:

open.insert(σ′)
return unsolvable

Carmel Domshlak Automated Action Planning 43 / 63

Heuristic search Systematic search

Properties of greedy best-first search

I one of the three most commonly used algorithms for satisficing
planning

I complete for safe heuristics (due to duplicate detection)

I suboptimal unless h satisfies some very strong assumptions (similar to
being perfect)

I invariant under all strictly monotonic transformations of h (e. g.,
scaling with a positive constant or adding a constant)

Carmel Domshlak Automated Action Planning 44 / 63

Heuristic search Systematic search

A∗

A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ) + h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) <∞:

open.insert(σ′)
return unsolvable

Carmel Domshlak Automated Action Planning 45 / 63

Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

Carmel Domshlak Automated Action Planning 46 / 63

Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

Carmel Domshlak Automated Action Planning 47 / 63

Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

Carmel Domshlak Automated Action Planning 48 / 63

Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

Carmel Domshlak Automated Action Planning 49 / 63

Heuristic search Systematic search

A∗ example
Example

G

I

0+3 3

1+3

1+2

2+7

2+6

7

6

2+5

2+2

5

3+5

3+1

5

4+8

8

2

3
2

1

Carmel Domshlak Automated Action Planning 50 / 63

Heuristic search Systematic search

Terminology for A∗

I f value of a node: defined by f (σ) := g(σ) + h(σ)

I generated nodes: nodes inserted into open at some point

I expanded nodes: nodes σ popped from open for which the test
against closed and distance succeeds

I reexpanded nodes: expanded nodes for which state(σ) ∈ closed upon
expansion (also called reopened nodes)

Carmel Domshlak Automated Action Planning 51 / 63

Heuristic search Systematic search

Properties of A∗

I the most commonly used algorithm for optimal planning

I rarely used for satisficing planning

I complete for safe heuristics (even without duplicate detection)

I optimal if h is admissible and/or consistent (even without duplicate
detection)

I never reopens nodes if h is consistent

Implementation notes:

I in the heap-ordering procedure, it is considered a good idea to break
ties in favour of lower h values

I can simplify algorithm if we know that we only have to deal with
consistent heuristics

I common, hard to spot bug: test membership in closed at the wrong
time

Carmel Domshlak Automated Action Planning 52 / 63

Heuristic search Systematic search

Weighted A∗

Weighted A∗ (with duplicate detection and reopening)
open := new min-heap ordered by (σ 7→ g(σ) + W · h(σ))
open.insert(make-root-node(init()))
closed := ∅
distance := ∅
while not open.empty():

σ = open.pop-min()
if state(σ) /∈ closed or g(σ) < distance(state(σ)):

closed := closed ∪ {state(σ)}
distance(σ) := g(σ)
if is-goal(state(σ)):

return extract-solution(σ)
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
if h(σ′) <∞:

open.insert(σ′)
return unsolvable

Carmel Domshlak Automated Action Planning 53 / 63

Heuristic search Systematic search

Properties of weighted A∗

The weight W ∈ R+
0 is a parameter of the algorithm.

I for W = 0, behaves like breadth-first search

I for W = 1, behaves like A∗

I for W →∞, behaves like greedy best-first search

Properties:

I one of the three most commonly used algorithms for satisficing
planning

I for W > 1, can prove similar properties to A∗, replacing optimal with
bounded suboptimal: generated solutions are at most a factor W as
long as optimal ones

Carmel Domshlak Automated Action Planning 54 / 63

Heuristic search Local search

Hill-climbing

Hill-climbing

σ := make-root-node(init())
forever:

if is-goal(state(σ)):
return extract-solution(σ)

Σ′ := {make-node(σ, o, s) | 〈o, s〉 ∈ succ(state(σ)) }
σ := an element of Σ′ minimizing h (random tie breaking)

I can easily get stuck in local minima where immediate improvements
of h(σ) are not possible

I many variations: tie-breaking strategies, restarts

Carmel Domshlak Automated Action Planning 55 / 63

Heuristic search Local search

Enforced hill-climbing

Enforced hill-climbing: procedure improve

def improve(σ0):
queue := new fifo-queue
queue.push-back(σ0)
closed := ∅
while not queue.empty():

σ = queue.pop-front()
if state(σ) /∈ closed:

closed := closed ∪ {state(σ)}
if h(σ) < h(σ0):

return σ
for each 〈o, s〉 ∈ succ(state(σ)):

σ′ := make-node(σ, o, s)
queue.push-back(σ′)

fail

 breadth-first search for more promising node than σ0

Carmel Domshlak Automated Action Planning 56 / 63

Heuristic search Local search

Enforced hill-climbing (ctd.)

Enforced hill-climbing

σ := make-root-node(init())
while not is-goal(state(σ)):

σ := improve(σ)
return extract-solution(σ)

I one of the three most commonly used algorithms for satisficing
planning

I can fail if procedure improve fails (when the goal is unreachable from
σ0)

I complete for undirected search spaces (where the successor relation is
symmetric) if h(σ) = 0 for all goal nodes and only for goal nodes

Carmel Domshlak Automated Action Planning 57 / 63

Propositional logic

Logical representations of state sets

I n state variables with m values induce a state space consisting of mn

states (2n states for n Boolean state variables)

I a language for talking about sets of states (valuations of state
variables): propositional logic

I logical connectives ≈ set-theoretical operations

Carmel Domshlak Automated Action Planning 58 / 63

Propositional logic

Syntax of propositional logic

Let P be a set of atomic propositions (∼ state variables).

1. For all p ∈ P, p is a propositional formula.

2. If φ is a propositional formula, then so is ¬φ.

3. If φ and φ′ are propositional formulae, then so is φ ∨ φ′.
4. If φ and φ′ are propositional formulae, then so is φ ∧ φ′.
5. The symbols ⊥ and > are propositional formulae.

The implication φ→ φ′ is an abbreviation for ¬φ ∨ φ′.
The equivalence φ↔ φ′ is an abbreviation for (φ→ φ′) ∧ (φ′ → φ).

Carmel Domshlak Automated Action Planning 59 / 63

Propositional logic

Semantics of propositional logic

A valuation of P is a function v : P → {0, 1}. Define the notation v |= φ
for valuations v and formulae φ by

1. v |= p if and only if v(p) = 1, for p ∈ P.

2. v |= ¬φ if and only if v 6|= φ

3. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

4. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

5. v |= >
6. v 6|= ⊥

Carmel Domshlak Automated Action Planning 60 / 63

Propositional logic

Propositional logic terminology

I A propositional formula φ is satisfiable if there is at least one
valuation v so that v |= φ. Otherwise it is unsatisfiable.

I A propositional formula φ is valid or a tautology if v |= φ for all
valuations v . We write this as |= φ.

I A propositional formula φ is a logical consequence of a propositional
formula φ′, written φ′ |= φ if v |= φ for all valuations v with v |= φ′.

I Two propositional formulae φ and φ′ are logically equivalent, written
φ ≡ φ′, if φ |= φ′ and φ′ |= φ.

Carmel Domshlak Automated Action Planning 61 / 63

Propositional logic

Propositional logic terminology (ctd.)

I A propositional formula that is a proposition p or
a negated proposition ¬p for some p ∈ P is a literal.

I A formula that is a disjunction of literals is a clause.
This includes unit clauses l consisting of a single literal,
and the empty clause ⊥ consisting of zero literals.

Normal forms: NNF, CNF, DNF

Carmel Domshlak Automated Action Planning 62 / 63

Propositional logic

Formulae vs. sets

sets formulae

those 2n

2 states in which p is true p ∈ P
E ∪ F E ∨ F
E ∩ F E ∧ F
E \ F (set difference) E ∧ ¬F

E (complement) ¬E
the empty set ∅ ⊥
the universal set >

question about sets question about formulae

E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?

Carmel Domshlak Automated Action Planning 63 / 63

	NP-hardness
	Planning by state-space search
	Introduction
	Classification of state-space search algorithms

	Search algorithms for planning
	Search nodes & search states
	Common procedures for search algorithms

	Uninformed search algorithms
	Heuristic search algorithms
	Heuristics: definition and properties
	Systematic heuristic search algorithms
	Heuristic local search algorithms

	Propositional logic

