

SOFTWARE TEST

PLANNING and MANAGEMENT

Guide

VERSION 1.0

August 31, 1998

Software Engineering Process Office, Code D13

Space and Naval Warfare Systems Center San Diego

53560 Hull Street

San Diego CA 92152-5001

Approved for public release; distribution is unlimited.

�

This page intentionally left blank.

�PREFACE

This document provides Software Test Planning and Management guidance for enhancing the "Repeatable" level of the Software Engineering Institute's Software Capability Maturity Model (SW-CMM) and meeting Department of Defense guidelines. Software test management involves planning, resource allocation, and monitoring testing efforts and results at the various levels of testing (i.e., unit, integration, system, and regression) to ensure that system software requirements are satisfied.

This document is focused on supporting Space and Naval Warfare Systems Center San Diego (SSC SD) projects in developing and executing a comprehensive testing program. To that end, this document contains information on understanding issues related to organizing for testing, roles and responsibilities of the organization, required software engineering practices, and project management’s role in Software Test Planning and Management activities.

�RECORD OF CHANGES

*A - ADDED M - MODIFIED D - DELETED

CHANGE�NUMBER�DATE�NUMBER OF FIGURE, TABLE OR PARAGRAPH�A*�M�D�TITLE OR BRIEF DESCRIPTION�CHANGE�REQUEST�NUMBER���������

����������������������������

��

���������������table of contents

Section	Page

� TOC \o "1-4" �SECTION 1. INTRODUCTION	� GOTOBUTTON _Toc428762277 � PAGEREF _Toc428762277 �1��

1.1 PURPOSE	� GOTOBUTTON _Toc428762278 � PAGEREF _Toc428762278 �1��

1.2 BACKGROUND	� GOTOBUTTON _Toc428762279 � PAGEREF _Toc428762279 �1��

1.3 SCOPE	� GOTOBUTTON _Toc428762280 � PAGEREF _Toc428762280 �1��

1.4 DOCUMENT OVERVIEW	� GOTOBUTTON _Toc428762281 � PAGEREF _Toc428762281 �1��

1.5 REFERENCED DOCUMENTS	� GOTOBUTTON _Toc428762282 � PAGEREF _Toc428762282 �2��

1.6 ABBREVIATIONS AND ACRONYMS	� GOTOBUTTON _Toc428762283 � PAGEREF _Toc428762283 �3��

1.7 RELATIONSHIP TO OTHER DOCUMENTS	� GOTOBUTTON _Toc428762284 � PAGEREF _Toc428762284 �4��

1.8 RELATIONSHIP TO THE PROTOTYPE SEI SW-CMM TEST KPA	� GOTOBUTTON _Toc428762285 � PAGEREF _Toc428762285 �4��

SECTION 2. SOFTWARE TEST ORGANIZATION	� GOTOBUTTON _Toc428762286 � PAGEREF _Toc428762286 �7��

2.1 ESTABLISH POLICY (CO-2)	� GOTOBUTTON _Toc428762287 � PAGEREF _Toc428762287 �7��

2.2 ASSIGN RESPONSIBILITY (CO-1, AB-1, AC-1)	� GOTOBUTTON _Toc428762288 � PAGEREF _Toc428762288 �7��

2.2.1 Software Engineering Process Organizations	� GOTOBUTTON _Toc428762289 � PAGEREF _Toc428762289 �7��

2.2.2 Software Project Manager	� GOTOBUTTON _Toc428762290 � PAGEREF _Toc428762290 �8��

2.2.3 Software Development Group	� GOTOBUTTON _Toc428762291 � PAGEREF _Toc428762291 �8��

2.2.4 Software Test and Evaluation Group	� GOTOBUTTON _Toc428762292 � PAGEREF _Toc428762292 �8��

2.2.5 Software Configuration Management Group	� GOTOBUTTON _Toc428762293 � PAGEREF _Toc428762293 �10��

2.2.6 Software Quality Assurance Group	� GOTOBUTTON _Toc428762294 � PAGEREF _Toc428762294 �11��

2.2.7 Facilities Group	� GOTOBUTTON _Toc428762295 � PAGEREF _Toc428762295 �11��

2.3 ENSURE ADEQUATE RESOURCES	� GOTOBUTTON _Toc428762296 � PAGEREF _Toc428762296 �11��

2.4 PROVIDE TRAINING (AB-2)	� GOTOBUTTON _Toc428762297 � PAGEREF _Toc428762297 �11��

SECTION 3. SOFTWARE TESTING	� GOTOBUTTON _Toc428762298 � PAGEREF _Toc428762298 �13��

3.1 GENERAL SOFTWARE DEVELOPMENT MODEL	� GOTOBUTTON _Toc428762299 � PAGEREF _Toc428762299 �13��

3.2 SOFTWARE TEST STANDARD PROCESS SPECIFICATION	� GOTOBUTTON _Toc428762300 � PAGEREF _Toc428762300 �14��

3.3 REQUIREMENTS ANALYSIS	� GOTOBUTTON _Toc428762301 � PAGEREF _Toc428762301 �14��

3.4 SOFTWARE TEST PROCESSES	� GOTOBUTTON _Toc428762302 � PAGEREF _Toc428762302 �14��

3.4.1 Software Test Planning (AC-1, AC-6)	� GOTOBUTTON _Toc428762303 � PAGEREF _Toc428762303 �16��

3.4.2 Software Test Plan Development	� GOTOBUTTON _Toc428762304 � PAGEREF _Toc428762304 �16��

3.4.3 Software Test Description Development (AC-2)	� GOTOBUTTON _Toc428762305 � PAGEREF _Toc428762305 �17��

3.4.4 Software Test Procedures Development	� GOTOBUTTON _Toc428762306 � PAGEREF _Toc428762306 �18��

3.4.5 Software Unit Testing (AC-3)	� GOTOBUTTON _Toc428762307 � PAGEREF _Toc428762307 �18��

3.4.6 Integration Testing	� GOTOBUTTON _Toc428762308 � PAGEREF _Toc428762308 �20��

3.4.7 Conduct Test Readiness Review	� GOTOBUTTON _Toc428762309 � PAGEREF _Toc428762309 �23��

3.4.8 System Qualification Tests	� GOTOBUTTON _Toc428762310 � PAGEREF _Toc428762310 �24��

3.4.9 Regression Testing (AC-4, VI-2)	� GOTOBUTTON _Toc428762311 � PAGEREF _Toc428762311 �26��

SECTION 4. SOFTWARE TEST ENVIRONMENT	� GOTOBUTTON _Toc428762312 � PAGEREF _Toc428762312 �27��

4.1 DEFINE SOFTWARE TEST RESOURCE REQUIREMENTS (AC-6)	� GOTOBUTTON _Toc428762313 � PAGEREF _Toc428762313 �27��

4.2 TEST ENVIRONMENT OPERATIONS (AC-5)	� GOTOBUTTON _Toc428762314 � PAGEREF _Toc428762314 �27��

SECTION 5. SOFTWARE TEST PROCESS MANAGEMENT	� GOTOBUTTON _Toc428762315 � PAGEREF _Toc428762315 �29��

5.1 ORGANIZATIONAL DATA FLOW	� GOTOBUTTON _Toc428762316 � PAGEREF _Toc428762316 �29��

5.2 INSTRUMENTING THE PROCESS (ME-2)	� GOTOBUTTON _Toc428762317 � PAGEREF _Toc428762317 �30��

5.3 IMPROVING THE PROCESS (VI-1&3, ME-1)	� GOTOBUTTON _Toc428762318 � PAGEREF _Toc428762318 �31��

APPENDIX A. POLICY FOR SOFTWARE TEST MANAGEMENT	A-1

APPENDIX B. TESTING TECHNIQUES	B-� GOTOBUTTON _Toc428762320 � PAGEREF _Toc428762320 �1��

�List of Figures

Figure	Page

� TOC \t "Figure title" \c �Figure 2-1. Example Organization	� GOTOBUTTON _Toc428762383 � PAGEREF _Toc428762383 �9��

Figure 2-2. Separated Lines of Responsibility	� GOTOBUTTON _Toc428762384 � PAGEREF _Toc428762384 �10��

Figure 3-1. Software Engineering Process Model	� GOTOBUTTON _Toc428762385 � PAGEREF _Toc428762385 �13��

Figure 3-2. The Software Test Process	� GOTOBUTTON _Toc428762386 � PAGEREF _Toc428762386 �15��

Figure 5-1. Software Test Management Data Flow	� GOTOBUTTON _Toc428762387 � PAGEREF _Toc428762387 �29��

�

List of Tables

Table	 Page

� TOC \t "Table title" \c �TABLE 1-1. COMMON FEATURES LISTING	� GOTOBUTTON _Toc428762482 � PAGEREF _Toc428762482 �5��

TABLE B-1. TESTING VERSUS DEBUGGING	B-� GOTOBUTTON _Toc428762483 � PAGEREF _Toc428762483 �1��

TABLE B-2. TESTING TECHNIQUES	B-� GOTOBUTTON _Toc428762484 � PAGEREF _Toc428762484 �2��

�

�SECTION 1. INTRODUCTION

1.1	Purpose

The purpose of this document is to describe the process activities common to all organizations intent on creating a comprehensive test capability. This document identifies and describes a Software Test Planning and Management (STPM) Guide consistent with the “Repeatable” level of the Software Engineering Institute’s (SEI) Software Capability Maturity Model (SW-CMM).

1.2	Background

The development of a comprehensive test capability is an integral part of the overall planning for a project. A project’s inception begins with a need to meet an operational requirement. An Operational Concept Document (OCD) is typical of the first documented proposal of how the operational requirement will be satisfied. The implementation of the abstract concepts of an OCD is normally the responsibility of a System Command (SYSCOM)-level organization. The SYSCOM will identify the organizations to be tasked to implement the concepts of the OCD. The next step is that of elaborating requirements for the system from the OCD into a system specification. Then the requirements to be implemented in software are identified from the system specification and documented in a separate specification, typically a Software Requirements Specification (SRS). It is at this point a software project is born.

Software testing is the principle means of ensuring that the system’s requirements allocated to software are being satisfied. It must be recognized that software testing is a subset of the overall test strategy employed by an acquiring agency as a means of ensuring that the system meets the operational need. For example, the acquiring agency, a SYSCOM-level organization, will employ an organization separate from the software developer to perform overall system testing.

The task of managing software testing, as addressed in this document, involves planning, resource allocation, test development, and monitoring testing efforts and results at all levels of software testing (i.e., unit, integration, system, and regression).

1.3	Scope

The processes described in this document provide information and guidance to personnel interested in the development and maintenance of a software test capability. The intent of this document is to provide guidance to the practitioner so that each organization may adapt the processes as appropriate to create a comprehensive test capability.

1.4	Document Overview

This document is intended to provide an overview of a repeatable process that can be used in providing STPM support to a project. It describes the STPM process down to project-specific activities.

This document is organized into the sections listed below.

Section 1 - provides the scope, purpose, background information, reference documents, and acronyms.

Section 2 - addresses issues key to organizing for STPM support.

Section 3 - describes the STPM processes using the following format:

Participants - The responsible individuals or groups for accomplishing the process activities.

Entrance Criteria - The elements and conditions necessary to be in place to begin a process activity.

Inputs - Data, resources, or engineering artifacts necessary to perform the process activities.

Activities - Description of the actions necessary to transform an input, as influenced by policy and procedural controls, into a pre-determined output.

Outputs - Data, products, or engineering artifacts produced by the process activities.

Exit Criteria - Elements and/or conditions necessary to be in place to complete a process activity.

Section 4 - discusses the development and management of the test environment.

Section 5 - discusses the management and improvement of the test process.

Appendix A - contains suggested wording for a software test management policy.

Appendix B - contains a brief overview of testing techniques and their application.

1.5	Referenced documents

The following documents and standards where used in developing this process description:

SEI SW-CMM Version 1.1, Software Engineering Institute, 1995.

Process Development Guidelines for SEPO Process Definitions, Version 2.0, SSC-SD SEPO, December 11, 1996.

MIL-STD 498, Software Development, Joint Logistic Commanders, 1994.

Practical Software Measurement, Joint Logistic Commanders, 1995.

Software Test and Evaluation Guidelines, Pamphlet 73-7, Dept. of the Army, 1996.

IEEE Standard for Software Test Documentation, Institute of Electronics Engineers, 1983.

IEEE Standard for Software Unit Testing, Institute of Electronics Engineers, 1987.

MIL-STD 1521B, Technical Reviews and Audits for Systems, Equipments, and Computer Software, 1985.

SEI SW-CMM Version 2.0 (Draft), Test Management Key Process Area, Software Engineering Institute, 1998.

SPAWARSYSCEN SAN DIEGO Instruction 3912.1A, Management Project/Design Reviews, December 1997.

In addition, the following web sites contained information that contributed to the process descriptions. These sites are recommended reading on the subject of software testing:

DoD Test and Evaluation Community Homepage- -http://tecnet0.jcte.jcs.mil:9000/.

DoD-Related Test Sites - http://www.dote.osd.mil/jump_sites.html.

On-line copy of Army’s Pamphlet 73-7 - http://www.army.mil/swmetrics/pam737.pdf.

SEI SW-CMM Level 2 Prototype KPA for Software Test Management - http://www.sei.cmu.edu/cmm/docs/test-mgt-kpa.html.

Space and Naval Warfare (SPAWAR) Systems Center San Diego (SSC SD) Software Engineering Process Office (SEPO) Homepage - http://sepo.spawar.navy.mil.

1.6	abbreviations and Acronyms

CM	Configuration Management

CMM	Capability Maturity Model

CSCI	Computer Software Configuration Item

COTS	Commercial of the Shelf

DCR	Document Change Request

DoD	Department of Defense

DT	Demonstration Test

ECP	Engineering Change Proposal

FCA	Functional Configuration Audit

FOT	Functional Operability Testing

FST	Functional Stress Testing

HWCI	Hardware Configuration Item

IEEE	Institute of Electronic and Electrical Engineers

IMT	Interface Message Test

IRS	Interface Requirements Specification

IRT	Interface Recovery Test

IST	Interface Stress Test

IVT	Interface Validation Test

KPA	Key Process Area

MIL-STD	Military Standard

OCD	Operational Concept Document

OPD	Organization Process Definition

OPEVAL	Operational Evaluation

OPF	Organization Process Focus

PCA	Physical Configuration Audit

P/CR	Problem/Change Report

PTL	Project Test Lead

RM	Requirements Management

RT	Regression Test

SCM	Software Configuration Management

SDF	Software Development File

SDP	Software Development Plan

SEPG	Software Engineering Process Group

SEPO	Software Engineering Process Office

SEI		Software Engineering Institute

SPAWAR	Space and Naval Warfare Systems Command

SPM		Software Program Manager

SPP	Software Project Planning

SQA	Software Quality Assurance

SQT	System Qualification Test

SRS	Software Requirements Specification

SSC SD	SPAWAR Systems Center San Diego

SSS	System Segment Specification

STD	Software Test Descriptions

STP	Software Test Plan

STPM	Software Test Planning and Management

SU	Software Unit

SW	Software

SW-CMM	Software Capability Maturity Model

SYSCOM	Systems Command

T&E	Test and Evaluation

TRR	Test Readiness Review

WBS	Work Breakdown Structure

1.7	Relationship to other documents

The SEI SW-CMM Key Process Area (KPA) for Software Project Planning (SPP) serves to guide the software manager in the development of the Software Development Plan (SDP). The SDP is key to controlling the software implementation. The development of the SDP involves activities of applying other KPAs including but not limited, Software Quality Assurance (SQA), Configuration Management (CM), and the prototype KPA for Software Test Management. Planning activities associated with these three KPAs are key ingredients in the content of the final SDP. This STPM process definition is intended to provide guidance in the development and management of a comprehensive test capability that would be documented in Section 5 of a MIL-STD-498-compliant SDP.

1.8	RELATIONSHIP TO THE PROTOTYPE SEI SW-CMM TEST KPA

Developing a comprehensive test capability requires more issues to be addressed than are presented in the SEI’s prototype Test KPA. However, the SEI’s Test KPA defines what are considered the common features and key practices that should be inherent in a test capability. A copy of the prototype KPA can be downloaded from the SEI’s Homepage as cited in Section 1.5.

This document does address the common features and key practices of the SEI's prototype SW-CMM Level 2 Test KPA. To assist the reader in identifying the common features and associated key practices of the prototype Test KPA that are covered in this document, the common features will appear in parenthesis and will be used in section headers and table entries to encapsulate an associated key practice. For example:

	Organizational Policy (CO-1)

CO-1 indicates that the Commitment (CO) common feature, key practice (1) of the prototype KPA is addressed in the associated discussion. The abbreviations for the common features appear in Table 1-1.

The common features and the supporting key practices are addressed throughout this document as indicated below:

Section 2 - addresses the key practices related to creating the organization and defining the responsibilities for testing (CO-1&2, AB-1&2, AC-1).

Section 3 - addresses the key practices to be applied by the organization to facilitate test support to a project (AC-2 through 4, AC-6, VI-2).

Section 4 - contains guidance on development and operation of the test facility (AC-5&6).

Section 5 - addresses key practices for test management and test process improvement (ME-1&2, VI-1&3).

Table 1-1. Common Features Listing

Common Features�Abbreviation��Commitment�CO��Ability�AB��Activity�AC��Verification�VI��Measurement�ME��

�

This page intentionally left blank.

�SECTION 2. SOFTWARE Test ORGANIZATION

2.1	Establish Policy (CO-2)

The adaptation of software test technology to the production of software-intensive systems requires more than just an understanding of the technical issues. Developing a capability starts with senior management establishing software test planning and management policy that define organizational requirements. Senior management bears the responsibility of establishing the standards for the conduct of software testing.

Appendix A to this document contains recommended software test management policies. These policies should be implemented by developing standardized conventions and procedures for using and creating software test work products. There must be documented processes on how both programmers and test engineers can interpret and execute test scenarios. Prescribed practices and procedures should encompass administrative, software test development (e.g., requirements, design, coding and documentation of the tests themselves), process management and control, test artifact management and control, and quality assurance. These policies ensure that at least the following requirements are met:

Responsibilities for test planning, design, execution, and evaluation are explicitly assigned.

The test objectives, types of tests to be conducted, and test schedule are documented in a test plan.

The test work products are stored in a configuration-controlled repository.

The test work products and test activities are audited periodically.

2.2	Assign Responsibility (CO-1, AB-1, AC-1)

A key concern of management is coordinating software test activities to support the needs and priorities of projects, satisfy customers' needs, and achieve the overall objectives of the system. To that end, responsibility for key activities must be established. The following paragraphs discuss key organizational roles in the context of a comprehensive test approach. The descriptions are focused on support of test and evaluation; therefore, are not all inclusive of the referenced group’s project responsibilities.

2.2.1	Software Engineering Process Organizations

The development and maintenance of the organization's test policies and standard software test processes should be performed or coordinated by a group designated as responsible for the co-ordination of the organization's software process improvement. For Space and Naval Warfare (SPAWAR) Systems Center San Diego (SSC SD), the Software Engineering Process Office (SEPO) has this responsibility. In addition, organizations within SSC SD, such as a Division, may assign a Software Engineering Process Group (SEPG) as a change agent to maintain the Division’s standard software processes. The SEPG coordinates with SEPO on tailoring SSC SD standard processes to meet the requirements of the Division’s projects. The SEPG ensures that the Division’s standard software processes are documented, reviewed, and approved before they are incorporated into the library of standard software processes affecting the Division’s projects. This activity also applies to tailoring guidelines and criteria to be used in developing project-specific versions from organizational and/or Division-level standard processes and engineering artifacts. The role of the SEPG and the management of standard process definitions is the subject of the SEI SW-CMM Level 3 KPAs for Organizational Process Definition (OPD) and Organization Process Focus (OPF).

2.2.2	Software Project Manager

The Software Project Manager’s (SPM’s) responsibility covers all technical, quality, cost and schedule aspects of efforts and performance. In that context, the SPM bears overall responsibility for the completeness of the software project’s test efforts. Ultimately, the SPM is the principle point of contact for maintaining customer liaison, coordinating and supporting customer meetings, conducting program reviews, approving all deliverables and managing all subcontractor activity. While the SPM has overall responsibility, the actual tasks are delegated to subordinate groups. The SPM provides the directed and management controls to ensure success.

2.2.3	Software Development Group

The Software Development Group is responsible to the SPM for the analysis, design, implementation, unit�level testing, and documentation for each project. The Software Development Manager directs the application of assigned resources and is responsible to the SPM for the cost, schedule, quality and technical performance of assigned efforts. In the context of test responsibilities, the enforcement of policy and procedures to ensure that Software Development Files (SDFs) provide comprehensive unit test coverage is key to the overall success of the test approach.

2.2.4	Software Test and Evaluation Group

The Software Test and Evaluation (SW T&E) Group, headed by the SW T&E Manager, is responsible to the SPM for specifying test standards, allocating resources, test scheduling, managing of test artifacts, and developing of documentation and training courses for the software test processes and software tools needed to provide comprehensive testing in the host environment.

The SW T&E Manager must have knowledge in the following areas:

Experience resolving issues in constructing test work products.

The concepts and structures by which software test team members communicate the technical issues of product development.

How to develop and communicate software test process standards in a concise and usable form.

Software test methodologies.

The use of specified standard tools and technologies that support software test processes.

Experience in scheduling time and resources of both testers and equipment.

The reporting chain of responsibility of the SW T&E Manager must be separate from the group involved in the actual development of the software products. This separation ensures the objectivity of the organization in meeting the customer’s requirements. Figure 2-1 illustrates a hypothetical organizational structure supporting one or more projects. In the example, theoretically an SSC SD Division, the Division Manager assumes the role of SPM for all of the projects assigned to the Division. Within the Division, line managers assume the roles of Software Development Manager, SW T&E Manager, Software Configuration Management (SCM)/ SQA Manager, and Facilities Manager. In addition, the Division Manager has a staff that supports financial planning and tracking. Note that Facilities Management, a role that would include a system administrator, has responsibility for the computer support necessary to meet the collective needs of assigned projects.

An important aspect of the example organization is the separation of test responsibility from the development responsibility. This separation is not only present within the software development environment but is also found starting at the sponsor and/or system acquisition office level. Figure 2-2 presents this concept from the perspective of a System Acquisition Office. Both a supporting Software Development Organization and a separate System Test Organization are illustrated. Within

�the Software Development Organization, the concept of separate lines of responsibility for development and test is illustrated in Figure 2-2 and in our sample organization in Figure 2-1.

��

�

���

�

����

����

�

�����

��������

����

�������

�

��

��

�

�����������

�

����

���

�����

Figure 2-1. Example Organization

In a multi-project environment, such as the sample organization in Figure 2-1, a Project Test Lead (PTL) has the test responsibility for a specific project. This PTL would tend to the project’s needed software test planning and test specification tasks by tailoring the standard software test process artifacts from the test process standard templates. The PTL directs the development of Software Test Descriptions (STDs), based on the system requirements, and development of test tools to be employed in testing the target system. In the context of SSC SD, this role would typically be a responsibility of a Branch Head, or Group Leader.

�The PTL must be knowledgeable in both test technology and project technical issues. The PTL communicates with the SW T&E Manager, other test personnel, and development group representatives on technical issues.

�

��

��

��

��

Figure 2-2. Separated Lines of Responsibility

2.2.5	Software Configuration Management Group

The SCM Group plays a key role in supporting test activities. The status accounting of problems in either software, design documentation, test artifacts, or user manuals plays a vital role in the overall management of the quality of the system software. Problems revealed by the test and/or analysis efforts should be documented as a Problem/Change Reports (P/CRs) during development. Evaluation of test results, as documented in the CM status accounting database, serves as the basis for a pass/fail determination at each phase of integration testing and leads to the eventual acceptance or non-acceptance of the program during system acceptance testing. In addition, the status accounting database is the focal point for determining corrective action for the Software Units (SUs) and Computer Software Configuration Items (CSCIs).

A P/CR is a report describing an existing problem in a computer program or its support documentation. Some P/CRs may, in fact, report a design enhancement rather than a design problem, in which case that P/CR will eventually be closed-out by submission of an Engineering Change Proposal (ECP).

A P/CR database should incorporate a routing system to direct the handling of each P/CR from station to station such as entry, analysis, approval, design, code, test, acceptance, and closure. In addition, the P/CR database program should retain comments generated by each station as it advances through the route.

2.2.6	Software Quality Assurance Group

The SQA Group provides the SPM with the assurance that all quality control requirements for both production and testing are being met. In Figure 2-1, the SQA and SCM activities are organizationally integrated for simplicity. The SQA staff also provides oversight for the conduct of audits (i.e., Function Configuration Audit (FCA)/Physical Configuration Audit (PCA)) and reviews to assure that all performance and contractual requirements are met. In performing these duties, the SQA group monitors adherence to all applicable policies, processes, procedures, and plans.

2.2.7	Facilities Group

A System Administrator working under the direction of the Facilities Manager is the organization’s designated individual responsible for the control, access, installation, and maintenance of the organization’s program generation and test hardware/software. Program generation system resources and related process requirements for project software testing should be coordinated by the SW T&E Manager with the System Administrator.

2.3	Ensure Adequate Resources

A test environment consists of the automated mechanisms that support the software test process. The costs for these activities are the responsibility of the organization's management. These costs can be shared between several projects. The associated costs of the test environment operation need not necessarily be a separate item but could be overhead to each of the projects within an organization. To that end, in the development of the individual project SDP, each project’s share of the test environment funding requirements should be included. In addition, any facility modifications required to support project testing should be included in the Work Breakdown Structure (WBS) for the project. Approval of the SDP by the sponsoring organization constitutes a contractual agreement on cost, schedule, product content, and software test resource requirements between all the stakeholders associated with that project.

2.4	Provide Training (AB-2)

The individuals who develop, maintain, and use the organization's test resources must receive training to perform their responsibilities. The SW T&E Manager should take responsibility for the development of a training plan for members of the software test team. The training plan should be developed in accordance with organizational procedures documented to meet the SEI SW-CMM KPA for Training.

The test staff must receive training on test specification standards, test methodologies, and the tools used in exercising a test capability.

In addition, an organization’s development staff needs to be educated on the use of test resources. For example, a guide to instruct application engineers on how to execute specific test suites could be created. This guide could also explain the effective use of the software tools that support that test process.

�

This page intentionally left blank.

�SECTION 3. SOFTWARE TESTING

3.1	GENERAL SOFTWARE DEVELOPMENT MODEL

Development of a customer’s application commences with system engineering activities that involve defining the overall system requirements. The requirement’s definition activity collects, integrates, specifies, relates, and organizes the project's needs and objectives to provide the foundation for system design, implementation, and test. In addition, the system engineering activity identifies a system-level architecture and allocates requirements to hardware and software components to satisfy the system requirements within budget and schedule constraints.

�

Figure 3-1 illustrates a proto-typical process for Software Engineering. It is recognizable as a conventional development process, modified to reflect application development taking advantage of reusable and Commercial Off-The-Shelf (COTS) components. The shaded ellipses represent test-related activities. The approach depicted in the figure defines a process that provides rapid production of individual application engineering work products through the application of reuse technology.

Figure 3-1. Software Engineering Process Model

3.2	SOFTWARE TEST STANDARD PROCESS SPECIFICATION

The creation of standardized application development processes is critical to the establishment of a consistent and comprehensive test capability. These standard processes should be documented and available in an interactive media. The purpose of these standards is to promote a consistent approach in both the development and test of application products. The standard testing processes should include the essentials on what has to be done, why, and who completes the work. Procedural activities should be provided to explain how to complete the process (the sequence of tasks or task steps that have to be performed), when the work is performed, and the criteria for measuring the quality of the work.

The following items should be considered in defining standard processes:

Present, in as much detail as possible, a description of how the test engineers would develop and generate test artifacts. Describe test case development as a series of steps that application engineers can follow.

Ensure that test case procedures are a series of repeatable sets of steps. Make each step of a test case procedure as mechanical as possible. This will help to eliminate ambiguity and determine which portions can be automated.

Provide an overview that helps test engineers understand the types of work products in a test environment. The components of the software test plan can be used for this overview.

Identify standards for form and content of test engineering work products. Standardization of form and content is critical in the building of tools. This allows staff engineers to interactively browse the test library for candidate test cases and permits tailoring of test scenarios to customer situations.

3.3	REQUIREMENTS ANALYSIS

This activity involves the analysis of the system’s overall requirements and architecture to determine the allocation of requirements to software. Requirement Management (RM) is an SEI SW-CMM Level 2 KPA and an organization's standard RM process should be applied. Careful cataloging of the allocated software requirements will assist in the analysis of those requirements by both the design team and the test team. The process of subjecting the allocated software requirements to analysis by both the design and test teams will resolve any ambiguities, ensure completeness, and bring consistency to the state of software requirement’s definition. Accurate software requirement data is essential to allow the organization to coordinate implementation efforts in meeting the customer’s need. In addition, this effort will facilitate creating a contract between the customer, the development staff, and those involved in creating the system’s acceptance criteria, i.e., system acceptance tests.

3.4	SOFTWARE TEST PROCESSES

On the completion of the allocation of requirements to software, development of the required system software test capability can commence. Figure 3-2 is an overview of the software test processes addressed in this document. The following paragraphs elaborate the activities associated with developing and executing a comprehensive testing approach as presented in Figure 3-2.

�PROCESS				TASKS				OUTPUTS

�

��

�

���

��

�

���

��

���

�

�

���

�

�

���

�

���

Figure 3-2. The Software Test Process

3.4.1	Software Test Planning (AC-1, AC-6)

Test planning begins with the requirement for a project to draft an SDP. The SDP contains required information on schedule, resource allocation, software engineering standards and processes that apply to the software development effort. It is important that the SDP be comprehensive enough to identify the test efforts (i.e., unit, integration, system, qualification, and regression) leading to full system certification. The SDP’s description of the test efforts establishes a framework for more detailed software test planning. Much of the information required in an SDP can be extracted from the SEPO’s library of standard processes. In addition, an SDP template is available on the SEPO Homepage.

3.4.2	Software Test Plan Development

Each project should draft a Software Test Plan (STP). Note that irrespective of the origin of the application software (COTS, reused components, or implemented components), the software requirements drive the test activities. Therefore, test planning should focus on meeting the documented software requirements. In addition, the processes that support testing should be documented to create a repeatable process that will ensure quality in the developing work products.

A testing strategy should include automated mechanisms to support the effective and repeatable performance of the test-related activities. The automation of test procedure execution and results verification offer the greatest degree of test repeatability and the efficient use of the schedule for testing. Development of such a capability can vary in scope depending on the application. For example, large-scale embedded systems may create a test scenario language and the tools to translate that language into time-tagged inputs for a software test harness that drives the target system. Extracted data from the target system is analyzed by automated software tools against preset expected results. In this manner, a high volume of tests can be executed and the results verified with a minimum of human interaction. This concept can be simplified for application to smaller projects and it is recommended that this approach be analyzed for adaptation.

At a minimum, the test plan should employ the activities as addressed in this document for unit testing, integration testing, system qualification, and acceptance test support to develop a strategy that will produce the highest quality product to meet the customer’s system requirements.

Participants: Software Project Manager, SW T&E Manager, SW T&E Group

Entrance Criteria: System requirements have been analyzed and a subset of those requirements allocated to software and documented in a baselined SRS.

Inputs: SRS

Activities:

Review software performance requirements documented in the SRS. It is suggested that the requirements be organized into a hierarchical structure based on system functions.

Define test case suites, test classes (e.g. path analysis, stress, capacity, and timing), and test methodologies (static, dynamic). Determining the required test case suites can be facilitated by following the hierarchical structure of a databased set of software requirements.

Identify the environment in which tests will be conducted.

Establish Pass/Fail criteria for the system software.

Define plans for implementing and controlling the test environment.

Estimate the personnel and other resources required to implement the test concept and objectives.

Assign a PTL and supporting personnel to prepare, conduct, analyze, and report the results of testing.

Trace allocated software requirements to defined test case suites. Verify completeness of requirements traceability.

Develop a general schedule of defined tests case suites, including time for problem correction and retest, for inclusion in the STP.

Create the STP, following the instructions of the assigned documentation standard.

Conduct a peer review.

Revise draft STP to correct discrepancies and incorporate recommended changes.

Publish final STP. Approve, distribute, and place under baseline control in the Software Library.

Outputs: STP

Exit Criteria:

All SRS requirements are traceable to tests cases suites or accounted for in the STP

STP approved and under configuration control.

3.4.3	Software Test Description Development (AC-2)

The SW T&E Group develops a set of test descriptions in keeping with the overall test concept and objectives that adequately verify all allocated requirements.

Participants: SW T&E Group

Entrance Criteria: Test planning has resulted in an STP identifying suites of test cases that serve to partition the test approach based on system functional areas.

Inputs: STP containing test case suite identification

Activities:

For each test case suite, identify the required individual test cases. This can be facilitated by following the hierarchical structure of a databased set of software requirements for each functional area of the system.

For each test case, define the inputs (stimuli) required to fulfill the test purpose.

For each test case, define the expected results (outputs from the test in response to inputs) that serve as the test case’s Pass/Fail criteria.

Define insertion and extraction methods to/from test. Identify points of data input/output and volumes of data.

Define evaluation criteria for test results analysis. Define ranges of values, capacities, and times for test pass/fail.

Trace SRS performance requirements to specific test cases. Verify completeness of requirements allocation.

Identify test environment configuration, interface drivers, database loaders, controllers/monitors, and other test tools to support test case purposes.

Draft the test case suite descriptions in a Software Test Description (STD) document.

Conduct a peer review.

Revise draft to correct discrepancies and incorporate recommended changes.

Outputs: STD(s) implementing the test strategy defined in the STP

Exit Criteria:

STD approved and baselined

Software requirements traceable to individual test cases.

3.4.4	Software Test Procedures Development

Activities include the development of the detailed steps for each test case.

Participants: SW T&E Group

Entrance Criteria: Test cases identified in an approved and baselined STD.

Inputs:

STD

Requirements allocated to individual test cases

Draft user and operator manuals or checklists available.

Activities:

Review software user and operator manuals to identify methods of operator input, use of simulator/emulator tools, and software data recording.

Define detailed test steps for providing inputs for test cases.	

Define measurable detailed test results for test steps.

Prepare input data files to provide test stimuli.

Define evaluation steps for conducting post-test analysis and comparing actual and expected test results.

Draft test case procedures.

Conduct a peer review.

Revise draft test case procedures to correct discrepancies and incorporate recommended changes.

Outputs:

Documented test case procedures including inputs and expected results

Test input data files compiled.

Exit Criteria: Approved and baselined procedures for all tests cases.

3.4.5	Software Unit Testing (AC-3)

The objective of Software Unit (SU) testing is to identify and correct as many internal logic errors as possible. To meet this objective, the Software Development Group (see Figure 2-1) performs selected path testing within each unit exercising at least 80% of the affected branch conditions in all possible directions at least once and every affected line of code at least once. SU test drivers and stubs are developed as needed and will be placed under configuration control as part of the SDF. SU test results are recorded in the SDFs.

3.4.5.1 Software Unit Test Development. A comprehensive set of repeatable software unit tests and test procedures is developed to ensure the correctness of each SU.

Participants: Software Development Group

Entrance Criteria:

Software requirements have been allocated to individual SUs and documented in the appropriate SDF.

The design of the SU to be tested is complete and documented in the appropriate SDF.

Inputs: Allocated requirements and approved design of the SU to be tested.

Activities:

Review the STP to determine the types of unit tests required for the software unit.

Review all inputs and outputs for the software unit. Identify any test drivers necessary to stimulate unit execution, provide the inputs, and capture the final outputs.

Identify all interfaces to other units and determine if other units are available or if unit stubs must be written. Consider using stubs to capture intermediate results if other automated tools are not available.

Identify the various paths that may be taken by the unit. Use a static analysis tool and/or a peer review to determine the unit paths.

Identify data variables and conditions that determine which paths are taken.

Identify parameter limits for all input, output, and control parameters.

Examine and list all error handling facilities of the units and error conditions.

Identify a set of test procedures to conduct the required unit testing (path testing, boundary condition testing, and input validation and syntax testing). There should be a test procedure for each path through the unit, to test the upper and lower limits of all parameters, and to test all error conditions (pass and fail).

Write step-by-step instructions and/or test driver for each test procedure.

Document the unit test plan in the SDF.

Submit the unit test plan for peer review. Resolve all comments.

Outputs:

Approved SU test plan documented in appropriate SDF

Completed test procedures and/or test drivers.

Exit Criteria: SDFs contain test plans for all included SUs.

3.4.5.2 Performing Unit Test. Unit testing will cover the following areas:

Path Testing - Execution of every logic branch and line of code to find logic errors in control structures, dead code, errors at loop boundaries, and errors in loop initializations. This includes every state and every mode.

Boundary Condition Testing - To find errors in input and output parameter tolerances and verify that the program limits are correctly stated and implemented.

Participant: Software Development Group

Entrance Criteria: Unit test plan approved and the SU’s source code developed and peer reviewed.

Inputs:

Approved unit test plan, procedures, and drivers.

SU’s source code developed, compiled, and ready for unit test.

Activities:

Review the unit test plan.

Perform the test in accordance with the unit test plan.

Compare test results with expected results.

Document the results in the SDF. This report should contain all data recorded from test tools, test results, and deviations from test.

If the unit did not successfully pass unit test, schedule the unit for rework.

Upon successful completion of the unit test, software unit is eligible for integration testing.

Outputs: Updated SDF reflecting test results

Exit Criteria:

Updated SDF

Successfully tested SU ready for integration testing.

3.4.6 Integration Testing

The following paragraphs describe the processes that define the various levels of integration testing.

3.4.6.1 Software Unit Integration and Testing. At this level, SUs are incrementally integrated to form continually larger and more complex software builds. The purpose of this level of testing is to both identify errors and demonstrate interface compatibility. The SW T&E Group (see Figure 2-1) performs integration test activities. Integration activities continue until all software CSCIs are integrated with the system-level hardware suite into a single functioning software system.

Participants: SW T&E Group

Entrance Criteria:

SUs have successfully completed unit test.

The test case suites defined in the STDs have been developed.

Test resources, either the target hardware test lab or a simulation, are in place and ready for operation.

Inputs:

STP

STDs

Test ready SUs

Test cases, procedures and/or drivers, and test inspection tools.

Activities:

Upon receipt of a request, a build is developed incorporating the cited SUs.

Update any existing test drivers/tools in response to approved software changes/fixes.

Conduct the test in accordance with the test case procedures. Record test results as they are observed.

Perform any required post-test analysis or data reduction to determine pass/fail criteria as specified in the test case description.

Compare test results with expected results.

Document all test results using the project’s test report form. This report should contain all data recorded from test tools, test case results, and note any deviations from the test plan.

Document any problems detected on a P/CR form and submit P/CR for review and analysis.

File the test report and submit a copy of the test report for review, analysis, and approval.

Outputs:

Build-specific test report

P/CRs against the build SUs.

Exit Criteria:

Integration test report reviewed and approved

P/CRs submitted for all detected problems

Fully-integrated CSCI ready for CSCI Qualification Testing.

3.4.6.2 Integrated CSCI Qualification Testing. On completion of unit integration testing, the SW T&E group conducts a CSCI Qualification Test on each fully-integrated component (i.e., CSCI). The purpose of CSCI Qualification Testing is to verify satisfaction of CSCI performance requirements as documented in the SRS.

Participants: SW T&E Group

Entrance Criteria:

Test environment verified

CSCI qualification test suites prepared

Fully-integrated CSCI ready for qualification test.

Inputs:

CSCI build in executable form.

Test procedures and/or drivers, and expected results data.

Activities:

Test cases, including regression test cases, that exercise the CSCI through all performance requirements, are selected.

The test team meets prior to scheduled test to brief participants on roles and verify readiness of test configuration and materials.

Conduct pre-test inspections of test hardware configurations and interfaces to external systems.

Load and initialize CSCI software to meet prescribed test conditions.

Execute test, following scripted test case procedures. Record results on operator logs and automated recording media.

On completion of test session, debrief assigned test personnel on test observations.

Submit PC/Rs as required.

Submit CSCI qualification test report.

Outputs:

PC/Rs against the CSCI functions

Test logs

CSCI qualification test report.

Exit Criteria: CSCI ready for CSCI/Hardware Configuration Item (HWCI) Integration Testing

3.4.6.3 CSCI/HWCI Integration Testing. Upon completion of the CSCI Qualification Testing, the software is ready for CSCI/HWCI testing. CSCI/HWCI testing will be conducted in accordance with the STP and the applicable STD. The objective is to validate that the hardware and software components can individually be interfaced in accordance with the SRS and Interface Requirements Specification (IRS).

Participants: SW T&E Group, Software Development Group

Entrance Criteria:

Target system test environment verified

Individual CSCIs have completed qualification testing

CSCIs are integrated in a full system ready for test.

Inputs:

System build in executable form.

Full set of implemented STDs, associated test procedures and/or drivers, and expected results data.

Regression test suites.

Activities:

The test team meets prior to scheduled test to brief participants on roles and verify readiness of test configuration and materials.

Conduct pre-test inspections of target system hardware configurations and interfaces to external systems.

Load and initialize system software to meet prescribed test conditions.

Execute test cases, including regression tests cases, following scripted test procedures. Record results on operator logs and automated recording media.

On completion of individual test sessions, debrief assigned test personnel and development staff on test observations.

Submit PC/Rs as required.

Software Development Group corrects CSCIs and submits to re-test of integrated CSCIs until system meets quality threshold.

Submit CSCI/HWCI test report.

Outputs:

PC/Rs against the system functions

Test logs

CSCI/HWCI test report

CSCI/HWCIs tested system software package.

Exit Criteria:

Approved CSCI/HWCI test report

Integrated CSCI/HWCI system ready for System Qualification Testing (SQT).

3.4.7	Conduct Test Readiness Review

Before progressing to SQT, a review of the individual components and/or activities which go into the makeup of the system to be tested will be conducted by project management in the form of a Test Readiness Review (TRR). For a look at additional content that could be included in a TRR, refer to MIL-STD-1521B.

Participants: Project representatives from the Acquisition Office, Software Development Organization, and the System Test Organization

Entrance Criteria:

CSCIs under baseline control.

CSCI/HCWI testing completed.

P/CRs resulting from integration testing closed.

Drafts of the system-level STP and STD developed by the System Test Organization (see Figure 2-2) under configuration control.

Inputs:

Draft STP and STD developed by the System Test Organization

CSCI/HWCI test report from the Software Development Organization

PC/R database information

System Test Organization’s test facilities description and readiness report.

Activities:

Software Project Manager verifies P/CRs resulting from integration testing are closed, corrections tested, and the software system is ready for SQT.

System Test Manager verifies system-level STP and STD are complete and under CM control. The STP and STD will include a cross-reference matrix using the system-wide requirements trace database to document the tests that satisfy each system-level requirement.

System Test Manager verifies system test materials (e.g. data files, test environment, and operator logs) are complete and in conformance with STD.

System Test Manager verifies system test environment is certified and operational.

Project Manager directs correction of discrepancies in STP, STD, test materials, and test environment configuration, as necessary.

The Project Manager, Software Project Manager, and the System Test Manager complete TRR.

Project Manager authorizes start of SQT.

Outputs:

Approved test facilities

Finalized and approved system-level STP and STD.

Certified system software package.

EXIT CRITERIA: Discrepancies and action items assigned during TRR closed.

3.4.8 System Qualification Tests

SQT consists of complementary and progressive test phases. Once the post CSCI/HWCI testing TRR is completed, SQT begins. Since tests following SQT are typically performed by agencies external to the System Acquisition Office, the processes for those tests are not discussed. In addition, as the SQT is performed by an organization other than the Software Development Organization (see Figure 2-2), the following discussion will be in the context of support to SQT by the software developers.

The System Test Organization is responsible for generating the appropriate test documentation. The software developers are responsible for providing technical support and consultation as necessary. They may be responsible for supplying the test procedures for SUs and CSCIs they developed to the System Test Organization so that they can be incorporated into the system-level test case suites.

The SQT is the Project Manager’s approved and witnessed series of tests that demonstrate compliance with the requirements set forth in the System Segment Specification (SSS). The SQT is the acceptance mechanism to confirm the software developer’s compliance with the terms of tasking with the Project Manager.

The SQT shall be accomplished by the System Test Organization (see Figure 2-2) at the System Test Organization facilities or such facilities as designated by the Project Manager. The Project Manager may approve, on a case-by-case basis, the use of the developer’s test staff as SQT testers. However, the conduct of these tests remain the responsibility of the System Test Organization. Following SQT, the program may then proceed to a series of Demonstration Tests (DTs). In addition, an Operational Evaluation (OPEVAL) may or may not be conducted based upon the requirements placed on the Program Manager by his sponsor.

3.4.8.1 System Qualification Testing Support. The SQT is intended to verify program performance in accordance with the SSS and those requirements specifications referenced from the SRSs. The test includes all functional areas and interfaces to verify the functionality of a totally-integrated system. Program reliability is evaluated during independent functional and simultaneous operations, and in light and dense tactical environments. All functions and subsystem interfaces will be independently tested in a systematic manner. System performance will be visually analyzed, augmented by automated data collection, and results will be recorded by test personnel.

SQT components and objectives could include the following areas:

Functional Tests - Functional Tests include Functional Operability Testing (FOT) and Functional Stress Testing (FST). FOT tests the functional requirements of the SRS and FST tests the stress requirements. FOT and FST can be combined within a single set of procedures.

Interface Validation Tests (IVT) - IVTs include Interface Message Tests (IMT), Interface Recovery Tests (IRT) and Interface Stress Tests (IST). These three components test all interface messages, software recovery from interface protocol errors, and software response to interface stress, respectively. All IVTs can be run with simulators.

Regression Tests - Regression tests are run to verify that program changes implemented after the beginning of SQT have not introduced program regression.

Single Unit Tests - Single Unit Tests are performed for each of the functional areas to validate the program operation individually in a one-on-one link.

Multiple Unit Tests - Multiple Unit Tests are performed simultaneously for all of the functional areas to validate the program operation in a multi-unit environment.

Stress and Endurance Tests - These tests are designed to satisfy the stress and endurance requirements for critical computer programs. Three periods of maximum stress are distributed throughout at least a 25-hour period. The program must operate continuously for at least 25 hours without resulting in a Priority 1 or 2 P/CR to pass this test.

P/CR Correction/Closure Tests - These tests are executed to verify fixes to problems and to concur with the decision to close.

Participants: Software Development Group, SW T&E Group

Entrance Criteria: TRR-approved start of SQT.

Inputs:

Software development-level STP and STDs developed by the SW T&E Group

System-level STP and STDs developed by the System Test Organization

SDFs for all CSCIs

CSCI/HWCI test report from the Software Development Organization

PC/R database information

System Test Organization’s test facilities description and readiness report.

Activities:

SW T&E participates with the System Test Organization in developing and recording test cases, procedures, data for system testing.

SW T&E participates with the System Test Organization in dry run of the test cases if testing is to be witnessed by a representative of the System Acquisition Office.

SW T&E participates with the System Test Organization in performing SQT.

SW T&E and Software Development Group participates with the System Test Organization in revising and retesting as needed.

SW T&E participates with the System Test Organization in analyzing and recording test results.

 Outputs:

PC/Rs against system functions

Updated SDFs

Updated system-level STDs and regression tests

Updated system software package.

Exit Criteria: Project Manager’s acceptance of the system software.

3.4.8.2 System Qualification Test Report. The final results of SQT are documented. The System Test Report is distributed for review and approval.

The System Test Organization evaluates the results of system tests, determines that test results meet defined objectives as defined in the SSS, and publishes the System Test Report.

The System Test Report provides an assessment as to the degree that the integrated software and hardware components fulfill the defined operational requirements and serves the Project Manager as a documented basis for system acceptance.

3.4.9	Regression Testing (AC-4, VI-2)

The Regression Test (RT) is critical enough to product quality to warrant being addressed separately. RT consists of identifiable test cases containing test procedures to perform a representative sampling of critical system functions and high priority P/CR implementations. These test suites are run against updated baselines, or newly delivered operational programs, during either integration testing or SQT. RT test suites are intended to examine the possibility of regression between the new and previous program versions, focusing beyond the immediate impact of a given change to ensure that no second-order consequences occur through inadvertent introduction of errors.

The RT is intended to serve as "system checkout" and should retain a measure of simplicity to ensure that results may be compared from one run to the next. Requirements for this test will be derived from mission-critical functions, casualty requirements identified in the SSS and/or SRS, and corrected high-priority trouble reports. Specific mission-critical functions are chosen to ensure the overall operational effectiveness of the system. Regression testing is typically done in a laboratory environment. Further, the SQA group will use regression testing as a tool to support baseline verification.

SECTION 4. SOFTWARE TEST environment

4.1	Define Software Test Resource Requirements (AC-6)

Creating a software test environment is a project development task in itself. The test environment must be designed, implemented, and tested to ensure that it meets the requirements for system test. At a minimum, enough automation must be provided to allow application engineers to perform repeatable stimulation of the system.

Modern workstation and upper-end personal computers and servers allow for the development of powerful networks that can provide a completely interactive test environment for the organization. It is important to embrace this technology to maintain a “state of the industry” computing base. With technology changing in a matter of months, careful selection of the underlying hardware and software is important to prevent slipping into an unsupportable platform configuration for the test support environment. Reduce the up-front development costs by taking advantage of available technology to automate various activities within the infrastructure.

Automation, whether specially-built or a commercial tool, can reduce the effort needed during labor-intensive activities. It can also help to reduce or eliminate errors in the process. Some key issues in automating include the following items:

Use standard, recognized structures in organizing the test cases into families. This can simplify browsing among test components in complex families.

Consider, as a minimum, automating the specification task of the application requirements activity and the production of test cases. These are the core of a software engineering test process and provide the most direct benefits.

Decide what code construction tools (e.g., compiler, linker, debugger) will be used by test engineers to construct automating test products. For code components, factors such as target hardware and operating system must be considered and, if different from the host environment, how the test tools themselves will be tested.

4.2	Test Environment Operations (AC-5)

The test environment’s system administrator, serving as the computer resources facilities manager, implements changes proposed for the organization's test system environment. It is the system administrator's responsibility to ensure that all hardware and software resources are properly installed, tested, and that knowledgeable support is available. In addition, the systems administrator’s group would develop operating procedures describing how to install and connect key hardware/software components used by the test engineers. That manual should provide appropriate information on any vendor-supplied software technology contained in the environment and a complete wiring diagram for all hardware.

�

This page intentionally left blank.

�SECTION 5. SOFTWARE TEST PROCESS MANAGEMENT

5.1	Organizational Data Flow

Figure 5-1 illustrates the relationship of key organizational entities, the flow of data, and the role of the principal processes that are the ingredients of a comprehensive test management approach. The diagram assumes that the SDP and STP have been developed and are in place to guide both development and software test activities. In addition, system-level engineering has allocated requirements to software.

Management, using its SQA team and project metrics, monitors software test performance to assess progress, ensures proper adherence to plans, and guides needed revisions to plans based on feedback from the use of test assets. Management activities include, but are not limited to, the monitoring of the following areas:

Defining standards and ensuring that the work products conform to these standards.

Assessing the software test approach’s current processes, identifying areas that need process improvement, and directing the improvement of those processes.

Directing the creation and maintenance of the hardware and software systems that the application engineers use to test the product(s).

Directing the development, validation, and administration of the training program for the software test staff.

�

Figure 5-1. Software Test Management Data Flow

5.2	Instrumenting the Process (ME-2)

Measurement of the software test capabilities effectiveness enables management to better control costs, reduce risks, and improve productivity and the quality of software. In addition, measurement enhances the objectivity of communication about plans, process development status, and most importantly, the effectiveness of the organization's test standard processes. In short, measurement provides management insight into the effectiveness of software test planning and management. The “Software Project Tracking and Oversight Process” document, available on the SEPO Homepage, provides guidance on establishing a project metrics program that includes metrics that support the manager in monitoring the test effort. The following measurements assist in developing this insight:

Software Test Staff Hours. This activity involves recording the effort involved in software test activities and in support of SQT. The metric collected and recorded are staff effort (hours) for participation in test, and test-related activities. Maintaining a database of this information would allow the SEPG and management to evaluate the SW T&E Group’s costs in relationship to overall project costs. In addition, this data is necessary for the calibration of cost estimating algorithms and the distribution of hours within an estimate to account for test system administrative functions.

Process Effectiveness. A database of statistics on the impact of test processes in a project should be maintained. Information on error rates, the origin of errors, and customer satisfaction are compared baseline to baseline to determine trends. In this manner, the effectiveness of the test approach can be evaluated on a quantifiable basis. For example, the P/CR form can be modified to include fields to identify the origin of an error (requirements, design, code logic, invalid test, etc.). This data can then be addressed by both software development and software test during joint technical meetings (i.e., Local Configuration Control Board) to resolve the actual origin of the error. This effort will help identify process inefficiencies and to quantify error removal rates.

Product Quality. Metrics to help determine product quality is a broad subject. References (d) and (e) contain specific guidance that can be adapted to a project. The following addresses three key measurements that should be considered as a minimum for all software projects:

Breadth of Testing. Measures the degree to which the requirements have been successfully demonstrated through testing. This form of software testing can be described as ‘black box’ testing in that the testing is focused on validating the system in response to prescribed inputs. Typically this form of testing is represented by the STD cases and associated procedures. It is important that the test cases trace to the software requirements, stressing the value of traceability. By quantifying the overall software requirements and comparing that number to the number of requirements successfully validated through execution of the software tests cases and procedures, the comprehensiveness (breadth) of the software testing effort can be determined.

Depth of Testing. Measures the extent to which the possible control and data paths have been validated with the software structure. This form of testing has been referred to as ‘white box’ testing as it provides visibility into how the software was constructed. Typically this form of software testing is accomplished by the unit testing performed by the Software Development Group. By requiring software units to achieve a specific level (i.e., 80%) of path validation during static unit testing, an overall software system value can be determined. By measuring the number of software units meeting the 80% requirement, it can be determined to what extent the software structure has been successfully tested.

Fault Profiles. Fault profiles provide a summary of the P/CR data collected by the corrective action (CM Status Accounting) processes supporting the project. Metrics derived from the corrective action database provide an insight into the number, types, aging, and state of the P/CRs. For example, tracking the number of reported P/CRs against the closed P/CRs yields the current number of open P/CRs. Comparing the open P/CRs against the total number of source lines of code in the software system then yields a density value that could be used as an input in determining the software’s readiness to move to the next level of testing and/or delivery.

Test Artifact Development. The development status of test artifacts, such as the STP, STDs, and test case procedures, should be tracked with the same discipline and mechanisms as the project tracks the development of its design documentation, CSCI code, and other work products that would be included in a delivery package to an operational user.

5.3	Improving the Process (VI-1&3, ME-1)

The SEPG is responsible for managing and controlling process assets. The SEPG, through its relationship with SEPO, addresses the improvement of the test processes and the process supporting the management of test support environment. All changes proposed for any of the software processes are documented, reviewed, and approved before they are incorporated at either the SEPG’s level of responsibility or at the SEPO level. At a minimum, the SEPG is responsible for the following process-related activities:

The description of the standard software processes including the conduct of a peer review when initially developed and whenever significant changes or additions are made.

The description of the test approach model including the conduct of a peer review when initially documented and whenever significant changes or additions are made.

Changes proposed for the tailoring guidelines and criteria are documented, reviewed, and approved by the SEPG before they are incorporated.

Candidate software test process-related documentation items are reviewed and appropriate items that may be useful in the future are included in the library.

Revisions made to software test process-related documentation items currently in the library are reviewed, and the library contents are updated as appropriate.

The utilization of individual test tools is reviewed periodically.

Process-related metrics are reviewed to determine trends that would reveal high return process changes, process bottlenecks, identify items for deletion from the process.

Review the organization’s policies and procedures periodically to determine their currency relevant to test capabilities.

Ensure that compliance with SSC SD Instruction 3912.1A, Management Project Reviews, is a part of the organization’s policies in order to provide periodic and event-driven review of test and evaluation activities between the test manager and project manager, and the project manager and senior management.

�

This page intentionally left blank.

�APPENDIX A. Policy for Software Test Management

The purpose of Software Test Planning and Management (STPM) is to plan and monitor the software testing effort and control the testing resources.

STPM involves planning and monitoring the software testing efforts at the various life cycle phases or testing levels; Unit, Integration, System, Acceptance, and Regression.

The effectiveness of the various levels of testing is monitored by collecting information about the types of defects found and the phase at which the defect was entered into the software.

The project shall complete the following activities:

Ensure that software testing is planned and monitored for each testing level (e.g., unit, integration, system, acceptance, and regression).

Focus software testing on software requirements and on obtaining test coverage information.

Formally assign responsibilities for test planning, design, execution, and evaluation.

Configuration control all test work products.

Periodically audit the test work products and test activities.

Provide training for software personnel in the objectives, procedures, and methods for performing their software testing activities.

Prepare a test plan for each software project according to a documented procedure to define test objectives, types of tests to be conducted, and test schedules.

Prepare and document functional test cases according to a documented procedure.

Review code and/or statically analyze code before software testing.

Perform Regression testing to ensure that software changes do not adversely cause undesirable side effects.

Investigate and appropriately implement tools to automate testing activities.

Collect metrics to determine the status of the test activities and defects per program unit according to a documented procedure.

Review software test activities with the test manager and the project manager on both a periodic and event�driven basis.

Direct the software quality assurance group to perform reviews or audits, or both, on the activities and software work products associated with software testing and reports the results.

The Software Project Manager is responsible for implementing this policy.

�

This page intentionally left blank.

�APPENDIX B. TESTING TECHNIQUES

Software managers and test managers must be familiar with the various techniques employed in system testing. Application of testing techniques and the degree of testing varies from project to project. Software test planning should identify the following items:

The specific techniques to be employed

When in the implementation process the techniques will be used

To what degree the tests should validate the overall system requirements.

For example, embedded smart munitions software will require more exhaustive strategies and more restrictive levels of error density than software being used as a general information aide. The more exhaustive the test strategy, the greater the associated costs. As a result, there must be a balance between the testing investment and the sensitivity of the consequence of the test effort to the operational requirement for the system. It is management’s responsibility to define a test plan that produces the greatest return on the invested test dollar.

Testing should be differentiated from the notion of debugging. The characterizations of each are presented in Table B-1.

Table B-1. Testing versus Debugging

Testing�Debugging��Uses known condition, predefined procedures and has predictable outcomes. The only unpredictable outcome is whether or not a program passes the test.�Starts from an unknown initial condition and does not have a predictable outcome.��Tests are design and scheduled, by nature predictable, constrained, and formal.�Intuitive, experimental, requiring detailed design knowledge, and freedom for performing deductive analysis. ��A demonstration of correctness or error.�A programmer’s vindication.��

Understanding that testing is a formal discipline one can approach the task from the two accepted ends of the testing spectrum. At one end of the spectrum is the concept of structural testing. Structural testing can be characterized as being tied to implementation details such as control methods, database design, coding details, and logic paths. This form of testing is often referred to as ‘White Box’ testing. Unit testing tends to be structural in nature.

At the other end of the spectrum is the concept associated with functional testing where the object under test is treated as a ‘Black Box’. In this strategy, the test object is subjected to inputs and the resulting outputs are verified for conformance to a prescribed specification. System testing tends to be functional in nature.

In developing a strategy for testing at each level of product development, a combination of structural and functional tests are recommended. Table B-2 recommends the application of the structural and functional techniques through product development. The basic techniques addressed are listed below:

Test Path Coverage Analysis is a structural technique easily applied during static unit testing efforts. Path testing involves exercising selected logic paths through the control structure of the software. Algorithms that determine path selection and the generated outputs of a path are also validated using this methodology. Anything less than complete coverage means that untested code is being integrated into the system.

Equivalence Partitioning is a strategy employed in developing functional tests. Developing a set of tests that incorporates all possible combinations of inputs to the system is typically not possible due to time, cost, and resource constraints. Equivalence partitioning involves developing tests incorporating a subset of the inputs that exercise the maximum number of paths and algorithms in the system software. For example, we do not need to generate a test for all the ways to cause a specific result but we must generate at least one test that will exercise that system to cause that specific result.

Boundary Condition Analysis employs testing boundary conditions in either a structural or functional format. This form of testing involves identifying and using input values that exercise the maximum and minimum boundaries by inputting test values just above and below the specified range end points. The intent is to validate system input/output tolerances and associated algorithms. Tests can be developed based on the user perspective (functional) or from a simulation of peripheral inputs (structural).

Input Syntax Validation is a functional technique used to validate the man-machine interface to the system. This form of testing involves exercising the man-machine interface to ensure acceptance of valid inputs to the system and the response to invalid inputs as to direct and/or indirect side effects.

Note in the table that as the product moves through its development-related testing levels the underlying strategy moves from a predominantly structural form to a more functional form. The table is by no means all inclusive and the reader is invited to become educated on detailed issues of software testing prior to either developing a test plan, test procedures, or performing software unit testing.

Table B-2. Testing Techniques

Testing Level�Technique�Purpose��Unit Testing�Structural Path Testing�Static testing of logic branches to validate control structures, loop boundaries, and error recovery processing.���Structural Boundary Condition Testing�Static testing of input and output parameter tolerances and accuracy of algorithm implementations.���Functional user input syntax validation.�Verifies processing of user input data to ensure proper conversion to internal form and validate error message generation in response to invalid inputs.��Computer Software Configuration Item (CSCI) Testing�Functional test bed based on equivalence partitioning�Equivalence partitioning involves defining the minimum number of functional tests to exercise the maximum number of intra-CSCI logic paths and data interfaces. Verifies CSCI’s functional capability against its software requirements specification.���Functional user input syntax validation.�Valid and invalid inputs to uncover errors in the user interfaces. Verify error handling facilities as stated in the requirements specifications.���Structural Boundary Condition Testing�Testing of intra-CSCI and peripheral interfaces to find errors in input and output data tolerances and verify that the CSCI’s data processing and limits are correctly implemented.��CSCI Integration Testing�Functional test bed based on equivalence partitioning�Test inter-CSCI logic paths and data interfaces. Verifies system software functional capability against the system software requirements specification.���Functional user input syntax validation.�Valid and invalid inputs to uncover errors in the user interfaces. Verify error handling facilities as stated in the system software requirements specifications.���Structural Boundary Condition Testing�Testing of inter-CSCI and peripheral interfaces to find errors in input and output data tolerances and verify that the systems data processing and limits are correctly implemented.��System Testing�Functional Test Bed�High volume functional test bed execution to determine system software load capability, and ability to meet overall system software requirements.���Regression Test Bed�Functional and/or structural tests developed specifically to test reported high priority problems and/or critical algorithms. Used to verify integrity of software changes. ��

�

This page intentionally left blank.

�DOCUMENT CHANGE REQUEST FORM (DCR)

DOCUMENT: SOFTWARE TEST PLANNING and MANAGEMENT

TRACKING NUMBER:_______

NAME OF SUBMITTING ORGANIZATION:___

__

ORGANIZATION CONTACT:_________________________TELEPHONE:_______________

MAILING ADDRESS:___

__

__

__

PROPOSED CHANGE:

RATIONALE FOR CHANGE:

Note: For the Software Engineering Process Office (SEPO) to take appropriate action on a change request, please provide a clear description of the recommended change along with supporting rationale.

Send to: Space and Naval Warfare Systems Center San Diego (SSC SD), SEPO, Code D13, 53560 Hull Street, San Diego, CA 92152-5001

or Fax to: (619)553-6249

DCR Form 7/1998

STPM Guide

Ver 1.0

8/31/98

STPM Guide

 Ver 1.0

8/31/98

�PAGE �vi�

�PAGE �v�

STPM Guide

 Ver 1.0

8/31/98

� PAGE �25�

STPM Guide

 Ver 1.0

8/31/98

A-2

A-1

B-�PAGE �2�

B-�PAGE �1�

SSC SD

Senior Management

SEPO

Division Manager

SW Project Manager

Management Office

Financial/Admin Cost Estimation

SEPG

Line Manager

Facilities Manager

Line Manager

Software Configuration Manager/Software Quality Assurance Manager

Line Manager

Software Test & Evaluation Manager

Line Manager

Software Development Manager

Software Configuration Manager/Software Quality Assurance Group

Software

Test & Evaluation Group

Software Development Group

Facilities Group

System Administrator

Software Librarian

Project “A” Test Lead and Team

Design Team

Configuration Management Engineers

Production Team

Software Quality Engineers

Project “B” Test Lead and Team

Requirements Management Team

System

Acquisition Office

(Project Manager)

System Test Organization

(System Test Manager)

Software Development Organization

(Software Project Manager)

Software Test & Evaluation Group

(Software Test & Evaluation Manager)

Software Development Group

(Software Development Manager)

Develop framework for system certification

Define test resource requirements

Identify required test case suites to meet software requirements

Establish Pass/Fail criteria

Software Test

Planning

 SDP Baselined

 STP Baselined

Define test cases to meet each STP-defined test case suite

Trace each test case to appropriate SRS requirement

Define inputs, outputs, expected results

for each test case

Define test case environment

Test Description

Development

 STD(s) under CM

 Control

Define procedural steps for test cases

Develop required test drivers

Develop input data files

Test Procedure

Development

 Test Procedures

 Test input data files

 Test drivers

Develop unit test plans/test

Perform unit tests and re-test until quality gate has been met

Software

Unit Testing

 Updated SDFs

 SUs ready for software

 system integration

Perform incremental SU integration testing

Perform CSCI Qualification testing

Perform CSCI/HWCI integration testing

Integration

Testing

 System software

 package ready for SQT

Verify system software quality and P/CR status

Verify system-level STP and STDs

Verify system-level test environment

Test Readiness

Review

 Authorization to start

 SQT

Participate with System Test Organization in test execution

Participate with System Test Organization in post test analysis

Provide required system software revision and re-test

System Qualification

Testing

 System Acceptance

�

