
LITTLE BOOK

OF

TESTING

VOLUME I

OVERVIEW AND

BEST PRACTICES

For additional information please contact the

Software Program Managers Network

(703) 521-5231 • Fax (703) 521-2603

E-Mail: spmn@aol.com

http://www.spmn.com

JUNE 1998

SOFTWARE COUNCIL
AIRLIE

TestI 1/99 mid-line 2/1/99 2:03 PM Page 1

i

This guidebook is one of a series of guidebooks
published by the Software Program Managers Network
(SPMN). Our purpose is to identify best management
and technical practices for software development and
maintenance from the commercial software sector, and
to convey these practices to busy program managers
and practitioners. Our goal is to improve the bottom-
line drivers of software development and
maintenance—cost, productivity, schedule, quality,
predictability, and user satisfaction.

The Airlie Software Council was convened by a

Department of the Navy contractor in 1994 as a focus
group of software industry gurus supporting the SPMN
and its challenge of improving software across the
many large-scale, software-intensive systems within the
Army, Navy, Marine Corps, and Air Force. Council
members have identified principal best practices that
are essential to managing large-scale software
development and maintenance projects. The Council,
which meets quarterly in Airlie,Virginia, is comprised
of some 20 of the nation's leading software experts.
These little guidebooks are written, reviewed, generally
approved, and, if needed, updated by Council
members. Your suggestions regarding this guidebook,
or others that you think should exist, would be much
appreciated.

THE AIRLIE SOFTWARE COUNCIL

This publication was prepared for the

Software Program Managers Network
4600 North Fairfax Drive, Suite 302
Arlington, VA 22203

The ideas and findings in this publication should not be
construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

Norm Brown
Director, Software Program Managers Network

Copyright © 1998 by Computers & Concepts Associates

This work was created by Computers & Concepts Associates
in the performance of Space and Naval Warfare Systems
Command (SPAWAR) Contract Number N00039-94-C-0153
for the operation of the Software Program Managers
Network (SPMN).

TestI 1/99 mid-line 2/1/99 2:03 PM Page 3

1

As the significance of software in defense systems
has increased, so has the demand for effective software
testing and the prudent management of software-related
risks. The costs of software testing and the time
required for it have also grown; consequently, the
quality of systems in most organizations is often below
standard. Knowledge of the testing practices outlined
in this guide can help managers face the challenges of
software testing and risk management.

Collected here is wisdom on software testing and
evaluation (T&E) gathered from successful software
managers and consultants in government and industry
around the world. This first volume of the Software
Program Managers Network testing series offers
strategies for effective testing of large-scale software
programs.

With practical, real-world advice on how to manage
testing and evaluation programs, this guidebook
demonstrates that good testing practices are a key
element of all modern software programs, leading
toward the development and implementation of
significant quality improvements.

Norm Brown
Executive Director

THE PURPOSE OF THIS

LITTLE BOOK

TestI 1/99 mid-line 2/1/99 2:03 PM Page ii

3

WHY IS IT IMPORTANT?

Five important reasons why testing should be ranked
as a top concern, especially at the start of a project:

1. A poor testing program can cause mission failure,
can significantly impact operational performance
and reliability, and can double or triple field support
and maintenance costs.

2. A good testing program is a major project cost.
Complex programs can spend more than half their
total program effort on T&E activities. To make
testing effective, you have to take the time up front
to plan and organize it properly.

3. A good testing program will help significantly as
you define your early requirements and design
work. That help is critical to getting the project
started right, and it can have a major influence on
overall project success.

4. A good testing program forces you to face and deal
with problems as the work is done, and when the
cost of rework and fixes is much lower.

5. A good testing program can’t totally make up for a
poor software project, but it does help prevent
many ills and will at least let you know you are in
trouble early. Testing is insurance, and many project
managers have learned the hard way that most
need big policies!

WHAT IS SOFTWARE TESTING?

Testing plays many roles in the development of
software.

1. Testing is exercising or simulating a system or
program operation.

2. Testing is establishing confidence that a program
does what it is supposed to, and doesn’t do what it
isn’t supposed to.

3. Testing is analyzing a program with the intent of
finding problems and errors.

4. Testing is measuring system functionality and
quality.

5. Testing is evaluating the attributes and capabilities
of programs and project work products, and
assessing whether they achieve required or
acceptable results.

6. Testing includes inspections and structured peer
reviews of requirements and design, as well as
execution test of code.

Q: So what is testing really?

A: All of the above!

TestI 1/99 mid-line 2/1/99 2:03 PM Page 2

5

DEMONSTRATION

1. Gain confidence that systems can be used with
acceptable risk.

2. Try out features and functions under unusual
conditions and situations.

3. Assure that a work product is completed and
ready for use or integration.

DETECTION

1. Discover defects, errors, and system
deficiencies.

2. Define system capabilities and limitations.

3. Provide information on the quality of
components, systems, and work products.

PREVENTION

1. Clarify system specifications and performance.

2. Provide information that prevents or reduces
the likelihood of errors being made.

3. Detect errors earlier in the process.

4. Identify risks and problems and ways to avoid
them in the future.

TESTING OBJECTIVES

• To help clearly describe system behavior.

• To find defects in requirements, design,
documentation, and code as early as
possible.

Historically, testing has focused on exercising software
to obtain confidence in its readiness for use and to
demonstrate that it is working satisfactorily. This leads
to an emphasis on the detection and removal of
defects. Modern testing continues to emphasize
demonstration and detection, but also recognizes that
many—maybe even most—major defects are rooted in
requirements and design misunderstandings, omissions,
and inconsistencies. Early, structured peer reviews are
now commonly used to help prevent problems from
ever being coded. Demonstration, detection, and
prevention have all become important objectives and
benefits of good testing.

PURPOSES AND BENEFITS OF

GOOD TESTING

TestI 1/99 mid-line 2/1/99 2:03 PM Page 4

7

• COMPLETE TESTING ISN’T POSSIBLE

No matter how much you test, it is impossible to
achieve total confidence.

The only exhaustive test is one that leaves the
tester exhausted!

• TEST WORK IS CREATIVE AND DIFFICULT

You must understand and probe what the system is
supposed to do.

You must understand and stress the limitations and
constraints.

You must understand the domain and application in
depth.

• TESTING IS RISK-BASED

We can’t identify all risks of failure.

Risk assessments indicate how much to test and
what to focus on.

• ANALYSIS, PLANNING, AND DESIGN ARE IMPORTANT

Test objectives must be identified and understood.

Tests must be planned and designed systematically.

Without a road map, you will get lost.

• MOTIVATION IS IMPORTANT

You cannot be effective if you don’t care about the
job.

You must want to find problems and enjoy trying to
break the system.

• TIME AND RESOURCES ARE IMPORTANT

You can’t be effective if you don’t have the time or
resources to do the job.

• TIMING OF TEST PREPARATION MATTERS A LOT

Early test preparation leads to an understanding of
project requirements and design.

Early test preparation uncovers and prevents
problems.

Early tests improve the effectiveness of subsequent
reviews and inspections.

• MEASURING AND TRACKING COVERAGE IS ESSENTIAL

You need to know what requirements, design, and
code have and have not been covered.

Complex software is too difficult to cover without
systematic measurement.

PRINCIPLES OF GOOD TESTING

TestI 1/99 mid-line 2/1/99 2:03 PM Page 6

9

1. MAKE EVALUATION EVERYONE’S JOB–A TEAM RESPONSIBILITY

Insist on making T&E an integral element of all professional work.
Cultivate the attitude to take it seriously, and cooperate as a project
team to produce well-tested, high-quality work products.

2. ESTABLISH AN EARLY, INTEGRATED MASTER TESTING AND EVALUATION

PLAN

Provide and maintain a Master Testing and Evaluation Plan (MTP)
covering all anticipated T&E activities and deliverables. Integrate
the test plans with the overall project and program plans, and
ensure that responsibilities and resources are assigned as early as
possible.

3. MAKE PREVENTIVE TESTING PART OF ALL SPECIFICATION WORK

Establish systematic evaluation and preliminary test design as a
sizable part of all system engineering and specification work.
Design test scenarios early and use them in reviews and inspections
to help assure you are building the right features, and test for
specification work product completion.

4. USE TESTS AS PROGRESS AND MILESTONE GATES

Require the use of tests to verify that all project deliverables and
components are complete, and to demonstrate and track true
project progress. Avoid delay in addressing problems by making
test completion a gate to be achieved before work product sign-off.

5. INVENTORY TEST OBJECTIVES AND DESIGN FOR TESTABILITY

Develop and maintain a risk-prioritized list of test requirements and
objectives: requirements-based, design-based, and code- or
implementation-based. Use the inventory to guide test design and
development, and to trace or cross-reference what each test covers.

6. TEST EARLY, TEST OFTEN

Use tests as early and as often as possible to provide developer
feedback and to get problems found and fixed as they occur.
Emphasize testware engineering as a concurrent life cycle process
tightly coupled with software design and development.

7. DESIGN AND DEVELOP TESTWARE AS DELIVERABLE COMPONENTS

Design and develop major testware components and procedures
with the same discipline and care reserved for software
components. This includes planning, analysis, design, review,
configuration management, and change control and management
reporting.

8. PROVIDE INTEGRATED TEST TOOLING AND INFRASTRUCTURE SUPPORT

Support and enable project team T&E with a database or repository
and an integrated test management system for describing,
documenting, and tracking tests. Also supply support tools, such as
simulators, coverage analyzers, capture playback tools, test drivers,
and utilities.

9. MEASURE TEST COSTS, COVERAGE, RESULTS, AND EFFECTIVENESS

Collect information to monitor T&E costs, results, and benefits.
Measure test coverage of requirements, design, and code at all levels
and for all major builds and test environments. Measure what tests
are run on what software versions and what each test level or major
activity finds or misses. Use the information to evaluate T&E
effectiveness.

10. COACH AND MANAGE THE TEAM

Provide ongoing T&E leadership and management support so that
all on the team know what is expected and take testing seriously.
Understand your testing activities and process, and make
measurement-driven policy and process changes as needed.

TOP TEN BEST TESTING

PRACTICES

TestI 1/99 mid-line 2/1/99 2:03 PM Page 8

11

MAKE EVALUATION EVERYONE’S JOB–A TEAM
RESPONSIBILITY

Insist on making T&E an integral element of all
professional work. Cultivate the attitude and
responsibility to take it seriously, and cooperate as a
project team to produce well-tested, high-quality
work products.

Most of us consider testing and evaluation as an
integral part of any work we do. We want to test our
own work carefully and thoroughly, and we want our
team to deliver the highest-quality results possible.
We inherently understand that good testing is
everyone’s job. We know it is part of the process, and
in most instances we even know what needs to be
done to achieve it.

However, the reality is that under the pressures of
time and the heat of battle,T&E tasks are often the
first to be delayed, trimmed, or dropped altogether.
Why is this, and what should we be doing to get
everyone on the team to meet their testing
responsibilities better?

Much of the problem is psychological:

• Testing when we know there are many more
problems to find is discouraging.

• Testing when we feel fairly sure everything already
works is boring.

• Weak testing lets us pretend we have achieved
more progress than we have.

• To developers, testing exposes more problems and
means more work or rework.

• To managers, testing looks like overhead that can
be cut when in trouble.

• Users and customers willingly trade and accept low
quality for more features.

The solution isn’t a big mystery. Management has to
cultivate the right attitudes and insist that T&E
responsibilities be taken seriously by everyone on the
team, not just testers. This takes leadership and
sometimes means making tough decisions, but effective
modern testing is a team activity that requires direction
and discipline.

Best Practice #1 is both the easiest to achieve and the
hardest to maintain. It is built on the organizational
culture and the determination as a project team to
collectively produce high-quality work products all the
time.

BEST TESTING PRACTICE #1

TestI 1/99 mid-line 2/1/99 2:03 PM Page 10

13

ESTABLISH AN EARLY INTEGRATED MASTER TESTING AND
EVALUATION PLAN

Provide and maintain a Master Testing and
Evaluation Management Plan (MTP) covering all
anticipated T&E activities and deliverables. Integrate
the test plans with the overall project and program
plans, and ensure that resources and responsibilities
are understood and assigned as early in the project
as possible.

Most projects fail to address T&E issues early enough.
The MTP helps overcome this problem and makes the
testing effort and strategy visible to and understood by
everyone on the project. At a minimum, the MTP
should encompass the total T&E effort and should
assign responsibilities for all major tasks and
deliverables at all levels of evaluation. The intent is to
provide the big picture and to help coordinate the
overall T&E effort.

The MTP is intended for all members of the team,
including users, customers, and managers. Activities
for everyone involved in evaluation are described,
including those assigned to developers, such as unit
review and testing. Program managers and those
outside the project will find the MTP helpful in
relating the testing process to the overall project and

its associated risks. The MTP supplements the Project
Plan and addresses management and technical issues
associated with evaluation. As the project proceeds,
the MTP is revised and updated to reflect current
expectations, deliverables, and assignments.

Creating the MTP does not require much effort, and it
need not be an especially lengthy or weighty
document. Much of the content can be developed
effectively in a RAD-like, brainstorming session early in
the project.

BEST TESTING PRACTICE #2

TestI 1/99 mid-line 2/1/99 2:03 PM Page 12

15

MAKE PREVENTIVE TESTING PART OF ALL SPECIFICATION
WORK

Establish systematic evaluation and preliminary test
design as a sizable part of all system engineering
and specification work. Design test scenarios early,
and use them in reviews and inspections to help
ensure you are building the right features and to
better understand acceptable and required system
behaviors.

The central idea here is to exploit the power of early
test definition and the proven benefits of systematic
evaluation (such as analysis, reviews, and inspections)
to ensure that the right system and requirements are
specified, and that design problems are discovered as
early as possible. In commercial industry this is
sometimes referred to as preventive testing. It is built
on the observation that one of the most effective ways
of specifying something is to describe in detail your
criteria for accepting (or testing) a product under
development.

Key Elements of Preventive Testing

• Tests are used as requirements and usage models.

• Testware design is closely linked with software
design.

• Software and testware specifications are reviewed
and inspected together.

• Testers and developers work together.

• Most defects are detected before the software is
built and tests are run.

With preventive testing, requirements and tests are
closely linked. The hardest job with many tests is
understanding what results are required or acceptable.
By detailing specific test cases and conditions ahead of
time, preventive testers can interpret and clarify
required system behavior, and many defects can be
detected before a single test is run.

Another challenge testers face is the temptation to
build, test, and rework designs and features that aren’t
needed or shouldn’t be used. Early T&E emphasizes
the right work and stresses simplicity as well as defect
detection. Perhaps the worst waste of project
resources is to test a complicated system thoroughly
with the wrong features and design.

Preventive testing boils down to one lesson: It’s not
about bug counts or density; it’s about being smarter!

BEST TESTING PRACTICE #3

TestI 1/99 mid-line 2/1/99 2:03 PM Page 14

17

Use of test gates also significantly improves project
tracking and schedule prediction accuracy. It is much
easier to estimate during development coding how
long it will take to complete a small number of features
than it is to estimate during system test how long it
will take to close bugs that range across all or most of
the system functionality. Completing features
incrementally also means that if you get behind, you
can consider shipping without the unfinished features.

The philosophy is simple: If a design, unit, object, or
build doesn’t pass its tests with suitable coverage, it
isn’t done and can’t be reported as coded or
completed.

USE TESTS AS PROGRESS AND MILESTONE GATES

Require the use of tests to verify that all project
deliverables and components are complete, and to
demonstrate and track true project progress. Avoid
delay in addressing problems by making test
completion a gate to be achieved before work
product sign-off.

Many projects seem to be in good shape until they
enter integration and system test, when suddenly even
simple tests don’t run. You can avoid surprise failures
like this by using tests as gates to control and sign off
project work products. When you insist on running
tests to demonstrate that a feature or object is
complete, you ensure that the design and code are
truly complete. Without a program test gate,
developers under pressure to show interim progress
may be tempted to turn over designs or code on
schedule but with key internal design decisions
unmade and significant (even fatal) open bugs and
issues. Testing becomes unmanageable when it reveals
that previous development phases have postponed
key decisions and design issues. Using tests as gates
ensures that major design issues are closed when they
need to be.

BEST TESTING PRACTICE #4

TestI 1/99 mid-line 2/1/99 2:03 PM Page 16

19

BEST TESTING PRACTICE #5

INVENTORY TEST OBJECTIVES AND DESIGN FOR TESTABILITY

Develop and maintain a risk-prioritized list of test
requirements and objectives: requirements-based,
design-based, and code- or implementation-based.
Use the inventory to help ensure work products are
designed for testability, to guide test design and
development, and to trace or cross-reference what
each test covers.

A key modern testing practice is to create inventory
lists of objectives to be covered before tests are
designed and built. The lists detail what needs to be
tested, and are used to guide and drive test design and
development work. Prioritization by risk (usually into
low, medium, and high) helps concentrate testing on
the highest-risk areas.

Guidelines for Obtaining Good Test Inventories

• Start early and cover any requirements or
functional design specifications.

• Use brainstorming and informal meetings to create
worry lists.

• Evaluate the inventories during reviews.

• Group the inventories into three major increments:
requirements, design, and code.

• Break each increment into a small number of
logical groups.

Since inventory lists can get quite long, it helps to
group them into related categories or classes. Missing
objectives are easier to identify from these groups.

As each test is developed, related inventory objectives
and groups are recorded as part of the test description.
With some simple test management tooling support,
you can report on the test coverage of requirements
and objectives, especially of objectives not yet covered
by any tests.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 18

21

BEST TESTING PRACTICE #6

TEST EARLY, TEST OFTEN

Use tests as early and as often as possible to
provide developer feedback and get problems found
and fixed as they occur. Emphasize testware
engineering as a concurrent life cycle process
tightly coupled with software design and
development.

An important philosophy of modern testing is to get
as much feedback as early and as often as possible.
This implies that tests have been prepared early and
are shared with the development teams for use in
review walkthroughs, unit testing, prototype
evaluation, early simulations, and so forth. The aim of
early testing is to uncover any surprises and bad
news as early as possible, and to help developers
produce higher–quality and better–tested units.

This approach assumes that the problems and bugs
found in the early testing will be addressed and fixed.
Many project managers postpone fixes until
developers complete the feature design and code.
This is analogous to remodeling every room in your
house at once while leaving all the little problems
you run into to be fixed “later.” It is generally much
better to complete one room or feature at a time and
make sure it is really done properly. Run as many
tests during development as possible, and fix as many
of the problems and bugs as soon as you can.

Reasons to Fix Problems Now, Not Later

• Changes made weeks or months later are highly
error-prone.

• Design decisions and subtle code limitations and
conditions are easily forgotten.

• Time that would be required to reanalyze your
designs and code is saved.

• Early feedback on problems helps prevent similar
errors from being made.

• Developer testing is more thorough when all code
is tested together.

• Defect- and problem-tracking overhead is
significantly reduced.

• Rework of the design and coding is feasible, if
necessary.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 20

23

BEST TESTING PRACTICE #7

DESIGN AND DEVELOP TESTWARE AS DELIVERABLE
COMPONENTS

Design and develop major testware components
and procedures with the same discipline and care
reserved for software components. This includes
planning, analysis, design, review, configuration
management, and change control and
management reporting.

It is important to recognize that testware (such as
test suites, simulators and drivers, special evaluation
programs, and utilities) is also software and needs to
be managed and engineered just like other software
components in your application. The testware is
really a specialized application system whose main
purpose is to test and evaluate some other
application or system. If the application is critical,
the testware that tests it is critical and must be built
with good engineering discipline, including proper
testing and evaluation.

Integrated Testware Characteristics

• Recognized as true project deliverable(s)

• Engineered and developed in parallel with
software deliverables

• Changed and updated as the software changes

• Used for retesting the software as it evolves

The life cycle process for engineering testware is
essentially the same as for software. All the concepts
and principles of good software engineering apply
equally to good testware engineering. The basic phases
of analysis, design, development, and implementation in
staged increments apply just as they would for any
other software component.

The key to effective testware engineering is to get the
timing right. If you build your testware late, after most
of the software components have been designed and
coded, you don’t get the prevention and positive
feedback or test-gating benefits. If you try to build it
too early, before the software designs and requirements
have stabilized, you can’t develop your test
requirements and objectives effectively, and you face a
lot of rework as the software changes.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 22

BEST TESTING PRACTICE #8

25

PROVIDE INTEGRATED TEST TOOLING AND INFRASTRUCTURE
SUPPORT

Support and enable project team testing and
evaluation with a T&E database or repository and
an integrated test management system for
describing, documenting, and tracking tests; also
supply support tools, such as simulators, coverage
analyzers, capture playback tools, test drivers, and
utilities.

Large-scale testing, like large-scale software, needs
significant automated support to be performed and
managed effectively. This is particularly true when
we recognize evaluation as everyone’s job (Best
Testing Practice #1) and coordinate workflow across
the entire project team.

Types of Tools and Applications

• T&E asset tracking and management

• Test plans, objectives, cases, procedures, and
scripts

• Analysis, review, and test results and reports

• Work product analyzers

• Test drivers, simulators, and playback systems

• Test coverage analyzers

• Defect and problem tracking

• Process-effectiveness analysis and metrics

A key automation support element is a central project
repository for all T&E deliverables and work products.
This is referred to as a T&E management system, and
includes facilities for saving, describing, documenting,
and tracking tests, and recording and tracking review
and test observations and results. The best tools make
this information easily accessible to the project team,
and provide substantial workflow support to simplify
and track the software development process. These
tools feature templates for all document types, built-in
analyzers and checkers for conformance to standards
and the T&E process, and templates for periodic
tracking reports and metrics.

Other important tool support includes test beds and
simulator tools to support various test environments;
static analyzers and comparators to provide before- and
after-change analysis and assessments of work product
risk and complexity; test driver and capture playback
tools to run and rerun automated tests; and dynamic
analyzers to measure and report test results and
coverage.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 24

27

BEST TESTING PRACTICE #9

MEASURE TEST COSTS, COVERAGE, RESULTS, AND
EFFECTIVENESS

Collect information to monitor T&E costs, results,
and benefits. Measure test coverage of
requirements, design, and code at all levels and for
all major builds and test environments. Measure
what tests are run on what software versions and
what each test level or major activity finds or
misses. Use the information on an ongoing basis to
assess and evaluate T&E effectiveness.

You can’t manage what you can’t see or understand,
and to understand T&E you have to collect and track
data about the test process and its effectiveness.

What Should Be Measured?

• Effort and costs spent

• Test coverage against requirements and objectives
inventories

• Test coverage against code (requires dynamic
analyzer tools)

• Status of the test effort—what has been done,
what hasn’t

• Defects and problems found

• Defects and problems missed (collected during
operational use)

• Quality of the product—required vs. expected end
user perceptions

• Quality of the testing effort—prevented and found
vs. impact of what is missed

Think about your last completed program or project.
Did you track what tests were run and what they
covered? Did you report what was spent at each test
level (reviews, unit, integration, system, and acceptance
testing)? Did you analyze and assess the effectiveness
of that effort and expenditure? Do you know what
each test level missed or failed to discover? Can you
relate these measures to other projects and past test
efforts?

If you can’t answer yes to these questions, you don’t
have the information you need to manage effectively.
At a minimum, you should have visibility of the effort
and costs spent on T&E activities, the deliverables and
work products produced, and the overall results and
effectiveness of the test coverage.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 26

29

BEST TESTING PRACTICE #10

COACH AND MANAGE THE TEAM

Provide ongoing T&E leadership and management
support so that everyone on the team knows what
is expected and takes testing seriously. Understand
your testing activities and process, and make
measurement-driven policy and process changes as
needed to steadily improve over time.

Testing in most organizations is more mismanaged
than managed. Many software managers act more
like fans and cheerleaders than quarterbacks. Any
really professional team needs good coaching and
software. T&E is no exception. Modern testing
requires managers to get off the sidelines and lead
the team, to shape priorities and set direction.

Managers should get more personally involved in T&E
policy and direction. T&E issues seldom involve
purely technical or simple yes/no decisions. There
are almost always tradeoffs to consider and risks to
judge and balance. Management’s job is to provide
timely, appropriate guidance on everything from
scoping the T&E effort to deciding when to stop or
what to do when quality targets and schedules are
missed.

The principles for managing testing and evaluation are
fundamentally the same as those for managing anything
else. There are no easy solutions. You’ve got to assign
responsibilities and accountabilities, establish a solid,
integrated process with strong automation support,
involve good people who know what they are doing,
and consistently support improvement over time. The
basics of good planning, risk management,
measurement, tools, organization, and—above all—
professionalism apply to T&E just as they do to any
other project area.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 28

31

AUTOMATED TESTING

Many automated tools are now available to support
software testing. Integrated tools are just as important
to testing and evaluation as they are to software
development and management, and use of these tools
should enable the following major benefits:

1. TEST REPEATABILITY AND CONSISTENCY

Automated tests should provide the same inputs
and test conditions no matter how many times they
are run. Human testers can make errors and lose
effectiveness, especially when they are fairly
convinced the test won’t find anything new.

2. EXPANDED AND PRACTICAL TEST REUSE

Automated tests provide expanded leverage due to
the negligible cost of executing the same test
multiple times in different environments and
configurations, or of running slightly modified tests
using different input records or input variables,
which may cover conditions and paths that are
functionally quite different.

3. PRACTICAL BASELINE SUITES

Automated tests make it feasible to run a fairly
comprehensive suite of tests as an acceptance or
baseline suite to help ensure that small changes
have not broken or adversely impacted previously
working features and functionality. As tests are
built, they are saved, maintained, and accumulated.
Automation makes it practical to run the tests again
for regression-testing even small modifications.

NOT THE SILVER (EVEN TIN OR IRON) BULLET

These benefits are not easy to realize. The tools
themselves are fairly easy to use, but ease of use
doesn’t mean success. A hammer and saw are easy to
use, but good cabinetwork takes great skill and much
more than just good tools. Similarly, a new test
automation tool, by itself, will do little for your test
program. Most new owners of testing tools tend to
overpromise and underdeliver, at least initially, so be
cautious about raising expectations too high, too soon.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 30

33

REQUIREMENTS FOR TEST

AUTOMATION SUCCESS

Successful test automation generally goes hand in hand
with two critical ingredients:

1. A WELL-UNDERSTOOD AND STABLE APPLICATION
BEHAVIOR

You can’t automate something that is not well
defined. Applications that are still undergoing
significant requirements and design changes make
poor candidates for test automation. Even fairly
stable applications may be problematic if the testers
responsible for automation don’t understand an
application’s behavior or the relevant domain-
specific issues and needs. To automate successfully,
you must understand and be able to predict
application behavior, and then design the test in
such a way that your test plan stays with the tool.

2. A DEDICATED AND SKILLED TEAM WITH SUFFICIENT TIME
AND RESOURCES ALLOCATED

Remember, testware is software. Test automation
should be managed like a separate support project
with its own budget and resources. You will
generally fail if you give your whole project team a
new automation tool and ask everyone to do a little
automation in their spare time. (Imagine trying to
automate your accounting or payroll process by

giving everyone in the finance department a
spreadsheet and asking them to work on it when
they have some free time.)

HOW NOT TO SUCCEED WITH TEST AUTOMATION

• Buy a tool and give it to everyone on the team.

• Presume automation will save project time or
money.

• Expect a lot of bugs to be found.

• Test functions and features you don’t
understand.

• Test functions and features that are changing
significantly.

• Automate tests you don’t understand how to
run manually.

• Avoid a project.

• Avoid any dedicated resources.

• Eliminate training and support.

• Ignore synchronization.

• Ignore test documentation.

• Forget about environments and configurations.

• Ignore test management.

TestI 1/99 mid-line 2/1/99 2:03 PM Page 32

35

TESTING PARADOXES

Following are some common paradoxes faced by those
involved in testing. Contemplate these for your
benefit—and at your own risk!

1. The best way to test and verify requirements is to
figure out how to test and verify requirements.

2. The best testing process is one that forces
developers to build the software right and test it as
they go, which in turn makes it largely unnecessary
to have a best testing process.

3. The best way to build confidence is to try to
destroy it.

4. Testing is looking for what you don’t want to find.
A successful test is one that fails, and a failure is one
that succeeds.

5. Managers who fail to spend appropriately on
testing end up with failed projects because they
can’t meet their deadlines if they do spend
appropriately on testing.

6. Unsystematic testing can and should be very
systematic.

7. Heavy use of automated tests eliminates the need
for heavy use of automated tests.

8. A big improvement in testing can ruin a project by
giving it more problems than it has time to deal
with and making the software appear much worse
than it is.

9. Quality is free if you pay for it.

WHEN IS IT OK NOT TO TEST?
• When the responsibility for failure can be

shifted to someone else

• When the impact or significance of any problem
is insignificant

• When the software does not have to work

• When no one is or will be using the system

• When the project has already failed

TestI 1/99 mid-line 2/1/99 2:03 PM Page 34

37

TESTING IS NOT A PHASE!

A central principle of modern testing is that good T&E
proceeds in parallel with software development.
Testing should not be viewed as just execution or just
the phase that happens after coding. For maximum
benefit and leverage, test development and preparation
need to be completed before, rather than after, coding.

Testware engineering is more significant and integral
to the analysis and design stages than it is to the
coding and implementation stages. This is analogous to
testing in school: The final may be important for
demonstrating knowledge and graduating, but it is the
testing and evaluation during the semester that really
helps students gauge their progress.

FUNDING FOR THE TESTING PROCESS DEPENDS ON:
• The RISK

• The application complexity and change

• The talents and skills on the team

• The tooling and infrastructure support

• The quality of the software effort

• The availability of existing tests

• The process and methods

• The degree of retesting required

Plan for a minimum of 25 percent of total program
costs.

High-risk components (such as software modules,
units, and configuration items) as well as system
features tied to mission-critical or safety concerns need
more thorough testing (more insurance) and may well
drive up the proportionate cost of testing and
evaluation to 50 percent or more of the program
budget.

WHAT SHOULD YOU SPEND ON

TESTING?

TestI 1/99 mid-line 2/1/99 2:03 PM Page 36

39

KEYS TO TESTING AND

EVALUATION IMPROVEMENT

MANAGE T&E AS AGGRESSIVELY AS YOU
MANAGE DEVELOPMENT

• Take testing seriously.

• Foster a quality culture that wants to find and
prevent problems.

• Set clear directions and expectations.

• Delegate responsibility and accountability to good
people.

• Manage the process and the project.

• Emphasize early planning and preparation.

• Make testware a real deliverable.

• Insist on tests to demonstrate progress.

• Invest in team tooling and support infrastructure.

• Measure effectiveness.

• Reward team contributions.

CAUTION

Reengineering the T&E process is known to be a tough—
even wicked—problem because managers, developers, and
testers are often highly resistant to change. Can’titude will
flourish, and attacking it may be harmful to your well-being.

Bear in mind this advice to mountaineers: It is very
dangerous to leap chasms in two or more bounds.

There are many excellent publications, training courses,
and conferences that address software testing and
modern, best testing practices. Useful resources include:

BOOKS

Boris Beizer, Software Testing Techniques & Black
Box Testing,Van Nostrand Rheinhold

Tom Gilb and Dot Graham, Software Inspection,
Addison Wesley

Bill Hetzel, Complete Guide to Software Testing,
John Wiley & Sons

Cem Kaner et al., Testing Computer Software,
Course Technology

Ed Kit, Software Testing in the Real World,Addison
Wesley

Brian Marick, Craft of Software Testing, Prentice Hall

William E. Perry and Randall W. Ricer, Surviving the
Top Ten Challenges of Software Testing, Dorset
House

WEB SITES

Client Server Software Testing Technologies:
www.csst-technologies.com

Software Quality Engineering: www.sqe.com

Software Testing Institute: www.ondaweb.com/sti

Software Testing Laboratories: www.stlabs.com

ADDITIONAL INFORMATION

TestI 1/99 mid-line 2/1/99 2:03 PM Page 38

ACKNOWLEDGMENTS

Much of the material in this booklet has been drawn
from my consulting and teaching experience at
Software Quality Engineering and from several of my
own publications, especially The Complete Guide to
Software Testing.

The importance of effective test and evaluation
practices for managers cannot be stressed enough. It is
my hope that this booklet adequately addresses the
need to support this all-too-often-neglected process.

Special acknowledgment and appreciation are due to
Ed Kit, Dot Graham, Dave Gelperin, Boris Beizer, Linda
Hayes,Tom DeMarco, and Steve Maguire for their own
publications and insights that are directly reflected in
the assembled material.

Bill Hetzel

NOTES

TestI 1/99 mid-line 2/1/99 2:03 PM Page 40

THE AIRLIE SOFTWARE COUNCIL

Victor Basili University of Maryland

Grady Booch Rational

Norm Brown Software Program Managers Network

Peter Chen Chen & Associates, Inc.

Christine Davis Texas Instruments

Tom DeMarco The Atlantic Systems Guild

Mike Dyer Lockheed Martin Corporation

Mike Evans Integrated Computer Engineering, Inc.

Bill Hetzel Qware

Capers Jones Software Productivity Research, Inc.

Tim Lister The Atlantic Systems Guild

John Manzo 3Com

Lou Mazzucchelli Gerard Klauer Mattison & Co., Inc.

Tom McCabe McCabe & Associates

Frank McGrath Software Focus, Inc.

Roger Pressman R.S. Pressman & Associates, Inc.

Larry Putnam Quantitative Software Management

Howard Rubin Hunter College, CUNY

Ed Yourdon American Programmer

NOTES

TestI 1/99 mid-line 2/1/99 2:03 PM Page 44

