
16 CROSSTALK The Journal of Defense Software Engineering February 1999

The system or software re-
quirements specification (SRS)
document is the first definitive

representation of the capability that the
provider is to deliver to the user or ac-
quirer. The SRS document becomes the
basis for all a project’s subsequent man-
agement, engineering, and assurance
activities. As such, it is a strong source of
potential risks that could adversely im-
pact the project’s resources, schedules,
and products. Because of the criticality
of the SRS, it is important to prevent or
correct shortcomings in both the form
and content of the SRS document before
it is established as a project baseline.

A study conducted by the Software
Assurance Technology Center (SATC)
located at NASA’s Goddard Space Flight
Center (GSFC) found that 40 approved
SRS documents contained many in-
stances of three common weaknesses.
Deficiencies were found in
• the organization of requirement

information.
• the structure of individual require-

ment statements.
• the language used to express re-

quirements.
These defects can be prevented through
a more disciplined and consistent ap-
proach to document design, formulation
of specification statements, and selection
of key words and phrases.

Organizing Requirements
To develop, deliver, and install system or
software capability that successfully
satisfies the expectations and needs of
the user, the provider of the capability
must have access to a wide variety of
information. In addition to the require-
ments that prescribe a solution to the
user’s needs, descriptions of the user’s

current and future operational environ-
ments and a definition of the transition
from one environment to the other must
be provided. In some instances, support
considerations make it necessary to dic-
tate restrictions on the development
environment and limit the technology
content of the delivered capability.

Detail and Consistency
The problem of organizing the require-
ments information is compounded by
the need for specific topics to be ad-
dressed in detail and in a manner that
enhances comprehension and minimizes
redundancy. The Institute of Electrical
and Electronics Engineers (IEEE) [1]
recommends that an SRS address each of
the following topics.
• Interfaces.
• Functional capabilities.
• Performance levels.
• Data structures and elements.
• Safety.
• Reliability.
• Security and privacy.
• Quality.
• Constraints and limitations.

The first four topics address engi-
neering requirements associated with
individual elements of the needed capa-
bility. The last five topics address quality
requirements that cross all aspects of the
needed capability. These topics are not
isolated subjects; they are coupled in
various ways. Functions, interfaces, and
data are closely linked. The question
may arise: Should the section of the SRS
that prescribes the requirements for a
particular function include interfaces
and data specifications, or should it
point to sections of the SRS devoted to
these topics? The first alternative distrib-
utes similar information across several

sections of the document and creates
problems in maintaining the document.
The second alternative breaks the
reader’s train of thought when the refer-
enced information is needed. The basic
structural issue is how to organize these
topics so that relationships and neces-
sary detail can be stated clearly and
succinctly.

Data Item Descriptions (DIDs)
refine the SRS’s design in most docu-
mentation schemes and are used to es-
tablish generic design solutions for each
type of document. As with most general
solutions, DIDs only resolve issues at the
highest level of organization. Documen-
tation standards developed by both the
Department of Defense (DoD) [2] and
NASA [3] include several DIDs to
specify systems at various levels and from
different aspects. The scope and number
of DIDs included in these standards are
intended to facilitate the documentation
of large programs and projects. For
smaller projects, these schemes are bur-
densome. Smaller projects tend to use
fewer documents to decrease costs and
facilitate information control.

Both DoD and NASA documenta-
tion standards provide for adaptation of
DIDs to meet the needs of a particular
project: DoD provides specific guidance
for tailoring its DIDs, NASA provides
guidance for tailoring and “rolling up”
the concept, requirements, design, and
other documents into a single volume.

Tailoring DIDs is a design activity.
Its potential impact on a project’s success
is significant and should be undertaken
with the same importance given to the
design of any engineering product. The
final design of the SRS must be a struc-
ture of sections and subparagraphs that
encompass and address the concerns of

Writing Effective Natural Language
Requirements Specifications

William M. Wilson

This article details writing practices that will produce a stronger requirements speci-
fication document by avoiding three common documentation problems. Examples
of these problems and the recommended solutions presented in this article were
derived by analyzing 40 approved NASA requirements specification documents.

CROSSTALK The Journal of Defense Software Engineering 17February 1999

all project participants and organiza-
tional stakeholders. The SRS structure
must facilitate everyone’s understanding
of the totality of required capability, the
particular attributes of a capability, and
how their areas of responsibility will be
affected by the capability. Sections of the
documents must be constructed in light
of the cohesiveness, coupling, complex-
ity, and consistency necessary to achieve
a balance between comprehensibility and
completeness.

Information should never be arbi-
trarily grouped together—it makes the
document difficult to understand and to
maintain. Descriptions of the conditions
and situations that the required capabil-
ity will encounter must be located with
the prescription of its required response;
however, the description and prescrip-
tion must be kept distinct from one
another. Requirements that are parts of a
single functional capability must be
grouped together, e.g., functions that are
connected in series by output-to-input
relationships should appear in the SRS
in the same sequence, if possible. Func-
tions that share common inputs and
outputs should be addressed within the
same section of the SRS. If several pro-
cesses must be accomplished in the same
time frame, their specifications must be
tied together by the document’s structure
to make this commonality clear. Similar
functions need to be distinguished from
one another but the similarities also need
to be emphasized. Most of these restric-
tions can be satisfied by combining a
requirements identification scheme that
consistently uses similar numbers to
number similar things and by using a
writing style that uses short declarative
sentences.

Both the DoD SRS DID, DPSC-8-
1433, [2] and NASA-DID-P200, [4]
provide an excellent starting point for
the organization of a requirements docu-
ment. Most structures provide for most
environmental subjects as well as the
nine essential topics of requirements
information. It is highly desirable to
have the same topics identified with the
same number in related documents such
as the Operational Concept Description,
System/Subsystem Specification, SRS,
and Software Product Specification;

therefore, care must be taken to ensure
that the integrity of paragraph number-
ing is maintained when the structure of
the DID is shortened or extended. If
not, any correlation of like information
across the set of documents will be lost.
Both NASA and DoD documentation
tailoring instructions address this prob-
lem; the crux of their tailoring instruc-
tions is to not change subject numbers.

Unnecessary sections should be
“stubbed” with an “N/A” as close to the
main section of the document as pos-
sible. Stubbing retains the topic’s title
and identification number. Cutting
sections removes the topic and reassigns
its identification number to the follow-
ing topic. This would apply through the
rest of the document’s numbers and
destroy the document’s congruence with
the rest of the document set. New topics
should extend the numbering established
by the DID by adding a node (section)
to the document tree that is appropriate
to the new subject. They should be in-
serted as the last branch or leaf (at the
end) and given the node’s next available
sequential number.

Statement Structuring
Poorly structured specification state-
ments result in confusing requirements
that are prone to incorrect interpreta-
tions. If a specification statement con-
tains three or more punctuation marks,
it probably needs to be restructured.

An example of a specification that is
a prime candidate for restructuring
follows:

3.1 The XYZ system shall provide
variance/comparative information
that is timely, itemized in sufficient
detail so that important individual
variances are not obscured by other
variances, pinpoints the source of
each variance, and indicates the
area of investigation that will maxi-
mize overall benefits.

It is much easier to read when struc-
tured as follows:

3.1 The XYZ system shall provide vari-
ance/comparative information.

3.1.1 Variance/comparative informa-
tion shall be timely.

3.1.2 Variance/comparative informa-
tion shall be itemized in sufficient
detail to do the following:

3.1.2.1 Prevent important indi-
vidual variances from being ob-
scured by other variances.
3.1.2.2 Pinpoint the source of
each variance.
3.1.2.3 Indicate the area of in-
vestigation that will maximize
overall benefits.

Each specification statement consists
of four basic structural elements—enti-
ties, actions, events, and conditions.
These elements can be used or modified
by various cases such as the following:
• Owner.
• Actor.
• Target.
• Constraint.
• Owned.
• Action.
• Object.
• Localization.

The recommended model for a
specification statement’s structure is as
follows:
• Localization.
• Actor/Owner.
• Action.
• Target/Owner.
• Constraint.

For example, “When three or more
star trackers lose reference stars, the
spacecraft shall immediately align its
main axis on the earth-sun line unless
the optical instrument’s cover is not
closed.”
• Localization – When three or more star

trackers lose reference stars.
• Actor/Owner – Spacecraft.
• Action – Align.
• Target/Owned – Main axis.
• Constraint – Unless the optical

instrument’s cover is not closed.

Problems with Natural
Language
Natural language’s extensive vocabulary
and commonly understood syntax facili-
tate communication and make it an
inviting choice to express requirements.
The informality of the language also
makes it relatively easy to specify high-
level general requirements when precise

Writing Effective Natural Language Requirements Specifications

18 CROSSTALK The Journal of Defense Software Engineering February 1999

details are not yet known. However,
because of differences among formal,
colloquial, and popular definitions of
words and phrases and the effort re-
quired to produce detailed information,
these same attributes also contribute to
documentation problems. The use of
natural language to prescribe complex,
dynamic systems has at least three com-
mon and severe problems: ambiguity,
inaccuracy, and inconsistency [5].

The precise meaning of many words
and phrases depends entirely on the
context in which they are used. For
example, Webster’s New World Dictio-
nary identifies three variations in mean-
ing for the word “align,” 17 for “mea-
sure,” and four for “delete.” Even
though the words “error,” “fault,” and
“failure” have been precisely defined by
the IEEE [5], they frequently are used
incorrectly in specifications.

Attention must be given to the role
of each word and phrase when formulat-
ing specification statements. Words and
phrases that are carelessly selected or
carelessly placed produce statements that
are ambiguous and imprecise.

The most simple word that is appro-
priate to its intended purpose in the
specification is the one to use. The word
“hide” is defined as “to put out of sight.”
The word “obscure” is defined as “lack-
ing light or dim.” Do not use obscure if
you mean hide—the rules for the game
“obscure and seek” are not well known.

Use the correct imperative and use it
consistently. Remember that the word
“shall” prescribes, “will” describes,
“must” and “must not” constrain, and
“should” suggests. Avoid weak phrases
such as “as a minimum,” “be able to,”
“capable of,” and “not limited to.” These
phrases are subject to different interpre-
tations and also set the stage for future
changes to the requirements.

Do not use words or terms that give
the provider an option regarding the
extent to which the requirement is to be
satisfied, such as “may,” “if required,” “as
appropriate,” or “if practical.” Do not
use generalities when numbers are re-
quired, for example, “large,” “rapid,”
“many,” “timely,” “most,” and “close.”
Avoid imprecise words that have relative

meanings such as “easy,” “normal,” “ad-
equate,” or “effective.”

The use of imprecise terms usually
indicates that the specifications author
was either lazy, incompetent, or did not
have sufficient time to determine the
exact requirements. Some writers seem
to be afraid that their audience will be
bored or will think them lazy if they use
simple words and repeat themselves.
When writing documents or software,
being too fancy complicates things and
make the resulting products hard to
understand.

The previously given example specifi-
cation could be further strengthened
through a better selection of words and
phrases.

3.1 The XYZ system shall provide vari-
ance/comparative information.

3.1.1 Variance/comparative informa-
tion shall be provided at the end of
every reporting cycle.
3.1.2 Variance/comparative infor-
mation shall include the data neces-
sary to

3.1.2.1 Prevent important indi-
vidual variances from being hid-
den by other variances.
3.1.2.2 Pinpoint the source of
each variance.
3.1.2.3 Determine the frequency
and severity of each variance.

Serious problems will always result
from specifications statements such as
“The system shall be user friendly and
provide adequate resources to meet the
user’s operational needs.” What is
considered to be “user friendly,” “ad-
equate resources,” and “user’s opera-
tional needs” must be defined in detail
through specification or by reference
to an existing system that has the re-
quired characteristics.

Natural language often entices au-
thors to write “stream of consciousness”
specification statements that are difficult
to understand, for example, “Users at-
tempting to access the ABC database
should be reminded by a system message
that will be acknowledged and on page
headings on all reports that the data is
sensitive, and access is limited by their
system privileges.”

Restructured as shown below, this
requirement, although longer, is easier to
comprehend.

4.4 The system shall notify users at-
tempting to access the ABC database that

a. The ABC data is classified as
“sensitive.”

b. Access to the ABC data is lim-
ited to that allowed by the user’s
system privileges.

c. Page headings on all reports
generated using the ABC data-
base must state that the report
contains “sensitive” information.

4.4.1 The system shall require the
user to acknowledge the notification
before being allowed to access the
ABC database.

Summary and Conclusion
When natural language is used to specify
requirements, several things must be
kept in mind.
• The SRS is the medium to express

requirements that have been identi-
fied and defined. The SRS’s DID is
not an outline for a method to derive
requirements.

• The SRS is a software item and as
such should be a product that is
engineered to satisfy the project’s
needs.

• Begin the design process with the
appropriate SRS DID.

• Use simple sentence structures and
select words and phrases based on
their formal definitions, not on how
popular culture defines them.

• The SRS must be understandable. It
does not have to be interesting. As-
pire to be a good engineer, not a
literary artist. ◆

About the Author
William M. Wilson is a retired principal
systems engineering consultant formerly
with the Software Assurance Technology
Center (SATC). He has 40 years of profes-
sional engineering experience with NASA,
DoD, and industry. He is a recognized
author and instructor of software safety
and reliability courses, an authority on the
specification of software requirements, and
a trained lead auditor under the TickIT
software certification scheme. Before

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 19February 1999

joining the SATC, he was vice president of
Quong and Associates, a consulting firm
specializing in quality engineering and
assurance practices. He was responsible for
aerospace industry software quality assur-
ance standards and procedures. While
manager of software engineering assurance
in the Office of the Chief Engineer at
NASA Headquarters, he established and
directed the Software Management and
Assurance Program, which produced
NASA’s first agency-wide software policies
and standards. As a member of the De-
fense Communications Agency’s National
Military Command Systems Engineering
Directorate, he was the project manager
and systems engineer for the acquisition
and development of several first-genera-
tion strategic command, control, and
communications systems that support the

National Command Authority. He has a
bachelor’s degree in electrical engineering.
He is a member of the IEEE Computer
Society, the Association for Computing
Machinery, and the American Society for
Quality Control.

Point of Contact: Linda H. Rosenberg
Goddard Space Flight Center
Code 300.1, Building 6
Greenbelt, MD 20771
E-mail: Linda.H.Rosenberg.1@gsfc.nasa.gov

References
1. IEEE Standard 830-1993, Recom-

mended Practice for Software Require-
ments Specifications, Dec. 2, 1995.

2. MIL-STD-498, Software Development
and Documentation, Dec. 5, 1994
(http://scpo.nosc.n&498.html).

3. Ganska, Ralph, John Grotzky, Jack
Rubinstein, and Jim Van Buren, Require-

ments Engineering and Design Technology
Report, Software Technology Support
Center, Hill Air Force Base, Utah, Octo-
ber 1995.

4. NASA-STD-2100-91, NASA Software
Documentation Standard, NASA Head-
quarters Software Engineering Program,
July 29, 1991 (http://satc.gsfc.
nasa.gov/assure/docstd.html).

5. Wilson, William, Linda H. Rosenberg,
and Lawrence E. Hyatt, “Automated
Quality Analysis of Natural Language
Requirement Specifications,” Pacific
Northwest Software Quality Conference
Proceedings, October 1996, pp. 140-151
(http://sate.gdcnasa.gov/SATC/PA-
PERS/PNQ/pncl.htnil).

6. 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology.

In May 1997, the SSG at Maxwell Air Force Base, Gunter
Annex in Montgomery, Ala. was rated Level 3 according to
the Software Engineering Institute Capability Maturity
Model. SSG is one of the larger, more diverse government
agencies to achieve this distinction. Continuous, sustained
process improvements led to this maturity level, and the
method by which it was achieved is embodied in the SEP,
now in Version 4. A combination of management and engi-
neering activities composes this standard organizational
process that can be tailored to address project specifics.

The SEP is a pragmatic, disciplined approach to soft-
ware systems engineering. It describes the essential elements
of an organization’s systems engineering process that must
exist to ensure good systems engineering.

The SEP’s goals for a product are to
• Meet customer’s functional objectives.
• Minimize defects.
• Enhance look and feel of having been built by one per-

son, though it does not depend on one person for main-
tenance.

• Reduce risk; eliminate rework.
• Improve predictable schedule and cost.
• Provide development insight.

The SSG Systems Engineering Process
This brief overview of the Standard Systems Group (SSG) Systems Engineering
Process (SEP) summarizes the primary objectives of the SEP. For complete in-
formation, see http://web1.ssg.gunter.af.mil/sep/SEPver40/ssddview.html.

• Enhance maintainability.
• Introduce industry best practices.
• Operationalize policies and directives.

Success in a market-driven and contractually negotiated
market is often determined by how efficiently an organiza-
tion translates customer needs into a product that meets
those needs. Good systems engineering is key to that activ-
ity, and the SEP provides a way to define, measure, repeat,
and enhance performance. The SEP acts as a framework to
which continuous process improvement can be added.

Under the SEP, projects and systems experience produc-
tivity improvements of 200 percent to 300 percent, a hun-
dredfold reduction in post-release defects, less overtime and
fewer crises, a return on investment of up to a ratio of 7-to-1,
reduced long-term sustainment costs, and improved
interoperability. The employees also are able to feel more
competitive.

The greatest benefit of the SEP is that it increases the
ability to meet customer cost, schedule, and performance
expectations.

Point of Contact: Barry Morton
SSG Software Engineering Process Group Facilitator
Voice: 334-416-3547 DSN 596-3547
E-mail: MortonB@ssg.gunter.af.mil

Writing Effective Natural Language Requirements Specifications

	Contents
	Software Knowledge Management …
	Strengthening Our Community of Practice…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Using the TSP on the TaskView Project…
	David Webb, Ogden Air Logistics Center, Software Engineering Division…
	Watts S. Humphrey, Software Engineering Institute…
	The Rosetta Stone…
	Making COCOMO 81 Estimates Work with COCOMO II…
	Donald J. Reifer, Reifer Consultants, Inc.…
	Barry W. Boehm and Sunita Chulani, University of Southern California…
	Writing Effective Natural Language …
	Requirements Specifications …
	William M. Wilson…
	The SSG Systems Engineering Process…
	Software Product Lines A New Paradigm for the New Century…
	Paul Clements…
	Software Engineering Institute…
	Managing (the Size of) Your Projects …
	A Project Management Look at Function Points…
	Carol A. Dekkers…
	Quality Plus Technologies, Inc.…
	Making Adjusted FP Counts…
	Types of Function Point Counts…
	The Upside of Y2K…
	John B. Hubbs…
	AverStar…
	Coming Events…
	It's Time to Register for the Eleventh Annual …
	Software Technology Conference …

