
Dimensionality Reduction

WS 2015/2016

Introduction

The goal of this tutorial is to get familiar with some basic methods for dimensionality
reduction, complete you own implementation of the Isomap algorithm, experiment
with its parameters and compare with other techniques of dimensionality reduction.

1 Background

The data you will be working with are vector representations of words in a latent
(unknown) high-dimensional space. This representation of words, also know as word
embedding, differs from standard bag-of-words (BoW, TFIDF, etc.) representations
in that the meaning of the words is distributed across all the dimensions. Gener-
ally speaking, the word embedding algorithms seek to learn a mapping projecting
the original BoW representation (simple word index into a given vocabulary) into a
lower-dimensional (but still too high for our cause) continuous vector-space, based
on their distributional properties observed in some raw text corpus. This distribu-
tional semantics approach to word representations is based on the basic idea that
linguistic items with similar distributions typically have similar meanings, i.e. words
that often appear in a similar context (words that surround them) tend to have sim-
ilar (vector) representations.

Specifically, the data you are presented with are vector representations coming from
the most popular algorithm for word embedding known as word2vec [1] by Tomas
Mikolov (VUT-Brno alumni). Word2vec is a (shallow) neural model learning the
projection of BoW word representations into a latent space by the means of gradient
descend. Your task is to further reduce the dimensionality of the word representa-
tions to get a visual insight into what has been learned.

2 Data

You are given 300-dimensional word2vec vector embeddings in the file data.csv with
corresponding word labels in labels.txt for each line. Each of these words comes
from one of 10 selected classes of synonyms, which can be recognized (and depicted)
w.r.t. labels denoted in the file colors.csv.

1



3 Tasks

1. Load the dataset of 165 words, each represented as a 300-dimensional
vector. Each word is assigned to one of 10 clusters.

X = load(’data.csv’);

labels = textread(’labels.txt’, ’%s’, ’delimiter’, ’\n’);

colors = load(’colors.csv’);

The data is in the matrix X, cluster assignment in colors and the actual words
(useful for visualization) in labels. You can plot the data by using only the
first 2 dimensions (Matlab: plotpoints(X, labels, colors);)

The supporting code is provided in a file execute.m.

2. Implement ISO-MAP dimensionality reduction procedure.

• Use k-NN to construct the neighborhood graph.

• Compute shortest-path using your favourite algorithm. Tip: In Matlab,
the Floyd-Warshall algorithm can be implemented very quickly.

• For low-dimensionality reduction, use PCA.

The expected result (for k = 5) should look as follows

2



3. Visually compare PCA, ISOMAP and t-SNE by plotting the word2vec
data, embedded into 2D using the plotpoints function. Try finding the op-
timal k value for ISOMAP’s nearest neighbour.

PCA and t-SNE is already provided to you as a part of the Matlab Toolbox
for Dimensionality Reduction. See execute.m for details. This time, please
do not use the ISOMAP method from the toolbox. We will know! :-)

4. Observe the effect of dimensionality reduction on a classification al-
gorithm. The supporting code in classify.m performs training and testing
of classification trees and gives the classification accuracy (percentage of cor-
rectly classified samples) as its result. Compare the accuracy of prediction on
plain data, PCA, ISOMAP and t-SNE.

References

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

3

https://lvdmaaten.github.io/drtoolbox/
https://lvdmaaten.github.io/drtoolbox/

	Background
	Data
	Tasks

