Vapnik-Chervonenkis dimension

WS 2014/2015

1 VC-dimension of circles

1. Let us have a set of hypotheses $\mathcal{H}_{\text {circ }}$ which contains two-dimensional circles which are positive inside and negative outside. Calculate the VC dimension of $\mathcal{H}_{\text {circ }}$.
2. Now, let us have a set of hypotheses $\mathcal{H}_{\text {circles }^{ \pm}}$which contains both circles which are positive inside and negative outside and circles which are negative inside and positive outside. Show how to shatter a set of four points using this class of hypotheses. This will give you a lower bound on the VC dimension.

2 VC-dimension of linear half-spaces

Assume the class of linear separators

$$
\mathcal{H}_{d}=\left\{x \mapsto \operatorname{sign}\left(w^{T} x+b\right) \mid w \in R^{d}, b \in R\right\}
$$

3. Let us have $d+1$ points containing the origin and vectors of the standard basis (i.e. vectors which have 1 in i-th entry and 0 elsewhere). Show that this set can be shattered using \mathcal{H}_{d}.
4. Prove that no set of $d+2$ points can be shattered using \mathcal{H}_{d}. (Hint: Use Radon's theorem which says that any set of $d+2$ points in $R d$ can be splitted into two disjoint sets with intersecting convex hulls.)

This gives us that VC-dimension of \mathcal{H} is exactly $d+1$.

