AE4M33RZN, Fuzzy logic: Fuzzy description logic

Radomír Černoch

radomir.cernoch@fel.cvut.cz

Faculty of Electrical Engineering, CTU in Prague

16/11/2015

Crisp description logic

Our treatment of fuzzy description logic is based on a family of crisp description logic SHIF(D) [Baader, 2003]:

- AL
 - atomic negation
 - concept intersection
 - universal restrictions
 - limited existential quantification
- C = full concept negation
- *S* = *ALC* + transitive roles
- ℋ= role hierarchies

- /= inverse properties
- 7
- concept intersection
- universal restrictions
- limited existential quantification
- role restriction
- *D* = data types

SHI7 concepts

Let A and R be the sets of *atomic concepts* and *atomic roles*.

Concept constructors

$C, D := \top \bot$	top and bottom concepts	(1)
A	atomic concept	(2)
¬ C	concept negation	(3)
C n D	intersection	(4)
C⊔D	concept union	(5)
Y R · C	full universal quantification	(6)
∃R · C	full existential quantification	(7)

Crisp description logic ontology

Ontology consists of $\mathscr{A}Box$ and $\mathscr{T}Box$. We use the set of individuals *I*:

MBox (Assertion Box)

Contains concept assertions $\langle i \in I : C \rangle$ and role assertions $\langle (i, j \in I) : R \rangle$.

$\mathcal{T}Box$ (Terminology Box)

Contains general concept inclusion (GCI) axioms $(C \sqsubseteq D)$ and role axioms (role hierarchy $(R_1 \sqsubseteq R_2)$, transitivity, ...).

Crisp description logic interpretation

Interpretation \mathscr{I} is a tuple $(\Delta^{\mathscr{I}}, \cdot^{\mathscr{I}})$ (interpretation domain, interpretation function), which maps

an individual to domain object an atomic concept to domain subsets an atomic role to subset of domain tuples

Crisp description logic interpretation

The non-atomic concepts are interpreted as follows:

non-atomic concept	its interpretation
Т	$\Delta^{\mathscr{J}}$
\perp	Ø
¬C	$\Delta^{\mathscr{I}} \setminus C^{\mathscr{I}}$
СпD	$C^{\mathscr{I}} \cap D^{\mathscr{I}}$
СЦО	$C^{\mathscr{I}} \cup D^{\mathscr{I}}$
∀R · C	$\{x \mid \forall y \in \Delta^{\mathscr{I}}. ((x, y) \in \mathbb{R}^{\mathscr{I}}) \Longrightarrow (y \in \mathbb{C}^{\mathscr{I}})\}$
∃R·C	$\{x \mid \exists y \in \Delta^{\mathscr{I}}. ((x, y) \in R^{\mathscr{I}}) \land (y \in C^{\mathscr{I}})\}$

Crisp notion of truth

Axiom satisfaction

	axiom	satisfied when
-	$\langle i : C \rangle$	$i^{\mathscr{I}} \in C^{\mathscr{I}}$
	$\langle (i,j):R \rangle$	$(i^{\mathscr{I}}, j^{\mathscr{I}}) \in R^{\mathscr{I}}$
	⟨C⊑D⟩	$C^{\mathscr{I}} \sqsubseteq D^{\mathscr{I}}$
	transitive(R)	$R^\mathscr{I}$ is transitive

If an interpretation satisfies τ , we write $\tau \vDash \mathscr{I}$.

 Interpretation *I* is a *model* of a knowledgebase *X* = *A*Box + *T*Box (or *I* satisfies *X*) if it satisfies all its axioms.

$$\mathscr{I} \vDash \mathscr{K} \Leftrightarrow (\forall \tau \in \mathscr{K}. \ \mathscr{I} \vDash \tau)$$

• Axiom τ is a *logical consequence* of \mathcal{K} if every model of \mathcal{K} satisfies τ .

$$\mathscr{K} \vDash \tau \Leftrightarrow [\forall \mathscr{I}. \ (\mathscr{I} \vDash \mathscr{K}) \Rightarrow (\mathscr{I} \vDash \tau)]$$

 Concept C is satisfiable if there is an interpretation *I*, where the C has at least 1 individual.

Fuzzy description logic

Basic idea

- **1.** Keep the the previous slides intact.
- 2. Add \circ below and above every operation.
- **3.** Watch the semantic change.

Male \sqcap Female $\neq \bot$

Overview

We will show the **fuzzyDL** reasoner [Bobillo and Straccia, 2008] capabilities, which extends the SHIF(D) family with fuzzy capabilities.

Concept constructors

We start with atomic concepts *A*. Derived concepts are on the next slide together with their interpretation. (Each concept is interpreted as a fuzzy subset of the domain.)

Fuzzy interpretation \mathscr{I} is a tuple $\Delta^{\mathscr{I}}$, $\cdot^{\mathscr{I}}$ which maps

an individual to a domain object an atomic concept to a domain subsets an atomic role to a relation on the domain

$$\begin{split} \mathbf{i}^{\mathscr{I}} &\in \Delta^{\mathscr{I}} \\ \mathsf{C}^{\mathscr{I}} &\in \mathbb{F}(\Delta^{\mathscr{I}}) \\ \mathsf{R}^{\mathscr{I}} &\in \mathbb{F}(\Delta^{\mathscr{I}} \times \Delta^{\mathscr{I}}) \end{split}$$

C, D :=	interpretation of x
\perp	0
Т	1
Α	$A^{\mathscr{I}}(x)$
¬C	$\overline{S} C^{\mathscr{I}}(x)$
C⊓D	$C^{\mathscr{I}}(\mathbf{x}) \underset{S}{\wedge} D^{\mathscr{I}}(\mathbf{x})$
С _Ū D	$C^{\mathscr{I}}(\mathbf{x}) \underset{\mathrm{L}}{\wedge} D^{\mathscr{I}}(\mathbf{x})$
С⊔́D	$C^{\mathscr{I}}(\mathbf{x})\stackrel{S}{\lor}D^{\mathscr{I}}(\mathbf{x})$
сЬр	$C^{\mathscr{I}}(\mathbf{x}) \stackrel{\mathrm{L}}{\forall} D^{\mathscr{I}}(\mathbf{x})$
$C \stackrel{R}{\mapsto} D$	$C^{\mathscr{I}}(\mathbf{x}) \stackrel{\mathbb{R}}{\longrightarrow} D^{\mathscr{I}}(\mathbf{x})$
$C \xrightarrow{R}{L} D$	$C^{\mathscr{I}}(x) \xrightarrow{\mathbb{R}}_{\mathbb{L}} D^{\mathscr{I}}(x)$
$C \xrightarrow{S}{S} D$	$C^{\mathscr{I}}(x) \stackrel{S}{\Longrightarrow} D^{\mathscr{I}}(x)$

C, D :=	interpretation of x	
∃R · C	$\sup_{y} R^{\mathscr{I}}(x,y) \stackrel{\wedge}{\scriptscriptstyle{\otimes}} C^{\mathscr{I}}(y)$	
∀R·C	$\inf_{y} R^{\mathscr{I}}(x,y) \stackrel{\circ}{\Rightarrow} C^{\mathscr{I}}(y)$	
(n C)	$ \begin{array}{c} n \cdot C(x) \\ mod(C^{\mathscr{I}}(x)) \end{array} $	
mod(C)		
$w_1C_1 + \ldots + w_kC_k$	$w_1 C_1^{\mathscr{I}}(x) + \ldots + w_k C_k^{\mathscr{I}}(x)$	
$C \lneq n$	$\begin{cases} C^{\mathscr{I}}(x) & C^{\mathscr{I}}(x) \leqq n \\ o & \text{otherwise} \end{cases}$	

Modifiers

Modifier is a function that alters the membership function.

Example

Linear modifier of degree c is

$$a = \frac{c}{c+1}$$
$$b = \frac{1}{c+1}$$

Fuzzy DL ontology

Ontology consists of axioms (denoted τ) in $\mathscr{A}Box$ and $\mathscr{T}Box$:

MBox (Assertion Box)

Contains concept assertions $\langle i \in I : C | \alpha \rangle$ and role assertions $\langle (i, j \in I) : R | \alpha \rangle$.

\mathcal{T} *Box* (Terminology Box)

GCI axioms $\langle C \sqsubseteq D | \alpha \rangle$ state that "C is D at least by α ".

Besides GCI, there are role hierarchy axioms $\langle R_1 \sqsubseteq R_2 \rangle$, transitivity axioms and definitions of inverse relations.

Fuzzy truth

Fuzzy axioms

axiom	satisfied if
$\langle i : C \alpha \rangle$	$C^{\mathscr{I}}(i^{\mathscr{I}}) \geq \alpha$
$\langle (i,j) : R \alpha \rangle$	$R^{\mathscr{I}}(i^{\mathscr{I}},j^{\mathscr{I}}) \geq \alpha$
$\langle C \sqsubseteq D \mid \alpha \rangle$	$C^{\mathscr{I}} \stackrel{\circ}{\subseteq} D^{\mathscr{I}} \geq \alpha$
$\langle R_1 \sqsubseteq R_2 \rangle$	$R_{\mathbf{i}}^{\mathscr{I}} \subseteq R_{2}^{\mathscr{I}}$
$\langle transitive R angle$	$R^\mathscr{I}$ is $\circ ext{-transitive}$
$\left< R_1 = R_2^{-1} \right>$	$R_{1}^{\mathscr{I}} = (R_{2}^{\mathscr{I}})^{-1}$

Using these definitions, the notions of *logical consequence* and *satisfiability* (of both concepts and axioms) remains the same. More on slide 307. What can you ask the reasoner?

Best/Worst Degree Bound

What is the minimal degree of an axiom that ${\mathscr K}$ ensures?

$$glb(\mathcal{K}, \tau) = \sup\{\alpha \mid \mathcal{K} \vDash \langle \tau \ge \alpha \rangle\}$$
$$lub(\mathcal{K}, \tau) = \inf\{\alpha \mid \mathcal{K} \vDash \langle \tau \le \alpha \rangle\}$$

where τ is an axiom of type $\langle i : C \rangle$ or $\langle (i, j) : R \rangle$ or $\langle C \sqsubseteq D \rangle$.

- From an empty \mathcal{K} , you cannot infer anything and therefore $glb(\mathcal{K}, \tau) = o$ and $lub(\mathcal{K}, \tau) = i$ (if using atomic concepts only). Only by adding new axioms into \mathcal{K} , the bounds "tighten up".
- What happens if $glb(\mathcal{X}, \tau) \ge lub(\mathcal{X}, \tau)$ for some axiom τ ?

What can you ask the reasoner?

Best Satisfiability Bound

What is the maximal degree of satisfiability of C?

$$\operatorname{glb}(\mathcal{X}, \mathsf{C}) = \sup_{\mathcal{J}} \sup_{\mathbf{x} \in \Delta} \{ \mathsf{C}^{\mathcal{J}}(\mathbf{x}) \, | \, \mathcal{J} \vDash \mathcal{K} \} \, .$$

This is a generalization of *concept satisfiability*.

Homework

Next time we will see a reasoning algorithm for fuzzy DL. Please read [Straccia and Bobillo, 2008]:

Basic idea of the fuzzyDL solver:

Straccia, Umberto and Fernando Bobillo. **"Mixed integer programming,** general concept inclusions and fuzzy description logics." Mathware & Soft Computing 14, no. 3 (2008): 247-259.

Where can you find the article? Google scholar is a place to start.

Bibliography

Baader, F. (2003).

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press.

Bobillo, O. and Straccia, U. (2008). fuzzydl: An expressive fuzzy description logic reasoner.

In In Proc. FUZZ-IEEE-2008. IEEE Computer Society, pages 923–930.

Straccia, U. and Bobillo, F. (2008).

Mixed integer programming, general concept inclusions and fuzzy description logics.

Mathware and Soft Computing, 14(3):247-259.