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A 2-3-4 search tree is either empty or contains three types of nodes: 

2-nodes, with one key, a left link to a tree with smaller keys, and a right link to a 
tree with larger keys; 

3-nodes, with two keys, a left link to a tree with smaller keys, a middle link to a 
tree with key values between the node's keys and a right link to a tree with larger 
keys;

4-nodes, with three keys and four links to trees with key values defined by the 
ranges subtended by the node's keys.

AND:  All links to empty trees, ie. all leaves, are at the same distance from the 
root,  thus the tree is perfectly balanced.

A 2-3-4 search tree is structurally a B-tree of order 4.

2-3-4 Tree Description 1
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2-3-4 Tree Example 2
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Note 2-nodes, 3-nodes, 4-node, same depth of all leaves.



Insert: As in B-tree: Find the place for the inserted key x in a leaf and store it 
there. If necessary split the leaf.

Aditional rule:
In our way down the tree, whenever we reach a 4-node, we split it into 
two 2- nodes, and move the middle element up
This strategy prevents the following from happening:
After inserting a key it might happen in B tree that it is necessary to split all the 
nodes going from inserted key back to the root. This is consider to be time 
consuming.

Splitting 4-nodes on the way down results in sparse occurence of 4-nodes in the 
tree, thus it never happens that we have to split nodes recursively bottom-up.

Find: As in B-tree

Delete: As in B-tree

2-3-4 Tree Operations 3

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT,  12/14



To change

Any nodes, 
incl. empty

Insert: 
Splitting 
strategy

A B C

X B

Note that splitting changes the height of a tree only when the root is splitted.
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2-3-4 Tree Splitting strategy I 4
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A B C

X B
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To change

Any nodes, 
incl. empty

Insert: 
Splitting 
strategy

dcba

Note that splitting changes the height of a tree only when the root is splitted.

Non root

Non root

2-3-4 Tree Splitting strategy II 5
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Relation of 2-3-4 tree to Red-Black tree

2-3-4 Tree Relation to R-B tree 6
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Relation of 2-3-4 tree to Red-Black tree

2-3-4 Tree Relation to R-B tree 7
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Insert  A Insert  S 

Insert  E 
Insert  R 

Insert  C Insert  H 

A A S

A E S
A

E

SR

C

E

SRA C

E

SRA H

Insert keys into initially empty 2-3-4 tree:     A S E R C H I N G X 

2-3-4 Tree Insert example I 8
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Insert  I Insert  N 

Insert  G 
Insert  X 

C

E

SRA H

C

E

SA H

R

I
C

E

SA H

R

I N

C

E

SA G

I

H N

R

C

E

SA G

I

H N

R

X

Note seemingly unnecessary split of EIR 4-node during insert of G.

2-3-4 Tree Insert example II 9
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Searches in N-node 2-3-4 trees visit at most lg N + 1nodes

Insertions into N-node 2-3-4 trees require fewer than lg N + 1 node splits in the 
worst case, and seem to require less than one node split on the average

Precise analytic results on the average-case performance of 2-3-4 trees have so 
far eluded the experts**, but it is clear from empirical studies that very few splits 
are used to balance the trees. The worst case is only lg N, and that is not 
approached in practical situations.

** Now, finally there is an appropriate challenge for you!

Complexities

2-3-4 Tree Operations complexity 10
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Results of an  example experiment with N uniformly distributed random keys 
from renge {1, ..., 109 } being inserted into initially empty 2-3-4 tree: 

N Tree depth 2-nodes 3-nodes 4-nodes
10 2 6 2 0

100 4 39 29 1
1000 7 414 257 24

10 000 10 4 451 2 425 233
100 000 13 43 583 24 871 2 225

1 000 000 15 434 671 248 757 22 605
10 000 000 18 4 356 849 2 485 094 224 321

2-3-4 Tree Size example 11
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B+ tree is analogous to the B-tree, namely in
being perfectly balanced all the time
nodes cannot be less than half full
operational complexity.

The differences are
Records (or pointers to actual records) are stored only at the leaf nodes.
Internal nodes store only search key values, and are used only as placeholders to 
guide the search. 

The leaf nodes of a B+-tree are linked together to form a linked list. This is done 
so that the records can be retrieved sequentially without accessing the B+-tree 
index. This also supports fast processing of range-search queries.

B+ tree

B+ tree Description 12
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28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Routers or keys 75
Data records
or pointers to them

Values in internal nodes are routers, originally each of them was a key when a 
record was inserted later they migrated in the tree and may stay there even 
after the record and its key was deleted. Insert and Delete operations by 
splitting and Joining the nodes move routers around. 

Values in the leaves are actual keys associated with the records and must be 
deleted when a record is deleted (their router copies may live on).

B+ tree Description/example 13
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Place the key and its associated record in the leaf 

Free slot in a leaf?   YES

1. Split the leaf, consider all its keys including K sorted.
2. insert middle (median) key M in the parent node in an  appropriate slot Y.
3. Left leaf from Y contains records with keys smaller than M.
4.  Right leaf from Y  contains records with keys equal to or greater than M. 

Inserting key K (and its associated record ) into B+ tree  

Find, as in B tree, correct leaf to insert K,

Free slot in a leaf?   NO. Free slot in parent node?  YES. 

Note: Splitting leaves / inner nodes works same way as in B-trees. 

Case 1

Case 2

B+ tree Insert I 14
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1. Split the leaf, consider all its keys including K sorted, 
denote M median of these keys

2. Records with keys < M go to the left leaf.
3. Records with keys >= M go to the right leaf. 

4. Split the parent node P to nodes P1 and P2, consider all its keys including M
sorted, denote M1 median of these keys.

5. Keys < M1 key go to P1.
6. Keys > M1 key go to P2.
7. If parent PP of P  is not full, insert M1 to PP and stop.

Else  set M := M1, P := PP and continue splitting  parent nodes recursively 
up the tree, repeating from step 4.  

Free slot in a leaf?  NO. Free slot in parent node?  NO. 

Case 3

B+ tree Insert II 15

Inserting key K (and its associated record ) into B+ tree  

Find, as in B tree, correct leaf to insert K,
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25 7550

5 20 10 15 50 6055 65 75 8580 9025 30

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 28

Changes Leaf links

Initial tree

Records or records pointers are not drawn here for sake of simplicity.  

B+ tree Insert example I 16
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25 6050 75

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 70

5 20 10 15 50 55 75 8580 9025 3028 60 7065

Changes

Initial tree

Leaf links

B+ tree Insert example II 17
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25 6050 75

Insert 95

5 20 10 15 50 55 75 8580 9025 3028 60 7065
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Changes

Initial tree

Leaf links

B+ tree Insert example III 18
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Delete the key and its record from the leaf. Arrange keys in the leaf in ascending 
order to fill void. If the deleted key K appears in the parent node P too, replace it by 
next bigger key K1 from L (it must always exist) and leave K1 in L as well.

Leaf more than half full?   YES.

Move one (or more if you wish and rules permit)  key from sibling S to the leaf L, 
reflect the changes in the parent P of leaf and parent P2 of sibling S (if P2 != P).

Deleting key K (and its associated record ) into B+ tree  

Find, as in B tree, key K in a leaf,

Leaf more than half full? NO.   Left or right sibling more than half fulll?  YES. 

Note: Joining leaves/inner nodes works same way as in B-trees. 

Case 1

Case 2

B+ tree Delete I 19
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1. Consider sibling S of L which has same parent P as L.
2. Consider set M  of ordered keys of L and S without K but together with key K1 
in P which separates L and S.  
3. Joining. Store M in L, connect L to the other sibling of S (if exists), destroy S.   
4. The reference left to K1 points to L. Adjust P.  If P contains K delete it from P. 

Delete K1 from S as well. If P is still at least half full stop, else continue with 5.
5. If any sibling SP of P is more then half full, move necessary number of keys 
from SP to P and adjust links in P, SP and their parents accordingly and stop.
Else join P with sibling SP which parent PP is  parent of P too and continue 
recursively as in B-tree up to the root if necessary.    

Deleting key K (and its associated record ) into B+ tree  

Find, as in B tree, key K in a leaf,

Leaf more than half full? NO.   Left or right sibling more than half fulll?  NO. 

Note: Joining leaves/inner nodes works same way as in B-trees. 

Case 3

B+ tree Delete II 20
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Delete 70

25 50
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75 85
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Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

Initial tree

Leaf links

B+ tree Delete example I 21
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Delete 25

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

28 50
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Initial tree

Leaf links

B+ tree Delete example II 22
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Too few keys,  join these 
two nodes and bring key 
from parent (recursively)

Delete 75  
28 50

60

75 85

5 10 50 55 75 8028 30 60 65 85 90

85

60 6580 85 90

28 50

28 6050 85

5 10 50 55 85 9028 30 60 8065

Initial tree

Progress...

... done.

B+ tree Delete example IV 23
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Delete 60

Changes

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

28 6050 85

5 20 10 15 50 55 85 959028 30 65 8075

Initial tree

Leaf links

B+ tree Delete example III 24
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Join here



Find, Insert, Delete, 
all need (logb n)  operations, where n is number of records in the tree, 
and b is the branching factor or, as it is often understood, the order of the tree.  

Note: Be careful, some authors (e.g CLRS)  define degree/order of B-tree as [b/2], there is no unified 
precise common terminology.

Range search thanks to the linked leaves is performed in time 
(logb(n) + k) 
where k is the range (number of elements) of the query.

Complexities

B+ tree Operations complexity 25
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