
Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

?/

p

x--y

2<1

x+yHi!

- Robert Sedgewick: Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, Sorting, Searching,
Third Edition, Addison Wesley Professional, 1998

- http://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf
- (CLRS) Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 3rd ed., MIT Press, 2009

To read

See PAL webpage for references

Search trees, 2-3-4 tree, B+tree
Marko Berezovský
Radek Mařík
PAL 2012

A 2-3-4 search tree is either empty or contains three types of nodes:

2-nodes, with one key, a left link to a tree with smaller keys, and a right link to a
tree with larger keys;

3-nodes, with two keys, a left link to a tree with smaller keys, a middle link to a
tree with key values between the node's keys and a right link to a tree with larger
keys;

4-nodes, with three keys and four links to trees with key values defined by the
ranges subtended by the node's keys.

AND: All links to empty trees, ie. all leaves, are at the same distance from the
root, thus the tree is perfectly balanced.

A 2-3-4 search tree is structurally a B-tree of order 4.

2-3-4 Tree Description 1

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

41

5 14 20 24 25 32 36 39 40 51 60 64 68 78 85 86 92

11 17 30 37 58 62 71 79 89

21 33 67

2-3-4 Tree Example 2

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Note 2-nodes, 3-nodes, 4-node, same depth of all leaves.

Insert: As in B-tree: Find the place for the inserted key x in a leaf and store it
there. If necessary split the leaf.

Aditional rule:
In our way down the tree, whenever we reach a 4-node, we split it into
two 2- nodes, and move the middle element up
This strategy prevents the following from happening:
After inserting a key it might happen in B tree that it is necessary to split all the
nodes going from inserted key back to the root. This is consider to be time
consuming.

Splitting 4-nodes on the way down results in sparse occurence of 4-nodes in the
tree, thus it never happens that we have to split nodes recursively bottom-up.

Find: As in B-tree

Delete: As in B-tree

2-3-4 Tree Operations 3

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

To change

Any nodes,
incl. empty

Insert:
Splitting
strategy

A B C

X B

Note that splitting changes the height of a tree only when the root is splitted.

CA

a b c d a b c d

CBA

dcba

B

A C

dcba

dcba

A B C

a b c d

Root

X

X X

Non root

B

CA

c da b

Non root

2-3-4 Tree Splitting strategy I 4

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

A B C

X B

CA

a b c d a b c d

CBA

dcba

B

A C

dcba

X

Y Y

Non root Y Y

X X

A B C

X B

CA

a b c d a b c d

XY Y

To change

Any nodes,
incl. empty

Insert:
Splitting
strategy

dcba

Note that splitting changes the height of a tree only when the root is splitted.

Non root

Non root

2-3-4 Tree Splitting strategy II 5

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Relation of 2-3-4 tree to Red-Black tree

2-3-4 Tree Relation to R-B tree 6

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Relation of 2-3-4 tree to Red-Black tree

2-3-4 Tree Relation to R-B tree 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Insert A Insert S

Insert E
Insert R

Insert C Insert H

A A S

A E S
A

E

SR

C

E

SRA C

E

SRA H

Insert keys into initially empty 2-3-4 tree: A S E R C H I N G X

2-3-4 Tree Insert example I 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Insert I Insert N

Insert G
Insert X

C

E

SRA H

C

E

SA H

R

I
C

E

SA H

R

I N

C

E

SA G

I

H N

R

C

E

SA G

I

H N

R

X

Note seemingly unnecessary split of EIR 4-node during insert of G.

2-3-4 Tree Insert example II 9

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Searches in N-node 2-3-4 trees visit at most lg N + 1nodes

Insertions into N-node 2-3-4 trees require fewer than lg N + 1 node splits in the
worst case, and seem to require less than one node split on the average

Precise analytic results on the average-case performance of 2-3-4 trees have so
far eluded the experts**, but it is clear from empirical studies that very few splits
are used to balance the trees. The worst case is only lg N, and that is not
approached in practical situations.

** Now, finally there is an appropriate challenge for you!

Complexities

2-3-4 Tree Operations complexity 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Results of an example experiment with N uniformly distributed random keys
from renge {1, ..., 109 } being inserted into initially empty 2-3-4 tree:

N Tree depth 2-nodes 3-nodes 4-nodes
10 2 6 2 0

100 4 39 29 1
1000 7 414 257 24

10 000 10 4 451 2 425 233
100 000 13 43 583 24 871 2 225

1 000 000 15 434 671 248 757 22 605
10 000 000 18 4 356 849 2 485 094 224 321

2-3-4 Tree Size example 11

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

B+ tree is analogous to the B-tree, namely in
being perfectly balanced all the time
nodes cannot be less than half full
operational complexity.

The differences are
Records (or pointers to actual records) are stored only at the leaf nodes.
Internal nodes store only search key values, and are used only as placeholders to
guide the search.

The leaf nodes of a B+-tree are linked together to form a linked list. This is done
so that the records can be retrieved sequentially without accessing the B+-tree
index. This also supports fast processing of range-search queries.

B+ tree

B+ tree Description 12

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Routers or keys 75
Data records
or pointers to them

Values in internal nodes are routers, originally each of them was a key when a
record was inserted later they migrated in the tree and may stay there even
after the record and its key was deleted. Insert and Delete operations by
splitting and Joining the nodes move routers around.

Values in the leaves are actual keys associated with the records and must be
deleted when a record is deleted (their router copies may live on).

B+ tree Description/example 13

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Place the key and its associated record in the leaf

Free slot in a leaf? YES

1. Split the leaf, consider all its keys including K sorted.
2. insert middle (median) key M in the parent node in an appropriate slot Y.
3. Left leaf from Y contains records with keys smaller than M.
4. Right leaf from Y contains records with keys equal to or greater than M.

Inserting key K (and its associated record) into B+ tree

Find, as in B tree, correct leaf to insert K,

Free slot in a leaf? NO. Free slot in parent node? YES.

Note: Splitting leaves / inner nodes works same way as in B-trees.

Case 1

Case 2

B+ tree Insert I 14

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

1. Split the leaf, consider all its keys including K sorted,
denote M median of these keys

2. Records with keys < M go to the left leaf.
3. Records with keys >= M go to the right leaf.

4. Split the parent node P to nodes P1 and P2, consider all its keys including M
sorted, denote M1 median of these keys.

5. Keys < M1 key go to P1.
6. Keys > M1 key go to P2.
7. If parent PP of P is not full, insert M1 to PP and stop.

Else set M := M1, P := PP and continue splitting parent nodes recursively
up the tree, repeating from step 4.

Free slot in a leaf? NO. Free slot in parent node? NO.

Case 3

B+ tree Insert II 15

Inserting key K (and its associated record) into B+ tree

Find, as in B tree, correct leaf to insert K,

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

25 7550

5 20 10 15 50 6055 65 75 8580 9025 30

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 28

Changes Leaf links

Initial tree

Records or records pointers are not drawn here for sake of simplicity.

B+ tree Insert example I 16

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

25 6050 75

25 7550

5 20 10 15 50 6055 65 75 8580 9025 3028

Insert 70

5 20 10 15 50 55 75 8580 9025 3028 60 7065

Changes

Initial tree

Leaf links

B+ tree Insert example II 17

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

25 6050 75

Insert 95

5 20 10 15 50 55 75 8580 9025 3028 60 7065

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 7065 85 9590

Changes

Initial tree

Leaf links

B+ tree Insert example III 18

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Delete the key and its record from the leaf. Arrange keys in the leaf in ascending
order to fill void. If the deleted key K appears in the parent node P too, replace it by
next bigger key K1 from L (it must always exist) and leave K1 in L as well.

Leaf more than half full? YES.

Move one (or more if you wish and rules permit) key from sibling S to the leaf L,
reflect the changes in the parent P of leaf and parent P2 of sibling S (if P2 != P).

Deleting key K (and its associated record) into B+ tree

Find, as in B tree, key K in a leaf,

Leaf more than half full? NO. Left or right sibling more than half fulll? YES.

Note: Joining leaves/inner nodes works same way as in B-trees.

Case 1

Case 2

B+ tree Delete I 19

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

1. Consider sibling S of L which has same parent P as L.
2. Consider set M of ordered keys of L and S without K but together with key K1
in P which separates L and S.
3. Joining. Store M in L, connect L to the other sibling of S (if exists), destroy S.
4. The reference left to K1 points to L. Adjust P. If P contains K delete it from P.

Delete K1 from S as well. If P is still at least half full stop, else continue with 5.
5. If any sibling SP of P is more then half full, move necessary number of keys
from SP to P and adjust links in P, SP and their parents accordingly and stop.
Else join P with sibling SP which parent PP is parent of P too and continue
recursively as in B-tree up to the root if necessary.

Deleting key K (and its associated record) into B+ tree

Find, as in B tree, key K in a leaf,

Leaf more than half full? NO. Left or right sibling more than half fulll? NO.

Note: Joining leaves/inner nodes works same way as in B-trees.

Case 3

B+ tree Delete II 20

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Delete 70

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 7065 85 9590

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

Initial tree

Leaf links

B+ tree Delete example I 21

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Delete 25

Changes

25 50

60

75 85

5 20 10 15 50 55 75 8025 3028 60 65 85 9590

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

Initial tree

Leaf links

B+ tree Delete example II 22

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Too few keys, join these
two nodes and bring key
from parent (recursively)

Delete 75
28 50

60

75 85

5 10 50 55 75 8028 30 60 65 85 90

85

60 6580 85 90

28 50

28 6050 85

5 10 50 55 85 9028 30 60 8065

Initial tree

Progress...

... done.

B+ tree Delete example IV 23

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Delete 60

Changes

28 50

60

75 85

5 20 10 15 50 55 75 8028 30 60 65 85 9590

28 6050 85

5 20 10 15 50 55 85 959028 30 65 8075

Initial tree

Leaf links

B+ tree Delete example III 24

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Join here

Find, Insert, Delete,
all need (logb n) operations, where n is number of records in the tree,
and b is the branching factor or, as it is often understood, the order of the tree.

Note: Be careful, some authors (e.g CLRS) define degree/order of B-tree as [b/2], there is no unified
precise common terminology.

Range search thanks to the linked leaves is performed in time
(logb(n) + k)
where k is the range (number of elements) of the query.

Complexities

B+ tree Operations complexity 25

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

