
?/

p

x--y

2<1

x+yHi!

- Robert Sedgewick: Algorithms in C++, Parts 1–4: Fundamentals, Data Structure, Sorting, Searching,
Third Edition, Addison Wesley Professional, 1998

- William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

- William Pugh: A Skip List Cookbook [http://cglab.ca/~morin/teaching/5408/refs/p90b.pdf]
- Bradley T. Vander Zanden: [http://web.eecs.utk.edu/~huangj/CS302S04/notes/skip-lists.html]

To read

Skip List

A A C E E G I N P R S XH L M

Marko Berezovský
PAL 2015Skip List

L

A A C E E G H I L M N P R S X

A A C E E G H I L M N P R S X

A regular linked list

A linked list with faster search capability

A A C E E G H I M N P R S X

A linked list with even faster search capability

Skip list Motivation 1

Problem: Find(N) in your list.

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

LA A C E E G H I N P R S Z

Problem:
Subsequent Insert/Delete operations would destroy this favourable list shape.
The cost of restauration is huge -- (N).

M X

A linked list with log(N) search capability.
Note the shape similarity to a balanced binary search tree.

Solution:
Create a randomized shape, roughly similar to the optimal one.
Random deviations from the nice shape in the long run nearly cancel each other
resulting again in a nearly favourable list shape.

Skip list Improved linked list 2

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

A skip list is an ordered linked list where each node contains a variable
number of links, with the k-th link in the node implementing singly
linked list that skips (forward) the nodes with less than k links.

[Sedgewick]

Each element points to its immediate successor (= next element).
Some elements also point to one or more elements further down the list.

A level k element is a list element that has k forward pointers.
the j-th pointer points to the next level j element.

A A C E E G I N P R S XH L M

Level 2
elements

Level 1
elements

Level 4
element

Level 3
elements

Skip list Definition 3

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

The Skip List data structure contains also:

-- Header: A dummy skip list node with the initial set of forward pointers
-- Level: The current number of levels in the skip list.
-- MaxLevel: The maximum number of levels to which a skip list can grow

Skip list Linked list data structure 4

A A C E E G I N P R S XH L M

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Basic randomness

The level of an element is chosen by flipping a coin.

Flip a coin until it comes up tails.
We count one plus the number of times

the coin came up heads
before it comes up tails.

This result represents the level of the element.

Example of an experimental independent levels calculation (p = 0.5, see bellow) .

x x x x x x x x x x x x x x x xx x x x x x x x

Skip list Random level 5

Sixpence of Queen Elizabeth I,
struck in 1593 at the Tower Mint.

[wikipedia.org]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

More general randomness

Choose a fraction p between 0 and 1.
Rule: Fraction p of elements with level k pointers

will have level k+1 elements as well.

On average: (1p) elements will be level 1 elements,
(1p)^2 elements will be level 2 elements,
(1p)^3 elements will be level 3 elements, etc.

This scheme corresponds
to flipping a coin that has

p chance of coming up heads,
(1p) chance of coming up tails.

Example of an experimental independent levels calculation with p = 0.33.

x x x x x x x x x x x x x x x xx x x x x x x x

Skip list Random level 6

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

int randomLevel(List list) {
//random() returns a random value in [0..1)
int newLevel = 1;
while (random() < list.p) // no MaxLevel check

newLevel++;
return min(newLevel, list.MaxLevel); // efficiency!

}

Choosing a Random Level

A level is chosen for an element in effect by flipping a coin that has probablility p
of coming up heads. We keep flipping until we get "tails" or until the maximum
number of levels is reached.

Skip list Random level 7

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Search

We scan through the top list until we find the search key or a node
with a smaller key that has a link to a node with a larger key.

Then, we move to the second-from-top list and iterate the procedure,
continuing until the search key is found
or a search miss happens on the bottom level.

A A C E E G I N P R S XH L M

Find R

Skip list - Search Example 8

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Node search(List list, int searchKey) {
Node x = list.header;

// loop invariant: x.key < searchKey
for(int i = list.level; i >= 1; i--)

while (x.forward[i].key < searchKey)
x = x.forward[i];

// x.key < searchKey <= x.forward[1].key
x = x.forward[1];
if (x.key == searchKey) return x;
else return null;

}

Search

Start with the coarsest grain list and find where in that list the key resides,
then drop down to the next less coarse grain list and repeat the search.

Skip list - Search Pseudocode 9

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

CA E G H I N R S

CA E G H I N R S

Keeping the code simple

while(x.forward[i].key < searchKey) // x.forward[i] == null?

Add a sentinel at the tail of the list with infinite key value.

The level of the sentinel is the same as the whole list level.

Note that in the other
diagrams the sentinel

is not displayed to
spare space

in the presentation.

Skip list - Structure Sentinel 10

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Insert

Find the place for the new element.
Assign to it its level k computed by flipping the coin.
Insert the element into each of those k lists, starting at the bottom.

A A C E E G I N P R S XH L M

A A C E E I N P R S XH MG

Insert L

Skip list - Insert Example 11

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

SA A SE

A SE R A SE RC

A SE RC H

A

A SE RC H I

Insert A, S, E, R, C, H, I, N, G.

continue...

Skip list - Insert Example 12

The nodes,
in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.
(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

A SE RC H I

A SE RC H I N

A SE RC H I NG

Skip list - Insert 13

Insert A, S, E, R, C, H, I, N, G.
.. continued

Example

The nodes,
in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.
(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

CAA CA E CA E G

CA E G H CA E G H I

CA E G H I N CA E G H I N R

continue...

Skip list - Insert 14

Insert A, C, E, G, H, I, N, R, S. (Same values, different order)

Example

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

CA E G H I N R S

A SE RC H I NG

The nodes were inserted in sorted order.

The nodes were inserted in random order.

The result of the previous example

The shapes of the lists are different, the probabilistic properties are the same.

.. continued

Skip list - Insert 15Example

The nodes,
in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.

(A,C,E,G,H,I,N,R,S)

The nodes,
in the order of insertion,

were assigned levels
1,3,2,1,1,3,1,3,2.

(A,S,E,R,C,H,I,N,G)

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

// Utilise update which is a (vertical) array
// of pointers to the elements which will be
// predecessors of the new element.

void insert(List list, int searchKey, Data newValue){

Node x = list.header;
for (int i = list.level; i >= 1; i--) {

while (x.forward[i].key < searchKey)
x = x.forward[i];

//note: x.key < searchKey <= x.forward[i].key
update[i] = x;

}

x = x.forward[1];
if (x.key == searchKey)

x.value = newValue;
else { // key not found, do insertion here: continue...

Skip list - Insert Pseudocode 16

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

... else { // key not found, do insertion here:
int newLevel = randomLevel(list);

/* If the newLevel is greater than the current level
of the list, knock newLevel down so that it is only
one level more than the current level of the list.
In other words, we will increase the level of the
list by at most one on each insertion. */
if (newLevel > list.level) {

newLevel = list.level + 1; list.level = newLevel;
update[newLevel] = list.header;

}

Node x = makeNode(newLevel, searchKey, newValue);
for (int i = 1; i <= newLevel; i++) {

x.forward[i] = update[i].forward[i];
update[i].forward[i] = x; }

}
}} // of insert

.. continued
Skip list - Insert Pseudocode 17

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

CA E G H L N R S

CA E G H L N R S

CA E G H N R S

registered in the
update array

Skip list - Delete Example 18

Delete L

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Deleting in a skip list is like deleting the same value independently from each list
in which forward pointers of the deleted element are involved.

The algorithm finds the element's predecessor in the list,
makes the predecessor point to the element that the deleted element points to,
and finally deletes the element. It is a regular list delete operation.

// update is an array of pointers to the
// predecessors of the element to be deleted.
void delete(List list, int searchKey) {

Node x = list.header;
for (int i = list.level; i >= 1; i--) {

while (x.forward[i].key < searchKey)
x = x.forward[i];

update[i] = x;
}
x = x->forward[1];
if (x.key == searchkey) { // go delete ...

continue...

Skip list - Delete Pseudocode 19

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

for (int i = 1; i <= list.level; i++) {
if (update[i].forward[i] != x) break; //(**)
update[i].forward[i] = x.forward[i];

}
destroy_remove(x);

/* if deleting the element causes some of the
highest level list to become empty, decrease the
list level until a non-empty list is encountered.*/
while ((list.level > 1) &&

(list.header.forward[list.level] == list.header))
list.level--;

}} // deleted

(**) If the element to be deleted is a level k node, break out of the loop when
level (k+1) is reached. Since the code does not store the level of an element, we
determine that we have exhausted the levels of an element when a predecessor
element points past it, rather than to it.

.. continued

Skip list - Delete Pseudocode 20

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Choosing p

One might think that p should be chosen to be 0.5.
If p is chosen to be 0.5, then roughly half our elements will be level 1 nodes,
0.25 will be level 2 nodes, 0.125 will be level 3 nodes, and so on.
This will give us

-- on average log(N) search time and
-- on average 2 pointers per node.

However, empirical tests show that choosing p to be 0.25
results in

-- roughly the same search time
-- but only an average of 1.33 pointers per node,
-- somewhat more variability in the search times.

There is a greater chance of a search taking longer than expected, but the
decrease in storage overhead seems to be worth it sometimes.

Skip list - Properties Parameter p 21

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Notes on size and compexity

The average number of links in a randomized skip list with parameter p is
(p/(p 1)) · N

The average number of comparisons in search and insert
in a randomized skip list with parameter p is on average

(p logp (N)) / 2 = log(N) * p / (2 log (p))

Search Insert Delete
Skip list 0.051 (1.0) 0.065 (1.0) 0.059 (1.0)
AVL tree 0.046 (0.91) 0.100 (1.55) 0.085 (1.46)
2-3 tree 0.054 (1.05) 0.210 (3.2) 0. 21 (3.65)
Splay tree 0.490 (9.6) 0.510 (7.8) 0.53 (9.0)

Times in ms on some antiquitated HW [Pugh, 1990]

Experimental time comparisons:

Skip list - Properties Complexity/experiment 22

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Notes on compexity

The probabilistic analysis of skip lists is rather advanced.
However, it can be shown that the expected times of

search, insert, delete are all

O(lg n).

The choice of p determines the variability of these search times.

Intuitively, decreasing p will increase the variability since it will decrease the
number of higher-level elements (i.e., the number of "skip" nodes in the list).

The Pugh paper contains a number of graphs that show the probability of a
search taking significantly longer than expected for given values of p. For
example, if p is 0.5 and there are more than 256 elements in the list, the
chances of a search taking 3 times longer than expected are less than 1 in a
million. If p is decreased to 0.25, the chances rise to about 1 in a thousand.

Skip list - Properties Complexity/memory 23

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

Skip list - References 24

erikdemaine.org/

erikdemaine.org/- Erik Demaine's presentation at MIT
http://videolectures.net/mit6046jf05_demaine_lec12/

- Robert Sedgewick: Algorithms in C++, Parts 1–4: Fundamentals, Data Structure,
Sorting, Searching, Third Edition, Addison Wesley Professional, 1998

- William Pugh: Skip lists: A probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

- William Pugh: A Skip List Cookbook [http://cglab.ca/~morin/teaching/5408/refs/p90b.pdf]

- Bradley T. Vander Zanden: [http://web.eecs.utk.edu/~huangj/CS302S04/notes/skip-lists.html]

Pokročilá Algoritmizace, A4M33PAL, ZS 2012/2013, FEL ČVUT, 12/14

