BST and AVL

short illustrative repetition

Binary search tree

For each node Y it holds:

Keys in the left subtree of Y are smaller than the key of Y.

Keys in the right subtree of Y are bigger than the key of Y.

Binary search tree

BST may not be balanced and usually it is not.
 BST may not be regular and usually it is not.

Apply the INORDER traversal to obtain sorted list of the keys of BST.

BST is flexible due to operations:
Find - return the pointer to the node with the given key (or null). Insert - insert a node with the given key.
Delete - (find and) remove the node with the given key.

Operation Find in BST

Operation Insert in BST

Insert

1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect it to the tree.

Operation Delete in BST (I.)

Delete a node with 0 children (= leaf)

Delete I. Find the node (like in Find operation) with the given key and set the reference to it from its parent to null.

Operation Delete in BST (II.)

Delete a node with 1 child.

Change the 76 --> 68 reference to 76 --> 73 reference.

Delete II. Find the node (like in Find operation) with the given key and set the reference to it from its parent to its (single) child.

Operation Delete in BST (IIIa.)

Delete a node with 2 children.

Delete IIIa.

1. Find the node (like in Find operation) with the given key and then find the leftmost (= smallest key) node y in the right subtree of x .
2. Point from y to children of x, from parent of y point to the child of y instead of y, from parent of x point to y.

Operation Delete in BST (IIIb.) is equivalent to Delete IIIa.
Delete a node with 2 children.

Delete IIIb.

1. Find the node (like in Find operation) with the given key and then find the rightmost (= smallest key) node y in the left subtree of x.
2. Point from y to children of x, from parent of y point to the child of y instead of y, from parent of x point to y.

AVL tree -- G.M. Adelson-Velskij \& E.M. Landis, 1962

AVL tree is a BST with additional properties which keep it acceptably balanced.

Operations

Find, Insert, Delete also apply to AVL tree.

AVL rule:

There are two integers associated with each node:
Depth of the left and depth of the right subtree of the node.
Note: Depth of an empty tree is $\mathbf{- 1}$.

The difference of the heights of the left and the right subtree may be only -1 or 0 or 1 in each node of the tree.

AVL tree -- G.M. Adelson-Velskij \& E.M. Landis, 1962

Find -- same as in a BST

Insert -- first, insert as in a BST, next, travel from the inserted node upwards and update the node depths.
If disbalance occurs in any node along the path then
\longrightarrow apply an appropriate rotation and stop.

Delete -- first, delete as in a BST, next, travel from the deleted position upwards and update the node depths.
If disbalance occurs in any node along the path then apply an appropriate rotation.
Continue travelling along the path up to the root.

Rotation L in general

Before

Rotation L is a mirror image of

 rotation R, there is no other difference between the two.
After

Rules for aplying rotations L, R, LR, RL in Insert operation

Travel from the inserted node up to the root and update the subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

* in the up and right direction perform rotation R in this node,
* in the up and left direction perform rotation L in this node,
* first in the in the up and left and then in the up and right direction perform rotation LR in this node,
* first in the in the up and right and then in the up and left direction perform rotation RL in this node,

After one rotation in the Insert operation the AVL tree is balanced.
After one rotation in the Delete operation the AVL tree might still not be balanced, all nodes on the path to the root have to be checked.

Necessity of multiple rotations in operation Delete.
Example.
The AVL tree is originally balanced.

Delete the

 rightmost key.

Asymptotic complexities of Find, Insert, Delete in BST and AVL

	BST with n nodes		AVL tree with n nodes
Operation	Balanced	Maybe not balanced	Balanced
Find	$O(\log (n))$	$O(n)$	$O(\log (n))$
Insert	$\Theta(\log (n))$	$O(n)$	$\Theta(\log (n))$
Delete	$O(\log (n))$	$O(n)$	$\Theta(\log (n))$

