

Binary search tree

For each node Y it holds:

Keys in the left subtree of Y
are smaller than the key of Y.

Keys in the right subtree of Y
are bigger than the key of Y.

76

92

Binary search tree

BST may not be balanced
and usually it is not.

BST may not be regular
and usually it is not.

Apply the INORDER
traversal to obtain
sorted list of the
keys of BST.

BST is flexible due to operations:

Find — return the pointer to the node with the given key (or null).
Insert —insert a node with the given key.
Delete — (find and) remove the node with the given key.

Operation Find in BST

Fing 18—

Each BST
operation starts
in the root.

Operation Insert in BST

Insert 42'—-> (51)

Key 42 belongs here

Insert
1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect it to the tree.

Operation Delete in BST (l.)

Delete a node with 0 children (= leaf)

Delete 25 é @

Leaf with key 25
disappears

Delete I. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to null.

Operation Delete in BST (ll.)

Delete a node with 1 child.

Delete 68 é @

Node with key 68
disappears

Change the 76 --> 68 reference to 76 --> 73 reference.

Delete II. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to its (single) child.

Operation Delete in BST (llla.)

Delete a node with 2 children.

Delete 34 X @ (76)

@ /© o
Key 34 disappears. A

And it is substituted by key 36.

.
at
lllllllllllllllll

Delete llla.
1. Find the node (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.

2. Point from y to children of x,
from parent of y point to the child of y instead of v,

from parent of x point to y.

Operation Delete in BST (llIb.) is equivalent to Delete llla.

Delete a node with 2 children.

Delete 34

Key 34 disappears. :

And it is substituted by key 22. ... -

Delete lllb.
1. Find the node (like in Find operation) with the given key and then

find the rightmost (= smallest key) node y in the left subtree of x.

2. Point from y to children of x,
from parent of y point to the child of y instead of v,

from parent of x point to y.

AVL tree -- G.M. Adelson-Velskij & E.M. Landis, 1962

AVL tree is a BST with additional properties Operations
which keep it acceptably balanced. Find, Insert, Delete

also apply to AVL tree.

- A1
AVL rule:
There are two |r.1tegers EEOElEE The difference of the heights of
with each node: :
the left and the right subtree
Depth of the left and depth of mav be onlv -1 or 0 or 1
the right subtree of the node. y y

Note: Depth of an empty tree is -1. In each node of the tree.

AVL tree -- G.M. Adelson-Velskij & E.M. Landis, 1962

Find -- same asin aBST

Insert -- first, insert as in a BST,
next, travel from the inserted node upwards
and update the node depths.
If disbalance occurs in any node along the path then

‘ apply an appropriate rotation and stop.

Delete -- first, delete as in a BST,
next, travel from the deleted position upwards
and update the node depths.
If disbalance occurs in any node along the path then

apply an appropriate rotation.
Continue travelling along the path up to the root.

10

Rotation R in general

Before

Disbalancing
node

After

Unaffected
subtrees

Disbalance
detected

11

Rotation L in general

Before

Rotation L is a mirror image of
rotation R, there is no other
difference between the two.

After

Unaffected
subtrees

12

Rotation LR in general

Before
Disbalancing node ‘-1

e

Unaffected
subtrees A

After Q/
X

(B)

1-1

Disbalance
detected

13

Rotation RL in general

Disbalance
_ detected

Before

Rotation RL is a mirror image of
rotation LR, there is no other 1 - Disbalancing
difference between the two. node

x+1©x+1

ol®
@

-1 -1

After
X

Unaffected
subtrees A

14

Rules for aplying rotations L, R, LR, RL in Insert operation

Travel from the inserted node up to the root
and update the subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

* in the up and right direction
perform rotation R in this node,

* in the up and left direction
perform rotation L in this node,

* firstin the in the up and left and then in the up and right direction
perform rotation LR in this node,

* firstin the in the up and right and then in the up and left direction
perform rotation RL in this node,

After one rotation in the Insert operation the AVL tree is balanced.

After one rotation in the Delete operation the AVL tree might still
not be balanced, all nodes on the path to the root have to be checked.

15

Necessity of multiple rotations in operation Delete.

Example. Delete the |::>
The AVL tree rightmost key.

Is originally
balanced.

/«ﬁ\%m

Balanced.

Asymptotic complexities of Find, Insert, Delete in BST and AVL

A4B33ALG 2011/06

BST with n nodes

AVL tree with n nodes

Operation Balanced Maybe not Balanced
balanced

Find O(log(n)) |0O(n) O(log(n))

Insert ®(log(n)) [0O(n) ®(log(n))

Delete O(log(n)) |0O(n) ®(log(n))

17

