
0

BST and AVL

short illustrative repetition

34 40 45 51 70 73 74 76 92252218138

68

8

18 25

22

13

34

40

45

51

70 74

73

76

92

Keys in the left subtree of Y
are smaller than the key of Y.

Y

< Y
> YKeys in the right subtree of Y

are bigger than the key of Y.

Binary search tree

For each node Y it holds:

68

1

68

8

18 25

22

13

34

40

45

51

70 74

73

76

92
BST may not be regular

and usually it is not.

BST may not be balanced
and usually it is not.

Apply the INORDER
traversal to obtain
sorted list of the

keys of BST.

BST is flexible due to operations:

Find – return the pointer to the node with the given key (or null).
Insert – insert a node with the given key.
Delete – (find and) remove the node with the given key.

Binary search tree

2

68

8

25

40

45

70 74

73

76

92

18

22

13

34

Operation Find in BST

Find 18 51

Each BST
operation starts
in the root.

3

68

8

25 70 74

73

76

92

18

22

13

34

Insert 42 51

Operation Insert in BST

40

42

45

Key 42 belongs here

Insert
1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect it to the tree.

4

Operation Delete in BST (I.)

68

8

18

40

70 74

73

76

92

Delete I. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to null.

42

45

Delete a node with 0 children (= leaf)

25

22

13

34

51

Leaf with key 25
disappears

Delete 25

5

Operation Delete in BST (II.)

8

18

40

70 74

73

92

42

45

Delete a node with 1 child.

22

13

34

Delete 68

68

76

Change the 76 --> 68 reference to 76 --> 73 reference.

51

Node with key 68
disappears

Delete II. Find the node (like in Find operation) with the given key and
set the reference to it from its parent to its (single) child.

6

Operation Delete in BST (IIIa.)

8

18 70 74

73

92

Delete IIIa.
1. Find the node (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.
2. Point from y to children of x,

from parent of y point to the child of y instead of y,
from parent of x point to y.

36

4522

13

34Delete 34

68

76

Key 34 disappears.

51

And it is substituted by key 36.

x

y

40

38

Delete a node with 2 children.

7

Operation Delete IIIa.Operation Delete in BST (IIIb.) is equivalent to Delete IIIa.

8

18

40

70 74

73

92

Delete IIIb.
1. Find the node (like in Find operation) with the given key and then

find the rightmost (= smallest key) node y in the left subtree of x.
2. Point from y to children of x,

from parent of y point to the child of y instead of y,
from parent of x point to y.

42

4522

13

34Delete 34

68

76

51

Na jeho místo nastoupí 22. Na jeho místo nastoupí 22.

x

y

Key 34 disappears.

And it is substituted by key 22.

Delete a node with 2 children.

8

AVL tree -- G.M. Adelson-Velskij & E.M. Landis, 1962

There are two integers associated
with each node:
Depth of the left and depth of
the right subtree of the node.
Note: Depth of an empty tree is -1.

-1 -1 -1 -1 -1

00 0-1 -1-1

00

12

11

8

13

34

40

51

92

AVL tree is a BST with additional properties
which keep it acceptably balanced.

Operations
Find, Insert, Delete
also apply to AVL tree.

-1-1

-1

The difference of the heights of
the left and the right subtree
may be only -1 or 0 or 1
in each node of the tree.

AVL rule:

22 45

76

68

9

10

AVL tree -- G.M. Adelson-Velskij & E.M. Landis, 1962

Find -- same as in a BST

Insert -- first, insert as in a BST,
next, travel from the inserted node upwards
and update the node depths.
If disbalance occurs in any node along the path then
apply an appropriate rotation and stop.

Delete -- first, delete as in a BST,
next, travel from the deleted position upwards
and update the node depths.
If disbalance occurs in any node along the path then
apply an appropriate rotation.
Continue travelling along the path up to the root.

xx+2

xx+1
A

B

C

-1 -1

Rotation R in general

x+1x+1
A

B

xx
C

-1
Z

-1

Before

After

Unaffected
subtrees

Disbalancing
node

Disbalance
detected

Z

11

x x+2

x x+1
C

B

A

-1
Z

-1

x+1 x+1
C

B

x x
A

-1
Z

-1

Rotation L is a mirror image of
rotation R, there is no other
difference between the two.

Before

After

Rotation L in general

Unaffected
subtrees

12

x-1x

xX+2

x+1x
A

C

D

E

B

-1 -1

xxx
A

B

-1
Z

-1

x+1x+1

x
E

Rotation LR in general

Before

After

Z

Unaffected
subtrees

D

Disbalancing node

Disbalance
detected

13

C

x-1 x

x X+2

x+1 x
E

C

B

A

D

-1-1

x x x
E

D

-1-1

x+1 x+1

x
A

B

Rotation RL in general

Before

After

Rotation RL is a mirror image of
rotation LR, there is no other
difference between the two.

Unaffected
subtrees

Disbalancing
node

C

Disbalance
detected

14

Z

Z

Travel from the inserted node up to the root
and update the subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

* in the up and right direction
perform rotation R in this node,

* in the up and left direction
perform rotation L in this node,

* first in the in the up and left and then in the up and right direction
perform rotation LR in this node,

* first in the in the up and right and then in the up and left direction
perform rotation RL in this node,

After one rotation in the Insert operation the AVL tree is balanced.

After one rotation in the Delete operation the AVL tree might still
not be balanced, all nodes on the path to the root have to be checked.

Rules for aplying rotations L, R, LR, RL in Insert operation

15

1 2

3 4

Necessity of multiple rotations in operation Delete.

Balanced.

Example.
The AVL tree
is originally
balanced.

Delete the
rightmost key.

16

Asymptotic complexities of Find, Insert, Delete in BST and AVL

Operation Balanced Maybe not
balanced

Balanced

Find (log(n)) (n) (log(n))

Insert (log(n)) (n) (log(n))

Delete (log(n)) (n) (log(n))

BST with n nodes AVL tree with n nodes

A4B33ALG 2011 / 06

17

