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BST and AVL 

short illustrative repetition
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Keys in the left subtree of Y 
are smaller than the key of Y.

Y

< Y
> YKeys in the right subtree of Y 

are bigger than the key of Y.

Binary search tree

For each node Y it holds:
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BST may not be regular

and usually it is not.

BST may not be balanced
and usually it is not.

Apply the INORDER 
traversal to obtain
sorted list of the

keys of BST. 

BST is flexible due to operations:

Find – return the pointer to the node with the given key (or null).
Insert – insert a node with the given key.
Delete – (find and) remove the node with the given key.

Binary search tree
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Operation Find in  BST 

Find 18 51

Each BST 
operation starts
in the root.
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Operation Insert in  BST
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42
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Key 42 belongs here

Insert
1. Find the place (like in Find) for the leaf where the key belongs.
2. Create this leaf and connect  it to the tree.

4



Operation Delete in BST (I.)
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Delete I. Find the node (like in Find operation) with the given key and 
set the reference to it from its parent to null.
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45

Delete a node with 0 children (= leaf)
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Leaf with key 25 
disappears

Delete 25
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Operation Delete in BST (II.)
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42

45

Delete a node with 1 child.

22

13
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Delete 68

68

76

Change the 76 --> 68 reference to 76 --> 73 reference.

51

Node with key 68
disappears

Delete II. Find the node (like in Find operation) with the given key and 
set the reference to it from its parent to its (single) child.
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Operation Delete in BST (IIIa.)
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Delete IIIa.
1. Find the node (like in Find operation) with the given key and then

find the leftmost (= smallest key) node y in the right subtree of x.
2. Point from y to children of x, 

from parent of y point to the child of y instead of y, 
from parent of x point to y.
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Key 34 disappears.
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And it is substituted by key 36. 

x

y

40

38

Delete a node with 2 children.
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Operation Delete IIIa.Operation Delete in BST (IIIb.) is equivalent to Delete IIIa.
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Delete IIIb.
1. Find the node (like in Find operation) with the given key and then

find the rightmost (= smallest key) node y in the left subtree of x.
2. Point from y to children of x, 

from parent of y point to the child of y instead of y, 
from parent of x point to y.
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Na jeho místo nastoupí 22. Na jeho místo nastoupí 22. 

x

y

Key 34 disappears.

And it is substituted by key 22. 

Delete a node with 2 children.
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AVL tree   -- G.M. Adelson-Velskij & E.M. Landis, 1962

There are two integers associated
with each node:  
Depth of the left and depth of 
the right  subtree of the node.
Note: Depth of an empty tree is -1.
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AVL tree is a BST with additional properties
which keep it  acceptably balanced.

Operations 
Find, Insert, Delete
also apply to AVL tree.

-1-1

-1

The difference of the heights of 
the left and the right subtree
may be only  -1 or 0 or 1
in each node of the tree.

AVL rule:
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10

AVL tree   -- G.M. Adelson-Velskij & E.M. Landis, 1962

Find -- same as in a BST

Insert -- first, insert as in a BST,
next, travel from the inserted node upwards 
and update the node depths.
If disbalance occurs in any node along the path then
apply an appropriate rotation and stop.  

Delete -- first, delete as in a BST,
next, travel from the deleted position upwards 
and update the node depths.
If disbalance occurs in any node along the path then
apply an appropriate rotation. 
Continue travelling along the path up to the root. 
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Rotation L is a mirror image of 
rotation R, there is no other 
difference  between the two.
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Rotation L in general

Unaffected
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Rotation RL is a mirror image of 
rotation LR, there is no other 
difference  between the two.
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Travel from the inserted node up to the root
and update the subtree depths in each node along the path.

If a node is disbalanced and you came to it along two consecutive edges

*   in the up and right direction
perform rotation R in this node,

*   in the up and left direction
perform rotation L in this node,

*   first in the in the up and left and then in the up and right direction
perform rotation LR in this node,

*   first in the in the up and right and then in the up and left direction
perform rotation RL in this node,

After one rotation in the Insert operation  the AVL tree is balanced.

After one rotation in the Delete operation the AVL tree might still
not be balanced, all nodes on the path to the root have to be checked.

Rules for aplying rotations L, R, LR, RL in Insert operation
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1 2

3 4

Necessity of  multiple rotations in operation Delete.

Balanced.

Example. 
The AVL tree
is originally 
balanced. 

Delete the 
rightmost key.
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Asymptotic complexities of Find, Insert, Delete in BST and AVL 

Operation Balanced Maybe not
balanced

Balanced

Find (log(n)) (n) (log(n))

Insert (log(n)) (n) (log(n))

Delete (log(n)) (n) (log(n))

BST with n nodes AVL tree with n nodes
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