John von Neumann:

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.

Pseudorandom number generator

Random vs. pseudorandom behaviour

Random behavior -- Typically, its outcome is unpredictable and the parameters of the generating process cannot be determined by any known method.

Examples:
- Parity of number of passengers in a coach in rush hour.
- Weight of a book on a shelf in grams modulo 10.
- Direction of movement of a particular N₂ molecule in the air in a quiet room.

Pseudo-random -- Deterministic formula,
- Local unpredictability, "output looks like random",
- Statistical tests might reveal more or less "random behaviour"

Pseudorandom integer generator

A pseudo-random integer generator is an algorithm which produces a sequence

\[\{x_n\} = x_0, x_1, x_2, \ldots \]

of non-negative integers, which manifest pseudo-random behaviour.
Pseudorandom number generator

Pseudorandom integer generator

Two important statistical properties:

• Uniformity
• Independence

Random number in a interval \([a, b]\) must be independently drawn from a uniform distribution with probability density function:

\[
f(x) = \begin{cases}
\frac{1}{b - a} & x \in [a, b] \\
0 & \text{elsewhere}
\end{cases}
\]

Good generator

- Uniform distribution over large range of values:
 Interval \([a, b]\) is long, period = \(b - a\), generates all integers in \([a, b]\).
- Speed
 Simple generation formula.
 Modulus (if possible) equal to a power of two – fast bit operations.

Advanced Algorithms, A4M33PAL, ZS 20152016, FEL ČVUT
Pseudorandom number generator

Random floating point number generator

Task 1: Generate (pseudo) random integer values from an interval \([a, b]\).
Task 2: Generate (pseudo) random floating point values from interval \([0,1]\).

Use the solution of Task 1 to produce the solution of Task 2.
Let \(\{x_n\}\) be the sequence of values generated in Task 1.
Consider a sequence \(\{y_n\} = \{(x_n - a) / (b - a - 1)\}\).

Each value of \(\{y_n\}\) belongs to \([0,1]\).
"Random" real numbers are thus approximated by "random" fractions.
Large length of \([a, b]\) guarantees sufficiently dense division of \([0,1]\).

Example 1

\([a, b] = [0, 1024]\).
\(\{x_n\} = \{712, 84, 233, 269, 810, 944, ...\}\)

\(\{y_n\} = \{712/1023, 84/1023, 233/1023, 269/1023, 810/1023, 944/1023, ...\}\)
\(\quad = \{0.696, 0.082, 0.228, 0.263, 0.792, 0.923, ...\}\)
Linear Congruential generator

Linear Congruential generator produces sequence \(\{x_n\} \) defined by relations

\[
0 \leq x_0 < M,
\]

\[
x_{n+1} = (Ax_n + C) \mod M, \quad n \geq 0.
\]

Modulus \(M \), seed \(x_0 \), multiplier and increment \(A, C \).

Example 2

\[
M = 18, \quad A = 7, \quad C = 5.
\]

\[
x_0 = 4,
\]

\[
x_{n+1} = (7x_n + 5) \mod 18, \quad n \geq 0.
\]

\[
\{x_n\} = 4, 15, 2, 1, 12, 17, 16, 9, 14, 13, 6, 11, 10, 3, 8, 7, 0, 5, 4, 15, 2, 1, 12, 17, 16, \ldots
\]

sequence period, length = 18
Example 3

\[M = 15, A = 11, \ C = 6. \]

\[x_0 = 8, \]
\[x_{n+1} = (11x_n + 6) \mod 15, \quad n \geq 0. \]

\[\{x_n\} = 8, 14, 5, 11, 2, 8, 14, 5, 11, 2, 8, 14, \ldots \]

sequence period, length = 5

Example 4

\[M = 13, A = 5, \ C = 11. \]

\[x_0 = 7, \]
\[x_{n+1} = (5x_n + 11) \mod 13, \quad n \geq 0. \]

\[\{x_n\} = 7, 7, 7, 7, \ldots \]

sequence period, length = 1
Misconception
Prime numbers are "more random" than composite numbers, therefore using prime numbers in a generator improves randomness. Counterexample: Example 4, all parameters are primes:

\[x_0 = 7, \quad x_{n+1} = (5x_n + 11) \mod 13. \]

Maximum period length
Hull-Dobell Theorem:
The length of period is maximum, i.e. equal to \(M \), iff conditions 1. - 3. hold:
1. \(C \) and \(M \) are coprimes.
2. \(A-1 \) is divisible by each prime factor of \(M \).
3. If 4 divides \(M \) then also 4 divides \(A-1 \).

Example 5

1. \(M = 18, \ A = 7, \ C = 6. \) Condition 1. violated
2. \(M = 20, \ A = 17, \ C = 7. \) Condition 2. violated
3. \(M = 17, \ A = 7, \ C = 6. \) Condition 2. violated
4. \(M = 20, \ A = 11, \ C = 7. \) Condition 3. violated
5. \(M = 18, \ A = 7, \ C = 5. \) All four conditions hold
Linear Congruential Generator

Randomness issues

Example 6

\[x_0 = 4, \]
\[x_{n+1} = (7x_n + 5) \mod 18, \quad n \geq 0. \]

\[\{x_n\} = \{4, 15, 2, 1, 12, 17, 16, 9, 14, 13, 6, 11, 10, 3, 8, 7, 0, 5, 4, 15, 2, 1, 12, 17, 16, \ldots \} \]

sequence period, length = 18

\[\{x_n \mod 2\} = \{0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \ldots \} \]

\[\{x_n \mod 3\} = \{1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, \ldots \} \]

\[\{x_n \div 4\} = \{0, 3, 0, 0, 3, 4, 4, 2, 3, 3, 1, 2, 2, 0, 2, 1, 0, 1, 0, 3, 0, 0, 3, 4, 4, \ldots \} \]

Trouble

Low order bits of values generated by LCG exhibit significant lack of randomness.

Remedy

Disregard the lower bits in the output (not in the generation process!).

Output the sequence \(\{y_n\} = \{x_n \div 2^H\} \), where \(H \geq \frac{1}{4} \log_2(M) \).
Many generators produce a sequence \(\{x_n\} \) defined by the general recurrence rule

\[
x_{n+1} = f(x_n) \quad n \geq 0.
\]

Therefore, if \(x_n = x_{n+k} \) for some \(k > 0 \), then also

\[
x_{n+1} = x_{n+k+1}, \; x_{n+2} = x_{n+k+2}, \; x_{n+3} = x_{n+k+3}, \ldots
\]

Sequence period

Subsequence of minimum possible length \(p > 0 \), \(\{x_n, x_{n+1}, x_{n+2}, \ldots, x_{n+p-1}\} \) such that for any \(n \geq 0 \):

\[
x_n = x_{n+p}.
\]

Random repetitions

Values \(x_n, x_{n+1}, x_{n+2}, \ldots, x_{n+p-1} \) are unique in some (simple) generators.

To increase the random-like behavior of the sequence additional operations may be applied. Typically, it is computing \(x_n \mod W \) for some \(W < \max_{n \geq 0} \{x_n\} \), often \(W \) is a power of 2 and \(\mod \) is just bitwise right shift.
Combined Linear Congruential Generator

Definition
Let there be r linear congruential generators defined by relations

\begin{align*}
0 & \leq y_{k,0} < M_k \\
y_{k,n+1} &= (A_k y_{k,n} + C_k) \mod M_k, \quad n > 0, \\
1 & \leq k \leq r.
\end{align*}

The combined linear congruential generator is a sequence $\{x_n\}$ defined by

\[x_n = (y_{1,n} - y_{2,n} + y_{3,n} - y_{4,n} + \ldots + (-1)^{r-1} y_{r,n}) \mod (M_1 - 1), \quad n \geq 0. \]

Fact
Maximum possible period length (not always attained!) is

\[(M_1 - 1)(M_2 - 1) \ldots (M_r - 1) / 2^{r-1}. \]

Example 7
\[r = 2, \quad 1 \leq y_{1,0} \leq 2147483562, \quad 1 \leq y_{2,0} \leq 2147483398 \]
\[y_{1,n+1} = (40014y_{1,n} + 0) \mod 2147483563, \quad n \geq 0, \]
\[y_{2,n+1} = (40692y_{2,n} + 0) \mod 2147483399, \quad n \geq 0, \]
\[x_n = (y_{1,n} - y_{2,n}) \mod 2147483562, \quad n \geq 0. \]

Period length is \(\frac{(M_1 - 1)(M_2 - 1)}{2} = 2305842648436451838 \).
Combined Linear Congruential Generator

Example 8 \(r = 3 \), \(y_{1,0} = y_{2,0} = y_{3,0} = 1 \),
\[y_{1,n+1} = (9y_{1,n} + 11) \mod 16, \quad n \geq 0, \]
\[y_{2,n+1} = (7y_{2,n} + 5) \mod 18, \quad n \geq 0, \]
\[y_{3,n+1} = (4y_{3,n} + 8) \mod 27, \quad n \geq 0, \]
\[x_n = (y_{1,n} - y_{2,n} + y_{3,n}) \mod 15, \quad n \geq 0. \]

\(\{x_n\} = 1, 4, 0, 2, 7, 12, 2, 2, 6, 6, 7, 7, 5, 2, 0, 9, 1, 1, 9, 11, 7, 9, 2, 8, 9, 12, 1, 1, 14, 2, 12, 9, 7, 4, 9, 8, 1, 6, 14, 5, 9, 0, 1, 4, 8, 8, 6, 9, 4, 4, 3, 11, 4, 3, 11, 14, 9, 12, 1, 7, 11, 11, 0, 0, 1, 1, 0, 11, 10, 3, 11, 11, 3, 6, 1, 4, 11, 2, 3, 6, 10, 10, 9, 11, 7, 3, 2, 14, 3, 3, 10, 1, 8, 14, 3, 9, 10, 13, 3, 2, 1, 3, 14, 14, 12, 6, 13, 13, 5, 8, 3, 6, 10, 1, 6, 5, 10, 9, 11, 11, 9, 6, 4, 13, 5, 5, 12, 0, 10, 13, 6, 11, 13, 0, 5, 5, 3, 6, 1, 13, 11, 8, 12, 12, 4, 10, 3, 8, 13, 3, 5, 8, 12, 12, 10, 13, 8, 8, 6, 0, 7, 7, 0, 2, 13, 0, 5, 11, 0, 0, 4, 4, 5, 5, 3, 0, 13, 7, 0, 14, 7, 9, 5, 8, 0, 6, 7, 10, 14, 14, 12, 0, 10, 7, 6, 2, 7, 6, 14, 5, 12, 3, 7, 13, 14, 2, 6, 6, 4, 7, 3, 2, 1, 9, 2, 2, 9, 12, 7, 10, 14, 5, 9, 9, 13, 13, 0, 14, 13, 9, 8, 2, 9, 9, 1, 4, 14, 2, 9, 0, 1, 4, 9, 8, 7, 9, 5, 2, 0, 12, 1, 1, 8, 14, 6, 12, 1, 7, 9, 11, 1, 0, 14, 2, 12, 12, 10, 4, 11, 11, 3, 6, 1, 4, 9, 14, 4, 3, 8, 8, 9, 9, 7, 4, 2, 11, 3, 3, 10, 13, 9, 11, 4, 9, 11, 14, 3, 3, 1, 4, 14, 11, 9, 6, 10, 10, 3, 8, 1, 6, 11, 2, 3, 6, 10, 10, 8, 11, 16, 6, 4, 13, 6, 5, 13, 0, 11, 14, 3, 9, 13, 13, 2, 2, 3, 3, 1, 13, 12, 5, 13, 12, 5, 8, 3, 6, 13, 3, 6, 13, 4, 5, 8, 12, 12, 10, 13, 9, 5, 4, 0, 5, 5, 12, 3, 10, 1, 5, 11, 12, 0, 4, 4, 3, 5, 1, 0, 14, 8, 0, 0, 7, 10, 5, 8, 12, 3, 7, 7, 12, 11, 13, 12, 11, 8, 6, 0, 7, 7, 14, 2, 12, 0, 7, 13, 0, 2, 7, 6, 5, 8, 3, 0, 13, 10, 14, 14, 6, 12, 4, 10, 0, 5, 7, 9, 14, 14, 12, 0, 10, 10, 8, 2, 9, 9, (sequence restarts:) 1, 4, 0, 2, 7, 12, 2, 2, 7, 7, 5, ...
Lehmer Generator

Lehmer generator produces sequence \(\{x_n\} \) defined by relations

\[
0 < x_0 < M, \quad x_0 \text{ coprime to } M.
\]

\[
x_{n+1} = A x_n \mod M, \quad n \geq 0.
\]

Modulus \(M \), seed \(x_0 \), multiplier \(A \).

Example 9

\[
x_0 = 1,
\]

\[
x_{n+1} = 6x_n \mod 13.
\]

\[
\{x_n\} = 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, \ldots
\]

sequence period, length = 12

Example 10

\[
x_0 = 2,
\]

\[
x_{n+1} = 5x_n \mod 13.
\]

\[
\{x_n\} = 2, 10, 11, 3, 2, 10, 11, 3, 2, 10, 11, 3, \ldots
\]

sequence period, length = 4
Lehmer Generator

\[0 < x_0 < M, \quad x_0 \text{ coprime to } M. \]

\[x_{n+1} = Ax_n \mod M, \quad n \geq 0. \]

Fact

The sequence period length is maximal and equal to \(M - 1 \) if

- \(M \) is prime and
- \(A \) is a primitive root of the multiplicative group of integers modulo \(M \),

Primitive root

\(G \) is a primitive root of the multiplicative group of integers modulo \(M \) if

\[\{G, G^2, G^3, \ldots, G^{M-1}\} = \{1, 2, 3, \ldots, M-1\} \]

(all powers are taken modulo \(M \))

Example 11

\(M = 13, \ G = 6, \)

\[\{G, G^2, G^3, \ldots, G^{12}\} = \{6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \]

\(G \) is a primitive root.

\(M = 13, \ G = 2, \)

\[\{G, G^2, G^3, \ldots, G^{12}\} = \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \]

\(G \) is a primitive root.

\(M = 13, \ G = 5, \)

\((G, G^2, G^3, \ldots, G^{12}) = \{5, 12, 8, 1, 5, 12, 8, 1, 5, 12, 8, 1\}, \]

\(G \) is not a primitive root.
Finding group primitive roots

No elementary and effective method is known. Special cases has been studied in detail.

Multiplicative group of integers modulo $M_{31} = 2^{31} - 1 = 2\,147\,483\,647$.

G is a primitive root iff $G \equiv 7^b \pmod{M_{31}}$ where b is coprime to $M_{31} - 1$.

The prime factors $M_{31} - 1$ are $2, 3, 7, 11, 31, 151, 331$.

($M_{31} - 1 = 2 \cdot 3^2 \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331$)

Example 12

$G = 7^5 = 16807$ is a primitive root because 5 is coprime to $M_{31} - 1$.

$G = 7^{1116395447} = 48271$ is a primitive root because 1116395447 is a prime, therefore it is coprime to $M_{31} - 1$.

$G = 7^{1058580763} = 69621$ is a primitive root because $69621 = 19 \cdot 41 \cdot 61 \cdot 22277$ therefore 69621 is coprime to $M_{31} - 1$.
Blum Blum Shub Generator

Blum Blum Shub generator produces sequence \(\{x_n\} \) defined by relations

\[
2 \leq x_0 < M, \quad x_0 \text{ coprime to } M. \\
x_{n+1} = x_n^2 \mod M
\]

Modulus \(M \), seed \(x_0 \).

Seed \(x_0 \) coprime to \(M \).
Modulus \(M \) is a product of two big primes \(P \) and \(Q \).
\(P \mod 4 = Q \mod 4 = 3 \),
gcd(\(\varphi(P-1), \varphi(Q-1) \)) should be small, (cannot be 1).

Example 13 \(x_0 = 4, \; M = 11 \cdot 47, \) \(\gcd(\varphi(10), \varphi(46)) = \gcd(4, 22) = 2, \)
\(x_{n+1} = x_n^2 \mod 517. \)

sequence period, length = 44
Primes related notions

Prime counting function \(\pi(n) \)
Counts the number of prime numbers less than or equal to \(n \).

Example 14
\[
\begin{align*}
\pi(10) &= 4. \text{ Primes less than or equal to 10: 2, 3, 5, 7.} \\
\pi(37) &= 12. \text{ Primes less than or equal to 37: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.} \\
\pi(100) &= 25. \text{ Primes less than or equal to 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.}
\end{align*}
\]

Estimate
\[
\frac{n}{\ln n} < \pi(n) < 1.25506 \frac{n}{\ln n} \quad \text{for } n > 16.
\]

Example 15
\[
\begin{align*}
\frac{100}{\ln 100} < \pi(100) < 1.25506 \frac{100}{\ln 100} \quad &\quad \frac{10^6}{\ln 10^6} < \pi(10^6) < 1.25506 \frac{10^6}{\ln 10^6} \\
21.715 < \pi(100) = 25 < 27.253 \quad &\quad 72382.4 < \pi(10^6) = 78498 < 90844.3
\end{align*}
\]

Limit behaviour
\[
\lim_{n \to \infty} \frac{\pi(n)}{n} = 1
\]
Primes related notions

Euler's totient function $\varphi(n)$
Counts the positive integers less than or equal to n that are relatively prime to n.

Example 16

$n = 21, \varphi(21) = 12.$
coprimes to 21, smaller than 21: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20.

$n = 24, \varphi(24) = 8.$
coprimes to 24, smaller than 24: 1, 5, 7, 11, 13, 17, 19, 23.

Mersenne prime M_n
Mersenne prime M_n is a prime in the form $2^n - 1$, for some $n > 1$.

Example 17

$n = 3, M_3 = 2^3 - 1 = 7,$
$n = 7, M_7 = 2^7 - 1 = 127,$
$n = 31, M_{31} = 2^{31} - 1 = 2147483647.$
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Sieve of Eratosthenes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Sieve of Eratosthenes

A graphical representation of the Sieve of Eratosthenes is shown below.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>
Sieve of Eratosthenes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Sieve of Eratosthenes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Algorithms, A4M33PAL, ZS 20152016, FEL ČVUT
Algorithm

EratosthenesSieve \((n) \)

Let \(A \) be an array of Boolean values, indexed by integers \(2 \) to \(n \), initially all set to \textbf{true}

\begin{algorithmic}
\For {i = 2 \text{ to } \lfloor \sqrt{n} \rfloor}
\If {\(A[i] = \textbf{true} \)}
\For {j = i^2, i^2+i, i^2+2i, i^2+3i, \ldots, \text{not exceeding } n}
\State \(A[i] := \textbf{false} \)
\EndFor
\EndIf
\EndFor
\End

\textbf{output} all \(i \) such that \(A[i] \) is \textbf{true}
\end{algorithmic}

Time complexity: \(O(n \log \log n) \).
Randomized primality tests

General scheme

\[\text{Test} \rightarrow \begin{cases} \text{Composite (definitely)} \\ \text{Prime (most likely)} \end{cases} \]

Fermat (little) theorem

If \(p \) is prime and \(0 < a < p \), then \(a^{p-1} \equiv 1 \pmod{p} \).

Fermat primality test

\[
\text{FermatTest} \ (n, k) \\
\text{for } i = 1 \text{ to } k \\
\quad a = \text{random integer in } [2, n-2] \\
\quad \text{if } a^{n-1} \not\equiv 1 \pmod{n} \text{ then return } \text{Composite} \\
\text{end} \\
\text{return } \text{Prime} \\
\text{end}
\]

Flaw: There are infinitely many composite numbers for which the test always fails. (Carmichael numbers: 561, 1105, 1729, 2465, ...)
Randomized primality tests

Miller-Rabin primality test

Lemma: If p is prime and $x^2 \equiv 1 \pmod{p}$ then $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$.

Let $n > 2$ be prime, $n-1 = 2^r \cdot d$ where d is odd, $1 < a < n-1$.

Then either $a^d \equiv 1 \pmod{n}$ or $a^{2^{s \cdot d}} \equiv -1 \pmod{n}$ for some $0 \leq s \leq r-1$.

MillerRabinTest (n, k)

compute r, d such that d is odd and $2^r \cdot d = n-1$

for $i = 1$ to k // WitnessLoop

$\ a = \text{random integer in } [2, n-2]$
$x = a^d \mod n$
if $x = 1$ or $x = n-1$ then goto EndOfLoop

for $j = 1$ to $r-1$

$x = x^2 \mod n$
if $x = 1$ then return Composite
if $x = n-1$ then goto EndOfLoop

end

return Composite

EndOfLoop:

end

return Prime

end

Examples:

$n = 1105 = 2^4 \cdot 69 + 1$
$a = 389$
$x_0 = 1039$
$x_1 = 1041$
$x_2 = 781$
$x_3 = 1 \rightarrow \text{Composite}$

$n = 1105 = 2^4 \cdot 69 + 1$
$a = 390$
$x_0 = 539$
$x_1 = 1011$
$x_2 = 1101$
$x_3 = 16 \rightarrow \text{Composite}$

$n = 13 = 2^2 \cdot 3 + 1$
$a = 7$
$x_0 = 5$
$x_1 = 12 \equiv -1 \pmod{13}$

WitnessLoop passes
Randomized primality tests

Miller-Rabin primality test

• Time complexity: $O(k \log^3 n)$.
• If n is composite then the test declares n prime with a probability at most 4^{-k}.
• A deterministic variant exists, however it relies on unproven generalized Riemann hypothesis.

AKS primality test

• First known deterministic polynomial-time primality test.
• Agrawal, Kayal, Saxena, 2002 - Gödel Prize in 2006.
• Time complexity: $O(\log^6 n)$.
• The algorithm is of immense theoretical importance, but not used in practice.
Integer factorization

Difficulty of the problem
- No efficient algorithm is known.
- The presumed difficulty is at the heart of widely used algorithms in cryptography (RSA).

Pollard’s rho algorithm
- Effective for a composite number having a small prime factor.

```
PollardRho (n)
  x = y = 2; d = 1
  while d = 1
    x = g(x) mod n
    y = g(g(y)) mod n
    d = gcd (|x-y|, n)
  end
  if d = n return Failure
  else return d
end
```
- $g(x)$.. a suitable polynomial function
- For example, $g(x) = x^2 - 1$
- gcd .. the greatest common divisor
Pollard’s rho algorithm – analysis

- Assume \(n = pq \).
- Values of \(x \) and \(y \) form two sequences \(\{x_k\} \) and \(\{y_k\} \), respectively, where \(y_k = x_{2k} \) for each \(k \). Both sequences enter a cycle. This implies there is \(t \) such that \(y_t = x_t \).
- Sequences \(\{x_k \mod p\} \) and \(\{y_k \mod p\} \) typically enter a cycle of shorter length. If, for some \(s < t \), \(x_s \equiv y_s \pmod{p} \), then \(p \) divides \(|x_s - y_s| \) and the algorithm halts.
- The expected number of iterations is \(O(\sqrt{p}) = O(n^{1/4}) \).

References

