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Google
and the PageRank Algorithm

The first three sections of this chapter make use of linear algebra (diagonalization,
eigenvalues, and eigenvectors) and elementary probability theory (independence of
events and conditional probability). These sections provide the basics and can be cov-
ered in about three hours. Combined, they give a good idea of how the PageRank
algorithm works. Section 9.4 is more advanced, requiring a familiarity with real anal-
ysis (accumulation points and convergence of sequences); this section may be covered
in one or two hours.

9.1 Search Engines

In the digital world, new problems are generally quickly solved by new algorithms or
new hardware. Those who have used the world wide web for more than a few years, say
since 1998, will no doubt remember the search engines provided by Alta Vista and Yahoo.
More than likely, these same people now use Google’s search engine. Surprisingly, among
all the general-purpose search engines, Google rose to its current supremacy in a matter
of months. It did so thanks to its algorithm for ranking search results: the PageRank
algorithm. The goal of this chapter is to describe this algorithm and the mathematical
foundations on which it is built: Markov chains.

Using a search engine is fairly simple. It starts with somebody sitting at a computer
connected to the Internet, and a desire to learn about a particular subject. Suppose,
for example, that he wants to learn about the annual snowfall in Montreal. He decides
to query Google' with the keywords precipitation, snow, Montreal, and century. (Of
these, the last word may seem a little strange. However, the user has chosen this word
to indicate his desire for long-term statistics.) The search engine responds with a brief
list of what it deems to be the best sources of information on the topic (see Figure 9.1).
The horizontal bar at the top of the page indicates that the search was performed in

! Google can be found at http://www.google.com
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Fig. 9.1. A Google search on the keywords precipitation, snow, montreal and century.

less than a tenth of a second, and that around 91,200 potentially relevant pages were
identified. The first is a link to an online database of Canadian climate data, provided
by Environment Canada, which runs the Canadian weather office. (From here we can
learn that the most snow seen since accurate record-keeping began was 384.3 cm in
1954! Thankfully, we also learn that the 30-year average is a little more reasonable, at
217.5 em.) The first search result returned by Google often has quite a good chance of
answering the user’s question. How about the others? As we descend through the list,
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the focus of the results tends to wander, with many documents concerning the Montreal
Protocol on climate change. These later documents are of very little interest to the
user, since they do not speak at all about snow in Montreal. But they are related in
some sense, for they effectively all contain at least three of the four search terms.

This anecdote brings up an important point:? the pages that Google returns first
are often exactly those that satisfy the user’s needs. The search would definitely be
hopeless if the user had to go through the 91,200 pages. The exact keywords entered by
the user will obviously have an impact on the pages returned, but how in general can
Google use a computer to guess the desires of the user?

Automated search tools have been around for a few decades. We can immediately
think of several domains with large bodies of knowledge that need to be efficiently nav-
igated: library catalogs, government registries (births, deaths, taxes) and professional
databases (legal, dental, medical, parts catalogs). These bodies of information all have
a few points in common. First off, they all contain data that lies within a single clearly
defined scope. For example, all the books in a library contain a title, one or more
authors, a publisher, etc. The uniformity of the data to be organized thus makes the
database more easily categorized and more easily searched. The quality of the informa-
tion is also very high. For example, books are normally entered into a library’s catalog
by professionals, and the error rate is thus very low. If and when an error occurs, the
simplicity of the database makes it easy for corrections to be made. The uniformity of
the user’s needs is also an advantage in these systems. The goal of a library catalog
is above all to maintain a concise listing of exactly what books are on hand. Even
though specialized terms may exist (for example in medical or legal databases), the
users are typically professionals in the field and will all be familiar with them. Thus,
these databases may be searched with relative ease by their users. These databases all
evolve relatively slowly. In a library, very few books leave the collection in a year, and
a year that sees 10% growth in the catalog would be rare. Add to this the fact that
the information already in a library catalog is always accurate, and never changes! The
growth rate is therefore relatively slow, and such databases are easily maintained by
humans. Finally, it is easy to achieve a consensus rating on the quality of the items in
the database. In most university faculties, committees guide the purchase of new books
for the library. Moreover, professors guide students directly toward the best books for
their courses.

None of these characteristics exists on the web. The pages on the web have an
immense diversity: technical, professional, promotional, commercial, entertainment, etc.
The quality to be found is also very inconsistent: we can expect to find many spelling
and grammar errors, as well as misinformation (whether these errors are accidental or
otherwise). The users of the web are also as numbered and varied as the pages on the
web, and their familiarity with search engines is extremely variable. The speed at which

2If the user were to repeat this search again today, chances are the results would be vastly
different and in all probability there would be many more returned pages. This is due to the
constantly changing and expanding nature of the world wide web.
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the web evolves is staggering: as of the end of 2005 (when they stopped publishing the
size of their database on their front page), Google was indexing well over 9 billion pages,
with others appearing and disappearing daily. Finally, it seems illusory to establish a
consensus on the relative quality of web pages given their number, their diversity, and
the equally varying interests of the hundreds of millions of users worldwide. It seems
that web pages have nothing in common!

In fact, this is a bit of a lie, since most pages on the web do have something in
common. They are nearly all written in HTML (HyperText Markup Language) or
in some related dialect. And the method in which they are related to each other is
uniform: links between pages are all encoded in the same manner. These links consist
of a few fixed characters preceding the address of the page, otherwise known as its
URL (Uniform Resource Locator). These are precisely the links that a human user may
follow in surfing the web, and which a computer can differentiate from the text, images,
and other elements of a web page. In January 1998, four researchers from Stanford
University, L. Page, S. Brin, R. Motwani, and T. Winograd, proposed an algorithm 3]
for ranking pages on the web. This algorithm, PageRank, does not use the textual or
visual content of the page, but rather the structure of the links between them.?

9.2 The Web and Markov Chains

The web is composed of billions of individual pages, and even more links between them.*
As such, the web can be modeled as a directed graph, where pages are nodes, and links
are directed edges between them. For example, Figure 9.2 represents a (small) web
containing five pages (A, B, C, D, and E). The directed edges between the nodes
indicate that

the only link from page A leads to page B,
page B links to pages A and C,

page C links to pages A, B, and E,

the only link from page D leads to page A, and
page E links to pages B, C, and D.

e o & o o

In order to determine the ranking to be accorded to each of these five pages, we
consider a simple version of the PageRank algorithm. Suppose that an impartial web
surfer navigates through this web by randomly choosing links to follow. When he has
only one choice (for example, if he finds himself on page D), then he will follow that link
(leading to page A in this example). If he finds himself on page C, he will follow the link
to page A one-third of the time and similarly for the links to pages B and E. In other

3The first four letters of PageRank refer to the first author’s last name, and not to pages
of the web.

“When Page et al. published their algorithm in 1998, they estimated the size of the web
as roughly 150 million pages with 1.7 billion links between them. In early 2006, the web was
estimated as containing around 12 billion pages.
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Fig. 9.2. A web of five pages and its links.

words, when he finds himself on a given page, he will randomly choose from among the
outbound links, according each an equal probability. If such a web surfer were left to
crawl the web in such a manner following one link per minute, where would he find
himself in an hour, in two days, or after some large number of jumps? More precisely,
given that his path is determined probabilistically, with what probability would he find
himself on a given page after a given amount of time?

Figure 9.3 answers this question for the first two steps of an impartial web surfer
starting at page C. This page contains three outbound links; thus the web surfer can
end up only on one of the pages A, B, E. Thus, after the first step he would find
himself on page A with probability , on page B with probability 1, and on page E
with probability % This is indicated in the middle column of Figure 9.3 by the three
relations :

sA)=1  pB)=3 HE)=7

Similarly,
p(C)=0 and p(D)=0

indicate that after one step the web surfer could not possibly be on page C or D, since
no links from his previous page can lead him there. Each of the three possible paths
is indicated by its probability of being taken. Furthermore, given that he must stay
within the web, they satisfy

p(A) + p(B) +p(C) + p(D) + p(E) = 1.

The results after the first step are rather simple and predictable. However, even
after only two steps, things begin to get complicated. The third column of Figure 9.3
gives the possible trajectories after a second step. If the web surfer was on A after the
first step, he would be guaranteed to be on B after a second step. Since he had been
on A with probability %, this path contributes % to the probability of being on B after
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P(A)=0 P(A)=1/3 P(A)=1/6
1/3x1/2
3 1/3x1
p(B)=0 P(B)=1/3 P(B)=1/3+1/9=4/9
3 1/3x1/3
1/3x1/2
p(O=1 p(O=0 P(O=1/6+1/9=5/18
1/3x1/3
p(D)=0 p(D)=0 P(D)=1/9
1/3x1/3
173
p(E)=0 P(E)=1/3 p(E)=0
start step 1 step 2

Fig. 9.3. The first two steps of an impartial web surfer starting at page C.

a second step. However, p(B) does not equal % after the second step, since there is
another independent path that could lead him there: ¢! — E — B. If the web surfer
found himself on page E after the first step, he could choose (with equal probability)
from the three links leading to pages B, C, and D. Each of these paths contributes
3 X 3 = § to the probabilities p(B), p(C), and p(D) after the second step. Although
there are more possibilities and the attached probabilities are more complicated, the
end result is relatively simple. After two steps, the web surfer finds himself on a given
page with the following probabilities:

=5 aB)=3 HO=3 wD)=i aE)=0

Again, we see that these probabilities satisfy
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p(A) +p(B) +p(C) +p(D) +p(E) = %*3*%*%“’

3+8+5+2+0 _

1.
18

At this point, the method should seem clear, and we could continue to calculate the
probabilities after a few more steps. However, it is useful to formalize this impartial
walk through the web. The tool best suited to this job is the theory of Markov chains.

A random process {Xn,n = 0,1,2,3,...} is a family of random variables parame-
terized by the integer n. We assume that each of these random variables X,, takes its
values from a finite set 7. In the example of the impartial web surfer, T" is the set of
pages in the web: T = {A, B,C, D, E}. For each step n € {0,1,2,...}, the position
of the web surfer is X,,. Sticking to the language of random processes, we determined
earlier the probabilities of the possible outcomes for X; and X, assuming that the walk
started from C. This can be rephrased as a conditional probability P(I|J), which gives
the probability that event I occurs given that event J has already occurred. For exam-
ple, P(X; = A|Xo = C) gives the probability of the web surfer finding himself on page
A at step 1 after having been on page C at the beginning (step 0). Thus

1 1
PXi=AXo=C) =3, p(X1=BlXo=C)=3, p(Xi=ClXo=0C)=0,
1
p(X1=D|Xo=C)=0, p(Xi=E|Xo=C)=3,

and

1
P(X2=A|X0=C)=gy p(Xa=B|Xo=C)=-, p(X2=C|Xo=C)=—

1
p(Xa=DlXo=C) =35, p(Xa=E|Xo=C)=0.

O =

The random walk followed by the impartial web surfer possesses the defining property
of Markov chains. First off, we will define Markov chains.

Definition 9.1 Let {X,,n=0,1,2,3,...} be a random process taking its values from
the set T = {A,B,C,...}. We say that {X,} is a Markov chain if the probability
P(X, =1), i€ T, depends only on the value of the process at the previous step, X,-1,
and not on any of the preceding steps, Xn_o,Xpn_3,... . We define N < 00 as the
number of elements in T'.

In the example of the impartial web surfer, the random variables are the positions X,
after n steps. In thinking back to our earlier calculations we notice that in calculating
the probabilities after the first step, P(X), we used only the starting point. Similarly, in
calculating the probabilities after the second step, P(X3), we used only the probabilities
from the first step. This property of being able to calculate P(X,) using only the
information from P(X,_) is the defining property of Markov chains. Are all random
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processes Markov chains? Certainly not. It takes only a slight change to the rules of
our impartial web surfer in order to lose the Markov property. Suppose that we want to
prevent the web surfer from ever returning immediately to the page where he came from.
For example, after the first step, our web surfer found himself on pages A, B, and E
with equal probability. He cannot return to page C from page A, but he could possibly
do so from pages B and E. Thus, we could prevent the web surfer from following the
links to page C from pages B and E. Under these new rules, the web surfer would
have only a single choice when arriving at page B from page C (he would have to go
to page A), and he would be reduced to two choices at page E (either page B or page
D). In prohibiting the web surfer from following links to its previous page we have
lost the Markov property: the process has memory. In fact, in order to determine the
probabilities P(X;) we need to know not only the probabilities at step 1, but also the
page (or pages) where the web surfer was at the start (step zero). The rules that we
originally defined are thus rather special in a mathematical sense: Markov chains have
no memory of past states, and the future state is completely determined by the current
state.

Markov chains are unique in that their behavior may be entirely characterized by
their initial state (p(C) = 1 in the example of Figure 9.3) and a transition matriz given
by

P(Xn =1i| Xno1 = J) = pij. (9.1)

A matrix P is a Markov chain transition matrix if and only if

piy €01 foralli,je€T and Y py=1 foralljeT. (9.2)
€T

For our impartial web surfer, the elements p;; of the transition matrix P represent
the probabilities of finding himself at page i € T when he is coming from page j€T.
However, our rules force the surfer to choose with equal probability from among the
available links. Thus, if page j offers m links, then column j of P will contain ; in the
rows corresponding to the m linked pages, and 0 in the remaining rows. The transition
matrix for the simple web in Figure 9.2 is thus given by

A B C D E
0 3 % 1 0 A
|t 0o 3 o 1 B
P=19 3 0 0 % C (8:)
o 0 o o 1! D
0 0 } 0 0 E

The columns of P indicate possible destinations: from page E the web surfer may
proceed to pages B, C, and D. Similarly, the nonzero entries in rows indicate possible
origins: the single nonzero entry in the fourth row indicates that we may arrive at page
D only from page E.
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What exactly does the second constraint of (9.2) mean? To clarify, we rewrite it
with the help of the transition matrix defined in (9.1):

Y opii=) p(Xa=i| Xa1=j) =1,

€T i€T

which may be read as follows: if at step n — 1 the system is in state j (at page j € T'),
then the probability of being in any possible state at step n is 1. Stated even more
simply, this means that a web surfer on a given page at step n — 1 must certainly find
himself still in the web at step n. Thus, the constraint is actually rather simple.

This formalization has several advantages. The operation of matrix multiplication
suffices to reproduce the multitude of tedious calculations performed as we followed the
web surfer through his first two steps. As before, we assume that the web crawler starts
at page C. Thus

p(Xo = A) 0
p(Xo = B) 0
P’=|pX=0C)|=]1
p(Xo = D) 0
p(Xo = E) 0

The probability vector p! after the first step is given by p' = Pp°, and therefore

p(X; = A) 0o 1 % 1 0\ /0 %
Pl=lpi=0)|=fo 3 0 o Ff|1j=]0f,

p(X1 = D) o 0 0 0 3]|0 0

p(X1 =E) 0o 0 3 0 0/\0 3

the same as we calculated before. In the same manner, applying the transformation
matrix again yields p? = Pp'; the probability vector after the second step is therefore

p(Xo = A) 0o 1 % 1 0 % é
pP=|pX2=C)|=f0 § 0 o0 il 101=]%
p(Xo = E) o o % o0 0/\3 0

The same method may be followed to calculate the probability vector after any
number of steps: p* = Pp"~!, or alternatively,

n o__ n—1 _ n-2y _ .. 0 — nO.
p" = Pp" ! = P(Pp"~%) = PP.---Pp’ =P'p
n times

The constraints of (9.2) on the transition matrix P result in several properties of
Markov chains that are very important for the PageRank algorithm.
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This first property we will examine can be seen by taking several powers of the
transition matrix P. The powers P4, P8, P16 and P32, rounded to three decimal places,
are given by

0.333 0.296 0.204 0.167 0.420 0.265 0.313 0.294 0.323 0.279

0.222 0.463 0.531 0.667 0.160 0.420 0.360 0.409 0.372 0.381
P4=10.389 0.111 0.160 0.000 0.370 |, P®=]0.217 0.233 0.191 0.201 0.252 |,

0.056 0.000 0.031 0.000 0.019 0.031 0.022 0.018 0.012 0.035

0.000 0.130 0.074 0.167 0.031 0.067 0.072 0.088 0.092 0.052

0.294 0.291 0.293 0.291 0.294 0.293 0.293 0.293 0.293 0.293

0.388 0.392 0.389 0.391 0.391 0.390 0.390 0.390 0.390 0.390

P16 — 10220 0.219 0.221 0.221 0.218 |, P32 = {0.220 0.220 0.220 0.220 0.220

0.024 0.025 0.025 0.025 0.024 0.024 0.024 0.024 0.024 0.024

0.074 0.073 0.072 0.072 0.074 0.073 0.073 0.073 0.073 0.073

We observe that P™ seems to converge to a constant matrix as m increases. As it turns
out, this is not just by luck, but rather it is a property of most Markov chain transition
matrices.

Property 9.2 The transition matriz P of a Markov chain has at least one eigenvalue
equal to 1.

PROOF: Recall that the eigenvalues of a matrix are always equal to the eigenvalues of
its transpose. This is a result of the fact that both matrices share the same characteristic
polynomial:

Ape(N) = det(A — Pt) = det(M — P)! = det(Al — P) = Ap()),

which itself follows from the fact that the determinant of a matrix is equal to that of
its transpose. It is simple to find an eigenvector of Pt. Let u = (1,1,...,1)". Then
Pty = u. In fact, expanding the matrix multiplication directly, we see that

n

n
(Ptu); = Z[P‘].-,uj N Zp,-i -1,  since all u; are 1,
j=1 j=1

=1,
by (9.2). O
Property 9.3 If A is an eigenvalue of an n x n transition matric P, then |\ < 1.

Furthermore, there exists an eigenvector associated to the eigenvalue A = 1 with all
nonnegative entries.
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This property is a direct result of a theorem attributed to Frobenius. Although the
proof relies only on elementary linear algebra and analysis, it is far from simple. We
will explore this proof in Section 9.4.

Hypotheses Before we continue, we will state three hypotheses that we will assume
from now on.

(i) First off, we will suppose that there is exactly one eigenvalue such that [A] = 1, and
therefore by Property 9.2 this eigenvalue is 1.

(ii) Next, we will suppose that this eigenvalue is not degenerate, which is to say that
the associated eigensubspace has dimension 1.

(iii) Finally, we will take for granted that the transition matrix P representing the web
is diagonalizable, meaning that its eigenvectors form a basis.

The first two hypotheses are not actually true for all transition matrices, and it is
in fact possible to construct valid transition matrices that violate both of them (see
the exercises). However, these remain reasonable hypotheses for transition matrices
generated by large webs. The third hypothesis is there to simplify the following result.

Property 9.4 1. If the transition matriz P of a Markov chain satisfies the three hy-
potheses above, then there exists a unigque vector m such that the entries m; = P(X,, =
i),1 € T, satisfy

T 2> 0, Ty = Zp,‘jﬂ']’, and EW" =1
JET €T

We will call the vector 7 the stationary regime of the Markov chain.
2. Regardless of the initial point p{ = P(Xo = i) (where .00 = 1), the distribution of
probabilities P(X,, = i) will converge to the stationary regime m asn — oo.

PROOF: The first point simply repeats the fact that P has a single eigenvector with
eigenvalue 1 whose components sum to 1. In fact, the defining equation for the stationary
regime is simply 7 = Pm. In other words, 7 is the eigenvector of P associated with
the nondegenerate eigenvalue 1. Property 2 tells us that 7 is composed of nonnegative
entries. Since an eigenvector is always nonzero, the sum of its entries must be strictly
positive. By renormalizing this vector we can therefore always ensure that ), m = L.

To show the second point we rewrite the initial state vector p® in terms of the basis
formed by the eigenvectors of P. We index the eigenvalues of P as follows: 1 = A; >
[A2| > [As] = -+ > |An|. Hypotheses (i) and (ii) tell us that the first inequality in this
ordering is strict (that is, the absolute value of A; is strictly larger than that of A\2),
while hypothesis (iii) assures us that the eigenvectors of P form a basis for the space
of dimension N where P acts. (For this last step, the eigenvalues must be counted
with their multiplicities.) Let v; be the eigenvector associated with the eigenvalue A;.
Furthermore, assume that v; has been normalized such that v; = 7. The set {v;,1 € T}
forms a basis, allowing us to write
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N
PO = z Q04
i=1

where the a; are the coefficients of p° in this basis.

We will show that the coefficient a; is always 1. For this, we will make use of the
vector ut = (1,1,...,1) that was introduced in the discussion of Property 1. If v; is an
eigenvector of P with eigenvalue A; (which is to say that Pv; = Aiv;), then the matrix
product uf Pv; can be simplified in two ways. The first yields

ut Pv; = (utP)y; = utvy,

and the second,

ut Pv; = ut(Pv;) = \u'tv;.
These two expressions must be equal by the associativity of matrix multiplication. For
i > 2, the eigenvalue \; is not 1, and the equality can only hold if utv; = 0, which
expands as

N
uly; = E(v,—)j =0,
i=1

where (v;); represents the jth coordinate of the vector v;. This condition states that
the sums of the coordinates of the vectors v;,i > 2, must all be zero. If we now sum the
components of p°, we get 1 by hypothesis (Z:V:l p? =1). Thus

N N

N N N
=30 =3 D elw; = ) e (w0,
j=1 =1 7

j=1li=1 i=1 j=1
N N
= E (vl)j=a127r, =a.
j=1 j=1

(To obtain the second inequality we used the expression p® written in the basis of the
eigenvectors. For the fourth, we used the fact that the sums of the coefficients of the v;
are all zero-valued except for v;.)

To obtain the behavior after m steps, repeatedly apply the transition matrix P (m
times) starting from the initial state p%:

N N N N
0 _ - -
Pmp’ = g ajP™u; = E a;jAT'vj = ajv; + E Afajv; =7+ E AT a;v;.
i=1 =1 = e

Thus, the distance between the state at the mth step, P™yY and the stationary regime
T is
2
N

[P — | = || A (a5v5)
j=2
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The sum on the right-hand side is a sum over the fixed vectors a;v; whose coefficients
diminish exponentially like AT*. (Recall that the Xj,j > 2, all have length less than 1.)
This sum is finite, and therefore converges to zero as m — oo. Thus, pm =P -7
as m — 00. a

Return to our impartial web surfer. The properties of Markov chains can be inter-
preted as saying that if the impartial web surfer continues to crawl through the web
long enough, he will find himself on each of the pages with a probability that approaches
those given by the stationary regime , where 7 is the normalized eigenvector associated
with eigenvalue 1.

We are now ready to make the connection between the vector 7 and the PageRank
ordering of pages.

Definition 9.5 (1) The score given to page i in the (simplified) PageRank algorithm
is the corresponding coefficient m; from the vector .
(2) We sort the pages based on their PageRank scores, with the largest coming first.

The initial example with the web of five pages (Figure 9.2) allows us to obtain an
understanding of this score. The norms |A;| of the eigenvalues of the associated matrix
P are 1 with multiplicity 1, and 0.70228 and 0.33563 each with multiplicity 2. Only
the eigenvalue 1 is a real number. The eigenvector associated with the eigenvalue 1 is
(12,16,9,1,3), which, when normalized, yields

2
6

p—

r=—19
41 1
3

This tells us that given a sufficiently long walk, the impartial web surfer would visit
page B the most often, with 16 out of 41 steps leading to it. Similarly, he would nearly
completely ignore page D, visiting it once per 41 steps on average.

What is the final order given to the pages? Page B is ranked number 1, which means
that it is the most important page. Page A is ranked second, followed by pages C, E,
and finally, the least important, page D.

There is an another way in which PageRank scores may be interpreted: each page
gives its PageRank score to all of the pages it links to. Return to the vector m =
(12 16 9 L 3) Page D is linked to only once, from page E. Since E has a score
of % and three outbound links that must share this value, D receives a final score of
one-third that of E, ﬁ. Three pages point to page B: pages A, C, and E. The three
pages have respective scores of i—?, %, and %. Page A has only one outgoing link, while
pages C and E have three each. Thus, the score of page B is

12,1 9 1 3 16

Bl 4 SR
score (B)=1-+3 ¥y @g=a
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Why does the order implied by the PageRank scores give a reasonable ordering of the
pages on the web? Mostly because it entrusts the users of the web itself to make the
decisions as to which pages are better than others. Similarly, it ignores completely what
the creator thinks of the importance of his own page. Moreover, the effect is cumulative.
An important page that links to a few other pages can “transmit” its importance to
these other pages. Thus, users display their confidence by linking to certain pages, and
by doing so they transmit part of their score to these pages in the PageRank algorithm.
This phenomenon has been named “collaborative trust” by the PageRank inventors.

9.3 An Improved PageRank

The algorithm described in the last section is not quite useable as is. There are two
rather evident difficulties that must first be overcome.

The first is the existence of pages that have no outgoing links. The absence of links
may come from the fact that Google’s web-spider has not yet indexed the destinations
of the links, or that the page simply does not have any links. Thus, the impartial web
crawler that arrives at this page would be forever caught there. One way of avoiding
this problem is simply to ignore such pages, and remove them (and all the links leading
to them) from the web. The stationary regime may then be calculated. After this is
done, it is possible to assign scores to these pages by “transmitting” importance from
all of the pages that link to them, as discussed at the end of the previous section:

1
23"

where [; is the number of links issued by the ith page leading to the dead-end page,
and r; is the calculated importance of the ith page. The next problem shows that this
somewhat crude approach offers only a partial solution.

The second difficulty resembles the first, but it is not quite so easy to fix. An example
is depicted in the web of Figure 9.4. The web consists of the five pages from our original
example, plus two others that are connected to the original web by a single link from
page D. We saw in the last section that the impartial web surfer did not spend much
time on page D. However, all the same, he did occasionally visit it, spending 37 of his
time there. What happens in this new modified web? Each time the web surfer visits
page D he will choose to go to page A half of the time, while the other half of the
time he will choose page F. If he chooses the latter option, then he can never return
to the original pages A, B, C, D, or E. It is not surprising then that the stationary
regime 7 of this new web is 7 = (0,0,0,0,0,1, ). In other words, the pages F and
G “absorb” all of the importance that should have been divided up among the other
pages! (Watch out! In this example, (—1) is also an eigenvalue of P, which means
that P™ no longer approaches the matrix with columns m as n — c0.) Can we solve
this problem as before, by simply removing the offending pages from the web? This is
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Fig. 9.4. A web of seven pages.

oS

not really the best approach, because in the real world, parts of the graph that act in
such a manner may themselves consist of thousands of pages that must also be ranked.
Additionally, we can easily imagine that any impartial web surfer caught in such a loop
(F—-G— F — G — ---) would grow bored and decide to visit another part of the
web at random. Thus, the inventors of the PageRank algorithm suggest adding to P a
matrix Q that represents the “taste” of the impartial web surfer. The matrix @ would
itself be a transition matrix, and the final transition matrix used in calculations would
be

P'=pBP+(1-p)Q, B e 0,1].

Note that P’ is itself a transition matrix: the coefficients of each column in P’ still
sum to 1. (Exercise!) The balance between the “taste” of the web surfer (represented
by the matrix Q) and the structure of the web itself (represented by the matrix P)is
controlled by the parameter 3. When 3 = 1 the tastes of the web surfer are ignored, and
the structure of the web may again cause certain pages to absorb all of the importance.
Similarly, when 8 = 0 the tastes of the web surfer dominate, and the manner in which
the web surfer visits pages has absolutely no relation to the structure of the web itself.

But how does Google guess the tastes of the web surfer? In other words, how do
they choose the matrix Q? In the PageRank algorithm the matrix @ is chosen in the
most democratic way possible. They give each page in the web an equal probability of
transition. If the web consists of N pages, then every element of the matrix @ will be
ﬁ: gij = 7},— This means that if the web surfer finds himself stuck in the pair of pages
(F, @) from Figure 9.4 he has a probability ?, x (1 — f) of escaping at each step. In
their original paper, the inventors of PageRank suggested a value of 3 = 0.85, forcing
the impartial web surfer to ignore the links of the page and choose his next destination

using his “taste” roughly 3 times out of 20.
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This variation on the algorithm from the previous section, with the matrix Q and
the parameter f3, is the final algorithm that the inventors called PageRank. Several of
its properties will be explored in the exercises.

The PageRank algorithm first proposed by academics has since been patented. Two
of the inventors, Sergey Brin and Larry Page, founded the company Google in 1998,
while they were both still in their twenties. Since this time, Google has gone public and
is openly traded on the stock market. It is thus difficult to know what changes and
improvements have been made to the algorithm, since it has fallen under commercial
secrecy. We can piece together a few bits of information, however. PageRank is one
of the algorithms for ranking web pages, but it is probably not the only one, or many
small changes might have been brought to the original algorithm. Google claims to
catalog approximately 10 billion web pages, so we can imagine that the number N of
rows in the matrix P is of the same order. Thus, in order to determine the PageRank
of each of these pages, they must calculate an eigenvector of an N x N matrix, where
N =~ 10,000,000,000. But solving the equation 7 = Pm (or more precisely 7 = P'r),
where P is a 1010 x 10'© matrix is not an easy task. In fact, according to C. Moler, the
founder of Matlab, it might be one of the largest matrix problems done by computers.
(For an up-to-date discussion of search engines and particularly PageRank (as of 2006),
see [2].) This task is probably done monthly. What is the algorithm used? Is the matrix
(I = P) row-reduced first? Or is 7 obtained by the repeated application P™p® of P on
some set of initial conditions p° (power method)? Or is it by an algorithm targeting first
subsets of pages of the web that are connected by many links (method of aggregation)?
It seems that the two latter methods are natural for the problem. But the exact details
of improvements to PageRank and its computation since the founding of Google remain
secret.’

The sequence of events (invention of the PageRank algorithm, dissemination of the
original article, granting of the patent, creation of Google, widespread adoption of the
Google search engine, ...) was optimal: on one side, the scientific community was made
aware of the details of the algorithm, and on the other, the founders of Google had
several months to get their company started and to reap the rewards of their invention.
In knowing the basic details, researchers (with the exception of those that work for
Google directly and are shrouded in corporate secrecy) can freely discuss improvements
to the algorithm and its finer points, for example, how to efficiently take into account
personal user preferences, how to benefit from pages that are strongly linked to each
other, and how to restrict searches to a particular domain of human activity.

5Search requests made to Google are filled by a cluster of roughly 22,000 computers (as
of December 2003) working with the help of the Linux operating system. Response times are
rarely greater than a haif-second!
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9.4 The Frobenius Theorem

In order to describe and demonstrate the Frobenius theorem, we need to introduce the
notion of matrices with nonnegative elements.® We will distinguish three cases. If P is
an n x n matrix, then we say that

e P>0ifpy; >0foralll<i,j<mn
e P >0if P >0 and at least one of the p;; is positive;
e P>»0ifp;;>0foralll<ij<n.

We will use the same notation for vectors z € R™. Finally, the notation 2 > y signifies
that  —y > 0. These “inequalities” are likely not very familiar. To help clarify we
present a few simple examples of their use. To begin, if P > 0 and z > y, then it follows
that Pz > Py. This is due to the fact that since (z —y) > 0 and P 2 0, the matrix
product P(z — y) consists only of sums of nonnegative elements. Therefore the entries
of the vector P(z — y) = Pz — Py are nonnegative, and finally Pz > Py. The second
example is proved similarly and left as an exercise: if P > 0 and = > y, then Pz > Py.

Fig. 9.5. Three points of view of the simplex created by the vectors z = (a,b,c). The plane
a+b+c =1 is represented by the white square, while the simplex (a,b,c > 0) is represented
by the gray triangle.

When P > 0 we may define a set A C R of points A that satisfy the following

property: there exists a vector = = (2,22, ... ,Tp) such that
Z zj=1, z >0, and Pz > Az (9.4)
1<j<n

For example, if n = 3, the condition z > 0 places the point z = (a,b,c) in the octant
whose points consist of nonnegative coordinates. At the same time, the constraint
a+b+c = 1 describes a plane surface. Thus the point z is constrained to the intersection
of these two sets, as depicted in Figure 9.5. In this figure the octant is depicted by the

SRecall that “nonnegative” means “positive or zero.”
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three axes, and the plane is depicted by a white square. The intersection of the two is
depicted by a gray triangle. In the case of finite dimension n, the constructed object
is called a simplex. (What does this simplex look like for n = 27 And for n = 47
Exercise!) The most important property of the simplex is that it is a compact set,
in other words, it is both closed and bounded. For each point in the simplex we can
calculate Pz, which, by our earlier observation, satisfies Pz > 0. Thus it is possible to
find \ > 0 such that Pz > Az. (It can also happen that A = 0; for example if P = (3}
and z = (9), then Pz = (§) = A(9) can hold only when A = 0.)

Proposition 9.6 Let A\g = supycp A Then Ao < co. Moreover, if P> 0, then Ag > 0.

PROOF: Suppose that M = max; ; pi;, the largest element of the matrix P. Then for
all z that satisfy 3, 2; = 1 and z > 0, we have that

(Pz)i = Z pij&; < Z Mz; = M, for all 4.

1<<n - 1€j<n

Since at least one of the entries of z, call it z;, must satisfy z; > ’:Z) the condition
Pz > Az thus requires that M > (Pz); > Azi > /\%. Since this holds for all A € A, we
have that Ao = supy A < Mn. Suppose further that P > 0, and let m = min;; p;; be
the smallest element of P. Then for z = (%, %, il %) we have that (Pz); = Ej pij% >
(mn)% = (mn)z; and therefore Pz > (mn)z and Ag > mn > 0. O
Theorem 9.7 (Frobenius) Let P >0 and Mg be as defined above.

(a) Ao is an eigenvalue of P and it is possible to choose an associated eigenvector z0

such that z° > 0;
- (b) if X is another eigenvalue of P, then [A| < Ao.

Proor:” (a) We will prove this statement in two steps, (al) and (a2).

(al) If P> 0 then there exists 2 > 0 such that Pz = \gz®.
To prove this first statement we consider a sequence {\i < Xo,t € N} of elements from
A that converges to Ao, and the associated vectors z( 4 € N, which satisfy (9.4):

Z x;i) =i RORS 0, and P > )\il'(i)‘

1<j<n

Since the points z(¥ all belong to the compact simplex, it must contain an accumulation
point, and we may choose a subsequence {x("i)}, with ny < ng < - -, that is convergent
to this point. Let z° be the limit of this subsequence:

lim (™) = 20
1— 00

"The proof given here is that of Karlin and Taylor, presented in [1].
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Note that 20 is itself in the simplex and therefore satisfies Y, 29 = 1 and 2% > 0.

Finally, since P(z(™) — \;z(™)) > 0, we have that Pz® > )\ozo We will now show
that Pz9 = \gz®. Suppose that P:c° > Aoz. Since P > 0, by multiplying both sides
of Pz% > X\z® by P and defining y° = Px°, we obtain that Py® > Aoy°. (Exercise:
work through the details of this step.) Since this inequality is strlct for all entries, there
exists an ¢ > 0 such that Py® > (Ao + €)y°. By normalizing y° such that > y] =1
we can deduce that A\g + ¢ € A and that A\g cannot be the supremum: a contradlctlon
Thus it must be that Pz® = X\gz°. Since P > 0 and z° > 0, we have that Pz° > 0. In
other words, Aoz > 0, and finally z° > 0 since \g > 0.

(a2) If P > 0 then there exists z° > 0 such that Pz® = Aoz,

Consider an n X n matrix £ whose entries are all 1. Observe that if z > 0 then
(Bz); = 3 % > z; for all i, and therefore Ez > z. If P >0, then (P + §E) > 0 for
all § > 0, a.nd (al) can be applied to this matrix. Let 6y > 6; > 0, and let z € R™ be
such that >0 and 35, 2; =1. If (P + 5, E)x > Az, we have that

(P4 6:E)z = (P + 61 E)z + (62 — 61) Bz > Mz + (82 — b1)z,

and therefore the function \g(8) whose existence is predicted by applying (al) to the
matrix (P + 6E) is an increasing function of §. Moreover, Ao(0) is the Ao associated
with the matrix P. Construct a decreasing positive sequence {d;,i € N} converging to
0. By (al) it is possible to find the z(6;) satisfying (P + 6; E)z(d;) = Ao(d:)z(d;), where

z(8;) > 0 and 3, 2;(6;) = 1. Since all of these vectors lie within the described simplex,
there exists a subsequence {6n;} such that z(én‘) converges toward an accumulation
point z°. This vector must satisfy z° > 0 and 3 z) = 1. Let X be the limit of Ao(dn,)-
Since the sequence §; is decreasing and Ag(d) is an 1ncrea.smg function, A" > Ag(0) = Ao.
Since P + 6n, E — P and (P + 6p, E)2(65,) = Xo(0n;)z(0n,), taking the limit of both
sides yields Pz® = X'z°, and by the definition of Xg, it must be that N < Xo. Hence
A = \g, completing the proof of (a).

(b) Let A # Ao be another eigenvalue of P, and z an associated nonzero eigenvector.
Then Pz = Az, which is to say

= Z Pijzj = Az;.

1<j<n
In taking the norm of both sides we get
Mlal =] Y pisz| < Y pislal
1<j<n 1<j<n

and therefore
Plz| 2 |All2],
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where |z| = (|z1],|22],-- -, |2nl|)- By normalizing |2| appropriately, we can ensure that it
lies in the simplex and therefore |A| € A. Hence, by the definition of Ao, it follows that
Al < Ao O

Corollary 9.8 If P is a Markov chain transition matriz, then \g = 1.

PrOOF: Consider @ = P*. Then }°.g;; =1 for all i. Since P > 0, we have also that
@ > 0. By part (a) of the Frobenius theorem there exist Ay and zo (where z° > 0 and
2.; %9 = 1) such that Qz® = Aoz°. Since z° > 0, the largest entry of z°, call it zJ, is
positive and satisfies

Xz = (Qz%) = Z qrszy < Z Qrjzd = 9.

1<j<n 1<j<n

From this we may deduce that A\g < 1. Property 9.2 showed that 1 is an eigenvalue
of P (and of Q as well) and therefore A9 > 1, from which the desired result follows
immediately. O

Property 9.3 follows directly from the Frobenius theorem and Corollary 9.8.

9.5 Exercises

(a) For the web given in Figure 9.2, use the transition matrix to calculate the prob-
abilities of the impartial web surfer being on pages A, B, C, D, and E after his third
step. Compare these results to the stationary regime 7 for this transition matrix.

(b) What are the probabilities of being on the pages A, B, C, D, and E after the first
step if the impartial web surfer starts at page E7 What about after the second step?

(a) Let

P= (1;“ 1fb) with a,b € [0, 1).
Show that P is a Markov chain transition matrix.

(b) Calculate the eigenvalues of P as a function of (a,b). (One of the two eigenvalues
must be 1 by Property 9.2.)

(¢) Which values for a and b lead to a second eigenvalue A satisfying |A| = 17 Draw
the corresponding webs.

(a) Give the transition matrix P associated with the web shown in Figure 9.6.

(b) Show that the three eigenvalues of P have absolute values of 1.

(c) Find (or better yet, intuit) the page ranking that would be assigned by the sim-
plified PageRank algorithm.
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A

Fig. 9.6. The circular web of Exercises 3 and 4.

Fig. 9.7. The web of Exercise 5, with two pairs connected by a single link.

Note: We remark that this web does not satisfy hypothesis (z), which was used to obtain
Property 9.4.

For the web shown in Figure 9.6, an impartial web surfer starts at page A at step n = 1.
Can you give the probabilities P(X, = A), P(X,, = B), and P(X, =C) for all n?

(a) Consider the web illustrated in Figure 9.7. Intuitively, which of the pairs of pages,
(A, B) or (C, D), will be given a greater rank by the simplified PageRank algorithm?
(b) Find the page ranking assigned by the simplified PageRank algorithm.

(c) Find the stationary regime of the transition matrix used by the full PageRank
algorithm: P’ = (1 — §)E 4+ BP. The matrix E is a 4 x 4 matrix in which all entries
are %. For which value of 3 will the impartial web surfer spend one-third of his time
visiting the pair (C, D)?

(a) Find the transition matrix representing the web shown in Figure 9.8.
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(b) Assume that at step n, the probabilities of being on each page are equal: P(X, =
A) = P(X, = B) = P(X, = C) = P(Xn, = Z) = 1. What is the probability of being
on page Z at step n+ 17

(c) Calculate the stationary regime « of this transition matrix. Will an impartial web
surfer spend more time on page A or on page Z?

JON

Fig. 9.8. A web of four pages, for Exercise 6.

Consider the web of Figure 9.9.

(a) Write out the associated Markov chain transition matrix.

(b) If we start on page B, what is the probability that we will be on page A after 2
steps?

(¢) If we start on page B, what is the probability that we will be on page D after 3
steps?

(d) Calculate the stationary regime for this web, and the rank of each page using the
simplified PageRank algorithm. Which page is the most important?

This exercise aims to show that hypothesis (ii), used in obtaining Property 9.4, does
not always hold.

(a) Suppose that there are two “parallel” webs in existence. That is, two extremely
large webs that never link to each other. Consider the transition matrix for these two
webs taken together. This matrix will have a peculiar form. What is it?

(b) Show that the transition matrix P of this pair of parallel webs possesses two
distinct eigenvectors with eigenvalue 1.

(a) Write a program, in Maple, Mathematica, or Matlab for example, that when given
n will calculate a random vector (z1, %3, ...,,) satisfying

z€[0,1] forallieT and Y z=1
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z

Fig. 9.9. The web for exercise 7

(Most modern programming languages offer functionality for generating pseudorandom
numbers.)

(b) Extend your program to compute a random n x n matrix P such that each column
of P sums to 1.

(c) Extend your program to calculate P™ when given an integer m.

(d) Generate several reasonably large matrices P (10 x 10, 20 x 20, or even bigger)
and check whether the hypotheses of Property 9.4 hold. (Remark: If you are using a
language like C, Fortran, or Java, you will have to find a library or write your own code
to compute eigenvectors and eigenvalues. Such libraries can be difficult to integrate and
use, and writing the code yourself is even harder. As such, you may prefer to use a
mathematical computing package like Maple, Mathematica, or Matlab, which natively
includes such functionality.) .

(e) For a given random matrix P generated as above, at what value of m are all
the columns of P™ approximately equal? Start by defining a reasonable criterion for
“approximately equal.”

(a) Imagine that you are a slightly villainous businessman who runs an online business.
Propose some strategies for ensuring that your site will be assigned a higher importance
by the PageRank algorithm.

(b) Now imagine that you are a young and ambitious researcher working for Google.
Your job is to outflank the villainous businessmen of the world by preventing them from
obtaining artificially inflated PageRank scores. Propose some strategies for countering
their ploys.

Note: The original article [3] by Page et al. includes some discussion on the potential
impact of commercial interests.



	heaD
	pageRank265
	pageRank266
	pageRank267
	pageRank268
	pageRank269
	pageRank270
	pageRank271
	pageRank272
	pageRank273
	pageRank274
	pageRank275
	pageRank276
	pageRank277
	pageRank278
	pageRank279
	pageRank280
	pageRank281
	pageRank282
	pageRank283
	pageRank284
	pageRank285
	pageRank286
	pageRank287

