
28 Matrix Operations

Because operations on matrices lie at the heart of scientific computing, efficient al-
gorithms for working with matrices have many practical applications. This chapter
focuses on how to multiply matrices and solve sets of simultaneous linear equa-
tions. Appendix D reviews the basics of matrices.
Section 28.1 shows how to solve a set of linear equations using LUP decomposi-

tions. Then, Section 28.2 explores the close relationship between multiplying and
inverting matrices. Finally, Section 28.3 discusses the important class of symmetric
positive-definite matrices and shows how we can use them to find a least-squares
solution to an overdetermined set of linear equations.
One important issue that arises in practice is numerical stability. Due to the

limited precision of floating-point representations in actual computers, round-off
errors in numerical computations may become amplified over the course of a com-
putation, leading to incorrect results; we call such computations numerically un-
stable. Although we shall briefly consider numerical stability on occasion, we do
not focus on it in this chapter. We refer you to the excellent book by Golub and
Van Loan [144] for a thorough discussion of stability issues.

28.1 Solving systems of linear equations

Numerous applications need to solve sets of simultaneous linear equations. We
can formulate a linear system as a matrix equation in which each matrix or vector
element belongs to a field, typically the real numbersR. This section discusses how
to solve a system of linear equations using a method called LUP decomposition.
We start with a set of linear equations in n unknowns x1; x2; : : : ; xn:



814 Chapter 28 Matrix Operations

a11x1 C a12x2 C � � � C a1nxn D b1 ;

a21x1 C a22x2 C � � � C a2nxn D b2 ;

:::

an1x1 C an2x2 C � � � C annxn D bn :

(28.1)

A solution to the equations (28.1) is a set of values for x1; x2; : : : ; xn that satisfy
all of the equations simultaneously. In this section, we treat only the case in which
there are exactly n equations in n unknowns.
We can conveniently rewrite equations (28.1) as the matrix-vector equation˙
a11 a12 � � � a1n
a21 a22 � � � a2n
:::

:::
: : :

:::

an1 an2 � � � ann

�˙
x1
x2
:::

xn

�
D

˙
b1
b2
:::

bn

�

or, equivalently, letting A D .aij /, x D .xi /, and b D .bi /, as

Ax D b : (28.2)

If A is nonsingular, it possesses an inverse A�1, and

x D A�1b (28.3)

is the solution vector. We can prove that x is the unique solution to equation (28.2)
as follows. If there are two solutions, x and x 0, then Ax D Ax 0 D b and, letting I
denote an identity matrix,

x D Ix

D .A�1A/x

D A�1.Ax/

D A�1.Ax 0/

D .A�1A/x 0

D x 0 :

In this section, we shall be concerned predominantly with the case in which A
is nonsingular or, equivalently (by Theorem D.1), the rank of A is equal to the
number n of unknowns. There are other possibilities, however, which merit a brief
discussion. If the number of equations is less than the number n of unknowns—or,
more generally, if the rank of A is less than n—then the system is underdeter-
mined. An underdetermined system typically has infinitely many solutions, al-
though it may have no solutions at all if the equations are inconsistent. If the
number of equations exceeds the number n of unknowns, the system is overdeter-
mined, and there may not exist any solutions. Section 28.3 addresses the important



28.1 Solving systems of linear equations 815

problem of finding good approximate solutions to overdetermined systems of linear
equations.
Let us return to our problem of solving the system Ax D b of n equations in n

unknowns. We could compute A�1 and then, using equation (28.3), multiply b

by A�1, yielding x D A�1b. This approach suffers in practice from numerical
instability. Fortunately, another approach—LUP decomposition—is numerically
stable and has the further advantage of being faster in practice.

Overview of LUP decomposition

The idea behind LUP decomposition is to find three n � n matrices L, U , and P
such that

PA D LU ; (28.4)

where

� L is a unit lower-triangular matrix,

� U is an upper-triangular matrix, and

� P is a permutation matrix.

We call matrices L, U , and P satisfying equation (28.4) an LUP decomposition
of the matrix A. We shall show that every nonsingular matrix A possesses such a
decomposition.
Computing an LUP decomposition for the matrix A has the advantage that we

can more easily solve linear systems when they are triangular, as is the case for
both matrices L and U . Once we have found an LUP decomposition for A, we
can solve equation (28.2), Ax D b, by solving only triangular linear systems, as
follows. Multiplying both sides of Ax D b by P yields the equivalent equation
PAx D Pb, which, by Exercise D.1-4, amounts to permuting the equations (28.1).
Using our decomposition (28.4), we obtain

LUx D Pb :

We can now solve this equation by solving two triangular linear systems. Let us
define y D Ux, where x is the desired solution vector. First, we solve the lower-
triangular system

Ly D Pb (28.5)

for the unknown vector y by a method called “forward substitution.” Having solved
for y, we then solve the upper-triangular system

Ux D y (28.6)



816 Chapter 28 Matrix Operations

for the unknown x by a method called “back substitution.” Because the permu-
tation matrix P is invertible (Exercise D.2-3), multiplying both sides of equa-
tion (28.4) by P �1 gives P �1PA D P �1LU , so that

A D P �1LU : (28.7)

Hence, the vector x is our solution to Ax D b:

Ax D P �1LUx (by equation (28.7))

D P �1Ly (by equation (28.6))

D P �1Pb (by equation (28.5))

D b :

Our next step is to show how forward and back substitution work and then attack
the problem of computing the LUP decomposition itself.

Forward and back substitution

Forward substitution can solve the lower-triangular system (28.5) in ‚.n2/ time,
given L, P , and b. For convenience, we represent the permutation P compactly
by an array �Œ1 : : n�. For i D 1; 2; : : : ; n, the entry �Œi� indicates that Pi;�Œi � D 1

and Pij D 0 for j ¤ �Œi�. Thus, PA has a�Œi�;j in row i and column j , and Pb
has b�Œi� as its i th element. Since L is unit lower-triangular, we can rewrite equa-
tion (28.5) as

y1 D b�Œ1� ;

l21y1 C y2 D b�Œ2� ;

l31y1 C l32y2 C y3 D b�Œ3� ;

:::

ln1y1 C ln2y2 C ln3y3 C � � � C yn D b�Œn� :

The first equation tells us that y1 D b�Œ1�. Knowing the value of y1, we can
substitute it into the second equation, yielding

y2 D b�Œ2� � l21y1 :

Now, we can substitute both y1 and y2 into the third equation, obtaining

y3 D b�Œ3� � .l31y1 C l32y2/ :

In general, we substitute y1; y2; : : : ; yi�1 “forward” into the i th equation to solve
for yi :



28.1 Solving systems of linear equations 817

yi D b�Œi� �
i�1X
jD1

lijyj :

Having solved for y, we solve for x in equation (28.6) using back substitution,
which is similar to forward substitution. Here, we solve the nth equation first and
work backward to the first equation. Like forward substitution, this process runs
in ‚.n2/ time. Since U is upper-triangular, we can rewrite the system (28.6) as

u11x1 C u12x2 C � � � C u1;n�2xn�2 C u1;n�1xn�1 C u1nxn D y1 ;

u22x2 C � � � C u2;n�2xn�2 C u2;n�1xn�1 C u2nxn D y2 ;

:::

un�2;n�2xn�2 C un�2;n�1xn�1 C un�2;nxn D yn�2 ;

un�1;n�1xn�1 C un�1;nxn D yn�1 ;

un;nxn D yn :

Thus, we can solve for xn; xn�1; : : : ; x1 successively as follows:

xn D yn=un;n ;

xn�1 D .yn�1 � un�1;nxn/=un�1;n�1 ;

xn�2 D .yn�2 � .un�2;n�1xn�1 C un�2;nxn//=un�2;n�2 ;
:::

or, in general,

xi D
 
yi �

nX
jDiC1

uijxj

!
=ui i :

Given P , L, U , and b, the procedure LUP-SOLVE solves for x by combining
forward and back substitution. The pseudocode assumes that the dimension n ap-
pears in the attribute L:rows and that the permutation matrix P is represented by
the array � .

LUP-SOLVE.L;U; �; b/

1 n D L:rows
2 let x be a new vector of length n
3 for i D 1 to n
4 yi D b�Œi� �

Pi�1
jD1 lijyj

5 for i D n downto 1
6 xi D

�
yi �

Pn

jDiC1 uijxj
�
=ui i

7 return x



818 Chapter 28 Matrix Operations

Procedure LUP-SOLVE solves for y using forward substitution in lines 3–4, and
then it solves for x using backward substitution in lines 5–6. Since the summation
within each of the for loops includes an implicit loop, the running time is ‚.n2/.
As an example of these methods, consider the system of linear equations defined

by�
1 2 0

3 4 4

5 6 3

�
x D

�
3

7

8

�
;

where

A D
�
1 2 0

3 4 4

5 6 3

�
;

b D
�
3

7

8

�
;

and we wish to solve for the unknown x. The LUP decomposition is

L D
�

1 0 0

0:2 1 0

0:6 0:5 1

�
;

U D
�
5 6 3

0 0:8 �0:6
0 0 2:5

�
;

P D
�
0 0 1

1 0 0

0 1 0

�
:

(You might want to verify that PA D LU .) Using forward substitution, we solve
Ly D Pb for y:�

1 0 0

0:2 1 0

0:6 0:5 1

��
y1
y2
y3

�
D
�
8

3

7

�
;

obtaining

y D
�

8

1:4

1:5

�
by computing first y1, then y2, and finally y3. Using back substitution, we solve
Ux D y for x:



28.1 Solving systems of linear equations 819�
5 6 3

0 0:8 �0:6
0 0 2:5

��
x1
x2
x3

�
D
�

8

1:4

1:5

�
;

thereby obtaining the desired answer

x D
� �1:4

2:2

0:6

�
by computing first x3, then x2, and finally x1.

Computing an LU decomposition

We have now shown that if we can create an LUP decomposition for a nonsingular
matrix A, then forward and back substitution can solve the system Ax D b of
linear equations. Now we show how to efficiently compute an LUP decomposition
for A. We start with the case in which A is an n � n nonsingular matrix and P is
absent (or, equivalently, P D In). In this case, we factor A D LU . We call the
two matrices L and U an LU decomposition of A.
We use a process known as Gaussian elimination to create an LU decomposi-

tion. We start by subtracting multiples of the first equation from the other equations
in order to remove the first variable from those equations. Then, we subtract mul-
tiples of the second equation from the third and subsequent equations so that now
the first and second variables are removed from them. We continue this process
until the system that remains has an upper-triangular form—in fact, it is the ma-
trix U . The matrix L is made up of the row multipliers that cause variables to be
eliminated.
Our algorithm to implement this strategy is recursive. We wish to construct an

LU decomposition for an n � n nonsingular matrix A. If n D 1, then we are done,
since we can choose L D I1 and U D A. For n > 1, we break A into four parts:

A D

˙
a11 a12 � � � a1n
a21 a22 � � � a2n
:::

:::
: : :

:::

an1 an2 � � � ann

�

D
�
a11 wT

� A0

�
;

where � is a column .n � 1/-vector, wT is a row .n � 1/-vector, and A0 is an
.n � 1/ � .n � 1/ matrix. Then, using matrix algebra (verify the equations by



820 Chapter 28 Matrix Operations

simply multiplying through), we can factor A as

A D
�
a11 wT

� A0

�

D
�

1 0

�=a11 In�1

��
a11 wT

0 A0 � �wT=a11

�
: (28.8)

The 0s in the first and second matrices of equation (28.8) are row and col-
umn .n � 1/-vectors, respectively. The term �wT=a11, formed by taking the
outer product of � and w and dividing each element of the result by a11, is an
.n � 1/ � .n � 1/ matrix, which conforms in size to the matrix A0 from which it is
subtracted. The resulting .n � 1/ � .n � 1/ matrix

A0 � �wT=a11 (28.9)

is called the Schur complement of A with respect to a11.
We claim that if A is nonsingular, then the Schur complement is nonsingular,

too. Why? Suppose that the Schur complement, which is .n � 1/ � .n � 1/, is
singular. Then by Theorem D.1, it has row rank strictly less than n � 1. Because
the bottom n � 1 entries in the first column of the matrix�
a11 wT

0 A0 � �wT=a11

�
are all 0, the bottom n � 1 rows of this matrix must have row rank strictly less
than n � 1. The row rank of the entire matrix, therefore, is strictly less than n.
Applying Exercise D.2-8 to equation (28.8), A has rank strictly less than n, and
from Theorem D.1 we derive the contradiction that A is singular.
Because the Schur complement is nonsingular, we can now recursively find an

LU decomposition for it. Let us say that

A0 � �wT=a11 D L0U 0 ;

where L0 is unit lower-triangular and U 0 is upper-triangular. Then, using matrix
algebra, we have

A D
�

1 0

�=a11 In�1

��
a11 wT

0 A0 � �wT=a11

�

D
�

1 0

�=a11 In�1

��
a11 wT

0 L0U 0

�

D
�

1 0

�=a11 L0

��
a11 wT

0 U 0

�
D LU ;

thereby providing our LU decomposition. (Note that because L0 is unit lower-
triangular, so is L, and because U 0 is upper-triangular, so is U .)



28.1 Solving systems of linear equations 821

Of course, if a11 D 0, this method doesn’t work, because it divides by 0. It also
doesn’t work if the upper leftmost entry of the Schur complement A0 � �wT=a11
is 0, since we divide by it in the next step of the recursion. The elements by
which we divide during LU decomposition are called pivots, and they occupy the
diagonal elements of the matrix U . The reason we include a permutation matrix P
during LUP decomposition is that it allows us to avoid dividing by 0. When we use
permutations to avoid division by 0 (or by small numbers, which would contribute
to numerical instability), we are pivoting.
An important class of matrices for which LU decomposition always works cor-

rectly is the class of symmetric positive-definite matrices. Such matrices require
no pivoting, and thus we can employ the recursive strategy outlined above with-
out fear of dividing by 0. We shall prove this result, as well as several others, in
Section 28.3.
Our code for LU decomposition of a matrix A follows the recursive strategy, ex-

cept that an iteration loop replaces the recursion. (This transformation is a standard
optimization for a “tail-recursive” procedure—one whose last operation is a recur-
sive call to itself. See Problem 7-4.) It assumes that the attribute A:rows gives
the dimension of A. We initialize the matrix U with 0s below the diagonal and
matrix L with 1s on its diagonal and 0s above the diagonal.

LU-DECOMPOSITION.A/

1 n D A:rows
2 let L and U be new n � n matrices
3 initialize U with 0s below the diagonal
4 initialize L with 1s on the diagonal and 0s above the diagonal
5 for k D 1 to n
6 ukk D akk
7 for i D k C 1 to n
8 lik D aik=ukk // lik holds �i
9 uki D aki // uki holds wT

i

10 for i D k C 1 to n
11 for j D k C 1 to n
12 aij D aij � likukj
13 return L and U

The outer for loop beginning in line 5 iterates once for each recursive step. Within
this loop, line 6 determines the pivot to be ukk D akk. The for loop in lines 7–9
(which does not execute when k D n), uses the � and wT vectors to update L
and U . Line 8 determines the elements of the � vector, storing �i in lik, and line 9
computes the elements of the wT vector, storing wT

i in uki . Finally, lines 10–12
compute the elements of the Schur complement and store them back into the ma-



822 Chapter 28 Matrix Operations

2 3 1 5

6 13 5 19

2 19 10 23

4 10 11 31

(a)

3 1 5

3 4 2 4

1 16 9 18

2 4 9 21

(b)

2 3 1 5

3 2 4

1 4 1 2

2 1 7 17

(c)

2 3 1 5

3 4 2 4

1 4 2

2 1 7 3

(d)

(e)

2

4

1

�
2 3 1 5

6 13 5 19

2 19 10 23

4 10 11 31

˘
D

�
1 0 0 0

3 1 0 0

1 4 1 0

2 1 7 1

˘ �
2 3 1 5

0 4 2 4

0 0 1 2

0 0 0 3

˘
A L U

Figure 28.1 The operation of LU-DECOMPOSITION. (a) The matrix A. (b) The element a11 D 2

in the black circle is the pivot, the shaded column is �=a11, and the shaded row is wT. The elements
of U computed thus far are above the horizontal line, and the elements of L are to the left of the
vertical line. The Schur complement matrix A0 � �wT=a11 occupies the lower right. (c) We now
operate on the Schur complement matrix produced from part (b). The element a22 D 4 in the black
circle is the pivot, and the shaded column and row are �=a22 and wT (in the partitioning of the Schur
complement), respectively. Lines divide the matrix into the elements of U computed so far (above),
the elements of L computed so far (left), and the new Schur complement (lower right). (d) After the
next step, the matrix A is factored. (The element 3 in the new Schur complement becomes part of U
when the recursion terminates.) (e) The factorization A D LU .

trix A. (We don’t need to divide by akk in line 12 because we already did so when
we computed lik in line 8.) Because line 12 is triply nested, LU-DECOMPOSITION
runs in time ‚.n3/.
Figure 28.1 illustrates the operation of LU-DECOMPOSITION. It shows a stan-

dard optimization of the procedure in which we store the significant elements of L
and U in place in the matrix A. That is, we can set up a correspondence between
each element aij and either lij (if i > j ) or uij (if i � j ) and update the ma-
trix A so that it holds both L and U when the procedure terminates. To obtain
the pseudocode for this optimization from the above pseudocode, just replace each
reference to l or u by a; you can easily verify that this transformation preserves
correctness.

Computing an LUP decomposition

Generally, in solving a system of linear equations Ax D b, we must pivot on off-
diagonal elements of A to avoid dividing by 0. Dividing by 0 would, of course,
be disastrous. But we also want to avoid dividing by a small value—even if A is



28.1 Solving systems of linear equations 823

nonsingular—because numerical instabilities can result. We therefore try to pivot
on a large value.
The mathematics behind LUP decomposition is similar to that of LU decom-

position. Recall that we are given an n � n nonsingular matrix A, and we wish
to find a permutation matrix P , a unit lower-triangular matrix L, and an upper-
triangular matrix U such that PA D LU . Before we partition the matrix A, as we
did for LU decomposition, we move a nonzero element, say ak1, from somewhere
in the first column to the .1; 1/ position of the matrix. For numerical stability, we
choose ak1 as the element in the first column with the greatest absolute value. (The
first column cannot contain only 0s, for then A would be singular, because its de-
terminant would be 0, by Theorems D.4 and D.5.) In order to preserve the set of
equations, we exchange row 1 with row k, which is equivalent to multiplying A by
a permutation matrixQ on the left (Exercise D.1-4). Thus, we can writeQA as

QA D
�
ak1 wT

� A0

�
;

where � D .a21; a31; : : : ; an1/
T, except that a11 replaces ak1; wT D .ak2; ak3;

: : : ; akn/; and A0 is an .n�1/�.n�1/matrix. Since ak1 ¤ 0, we can now perform
much the same linear algebra as for LU decomposition, but now guaranteeing that
we do not divide by 0:

QA D
�
ak1 wT

� A0

�

D
�

1 0

�=ak1 In�1

��
ak1 wT

0 A0 � �wT=ak1

�
:

As we saw for LU decomposition, if A is nonsingular, then the Schur comple-
ment A0 � �wT=ak1 is nonsingular, too. Therefore, we can recursively find an
LUP decomposition for it, with unit lower-triangular matrix L0, upper-triangular
matrix U 0, and permutation matrix P 0, such that

P 0.A0 � �wT=ak1/ D L0U 0 :

Define

P D
�
1 0

0 P 0

�
Q ;

which is a permutation matrix, since it is the product of two permutation matrices
(Exercise D.1-4). We now have



824 Chapter 28 Matrix Operations

PA D
�
1 0

0 P 0

�
QA

D
�
1 0

0 P 0

��
1 0

�=ak1 In�1

��
ak1 wT

0 A0 � �wT=ak1

�

D
�

1 0

P 0�=ak1 P 0

��
ak1 wT

0 A0 � �wT=ak1

�

D
�

1 0

P 0�=ak1 In�1

��
ak1 wT

0 P 0.A0 � �wT=ak1/

�

D
�

1 0

P 0�=ak1 In�1

��
ak1 wT

0 L0U 0

�

D
�

1 0

P 0�=ak1 L0

��
ak1 wT

0 U 0

�
D LU ;

yielding the LUP decomposition. Because L0 is unit lower-triangular, so is L, and
because U 0 is upper-triangular, so is U .
Notice that in this derivation, unlike the one for LU decomposition, we must

multiply both the column vector �=ak1 and the Schur complement A0 � �wT=ak1
by the permutation matrix P 0. Here is the pseudocode for LUP decomposition:

LUP-DECOMPOSITION.A/

1 n D A:rows
2 let �Œ1 : : n� be a new array
3 for i D 1 to n
4 �Œi� D i

5 for k D 1 to n
6 p D 0

7 for i D k to n
8 if jaikj > p

9 p D jaikj
10 k0 D i

11 if p == 0
12 error “singular matrix”
13 exchange �Œk� with �Œk0�
14 for i D 1 to n
15 exchange aki with ak0i

16 for i D k C 1 to n
17 aik D aik=akk
18 for j D k C 1 to n
19 aij D aij � aikakj



28.1 Solving systems of linear equations 825

Like LU-DECOMPOSITION, our LUP-DECOMPOSITION procedure replaces
the recursion with an iteration loop. As an improvement over a direct implemen-
tation of the recursion, we dynamically maintain the permutation matrix P as an
array � , where �Œi� D j means that the i th row of P contains a 1 in column j .
We also implement the code to compute L and U “in place” in the matrix A. Thus,
when the procedure terminates,

aij D
(
lij if i > j ;

uij if i � j :

Figure 28.2 illustrates how LUP-DECOMPOSITION factors a matrix. Lines 3–4
initialize the array � to represent the identity permutation. The outer for loop
beginning in line 5 implements the recursion. Each time through the outer loop,
lines 6–10 determine the element ak0k with largest absolute value of those in the
current first column (column k) of the .n � k C 1/ � .n � k C 1/ matrix whose
LUP decomposition we are finding. If all elements in the current first column are
zero, lines 11–12 report that the matrix is singular. To pivot, we exchange �Œk0�
with �Œk� in line 13 and exchange the kth and k0th rows of A in lines 14–15,
thereby making the pivot element akk. (The entire rows are swapped because in
the derivation of the method above, not only is A0� �wT=ak1 multiplied by P 0, but
so is �=ak1.) Finally, the Schur complement is computed by lines 16–19 in much
the same way as it is computed by lines 7–12 of LU-DECOMPOSITION, except that
here the operation is written to work in place.
Because of its triply nested loop structure, LUP-DECOMPOSITION has a run-

ning time of ‚.n3/, which is the same as that of LU-DECOMPOSITION. Thus,
pivoting costs us at most a constant factor in time.

Exercises

28.1-1
Solve the equation�

1 0 0

4 1 0

�6 5 1

��
x1
x2
x3

�
D
�

3

14

�7

�
by using forward substitution.

28.1-2
Find an LU decomposition of the matrix�

4 �5 6

8 �6 7

12 �7 12

�
:



826 Chapter 28 Matrix Operations

2 0 2 0.6

3 3 4 –2

5 5 4 2

–1 –2 3.4 –1

(a)

1

2

3

4

2 0 2 0.6

3 3 4 –2

5 5 4 2

–1 –2 3.4 –1

(b)

3

2

1

4

0.4 –2 0.4 –.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(c)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(d)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(e)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(f)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(g)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(h)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 0.4 –3

5 5 4 2

–0.2 0.5 4 –0.5

(i)

3

2

1

4

(j)

�
0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

˘ �
2 0 2 0:6

3 3 4 �2
5 5 4 2

�1 �2 3:4 �1

˘
D

�
1 0 0 0

0:4 1 0 0

�0:2 0:5 1 0

0:6 0 0:4 1

˘ �
5 5 4 2

0 �2 0:4 �0:2
0 0 4 �0:5
0 0 0 �3

˘
P A L U

Figure 28.2 The operation of LUP-DECOMPOSITION. (a) The input matrix A with the identity
permutation of the rows on the left. The first step of the algorithm determines that the element 5
in the black circle in the third row is the pivot for the first column. (b) Rows 1 and 3 are swapped
and the permutation is updated. The shaded column and row represent � and wT. (c) The vector �
is replaced by �=5, and the lower right of the matrix is updated with the Schur complement. Lines
divide the matrix into three regions: elements of U (above), elements of L (left), and elements of the
Schur complement (lower right). (d)–(f) The second step. (g)–(i) The third step. No further changes
occur on the fourth (final) step. (j) The LUP decomposition PA D LU .



28.2 Inverting matrices 827

28.1-3
Solve the equation�
1 5 4

2 0 3

5 8 2

��
x1
x2
x3

�
D
�
12

9

5

�
by using an LUP decomposition.

28.1-4
Describe the LUP decomposition of a diagonal matrix.

28.1-5
Describe the LUP decomposition of a permutation matrix A, and prove that it is
unique.

28.1-6
Show that for all n � 1, there exists a singular n�n matrix that has an LU decom-
position.

28.1-7
In LU-DECOMPOSITION, is it necessary to perform the outermost for loop itera-
tion when k D n? How about in LUP-DECOMPOSITION?

28.2 Inverting matrices

Although in practice we do not generally use matrix inverses to solve systems of
linear equations, preferring instead to use more numerically stable techniques such
as LUP decomposition, sometimes we need to compute a matrix inverse. In this
section, we show how to use LUP decomposition to compute a matrix inverse.
We also prove that matrix multiplication and computing the inverse of a matrix
are equivalently hard problems, in that (subject to technical conditions) we can
use an algorithm for one to solve the other in the same asymptotic running time.
Thus, we can use Strassen’s algorithm (see Section 4.2) for matrix multiplication
to invert a matrix. Indeed, Strassen’s original paper was motivated by the problem
of showing that a set of a linear equations could be solved more quickly than by
the usual method.


