The Fibonacci heap data structure serves a dual purpose. First, it supports a set of operations that constitutes what is known as a “mergeable heap.” Second, several Fibonacci-heap operations run in constant amortized time, which makes this data structure well suited for applications that invoke these operations frequently.

Mergeable heaps

A **mergeable heap** is any data structure that supports the following five operations, in which each element has a **key**:

- **MAKE-HEAP()** creates and returns a new heap containing no elements.
- **INSERT(H, x)** inserts element **x**, whose key has already been filled in, into heap **H**.
- **MINIMUM(H)** returns a pointer to the element in heap **H** whose key is minimum.
- **EXTRACT-MIN(H)** deletes the element from heap **H** whose key is minimum, returning a pointer to the element.
- **UNION(H_1, H_2)** creates and returns a new heap that contains all the elements of heaps **H_1** and **H_2**. Heaps **H_1** and **H_2** are “destroyed” by this operation.

In addition to the mergeable-heap operations above, Fibonacci heaps also support the following two operations:

- **DECREASE-KEY(H, x, k)** assigns to element **x** within heap **H** the new key value **k**, which we assume to be no greater than its current key value.\(^1\)
- **DELETE(H, x)** deletes element **x** from heap **H**.

---

\(^1\)As mentioned in the introduction to Part V, our default mergeable heaps are mergeable min-heaps, and so the operations MINIMUM, EXTRACT-MIN, and DECREASE-KEY apply. Alternatively, we could define a **mergeable max-heap** with the operations MAXIMUM, EXTRACT-MAX, and INCREASE-KEY.
Chapter 19  Fibonacci Heaps

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Binary heap (worst-case)</th>
<th>Fibonacci heap (amortized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$\Theta(\lg n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$\Theta(\lg n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$\Theta(\lg n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$\Theta(\lg n)$</td>
<td>$O(\lg n)$</td>
</tr>
</tbody>
</table>

Figure 19.1  Running times for operations on two implementations of mergeable heaps. The number of items in the heap(s) at the time of an operation is denoted by $n$.

As the table in Figure 19.1 shows, if we don’t need the UNION operation, ordinary binary heaps, as used in heapsort (Chapter 6), work fairly well. Operations other than UNION run in worst-case time $O(\lg n)$ on a binary heap. If we need to support the UNION operation, however, binary heaps perform poorly. By concatenating the two arrays that hold the binary heaps to be merged and then running BUILD-MIN-HEAP (see Section 6.3), the UNION operation takes $\Theta(n)$ time in the worst case.

Fibonacci heaps, on the other hand, have better asymptotic time bounds than binary heaps for the INSERT, UNION, and DECREASE-KEY operations, and they have the same asymptotic running times for the remaining operations. Note, however, that the running times for Fibonacci heaps in Figure 19.1 are amortized time bounds, not worst-case per-operation time bounds. The UNION operation takes only constant amortized time in a Fibonacci heap, which is significantly better than the linear worst-case time required in a binary heap (assuming, of course, that an amortized time bound suffices).

**Fibonacci heaps in theory and practice**

From a theoretical standpoint, Fibonacci heaps are especially desirable when the number of EXTRACT-MIN and DELETE operations is small relative to the number of other operations performed. This situation arises in many applications. For example, some algorithms for graph problems may call DECREASE-KEY once per edge. For dense graphs, which have many edges, the $\Theta(1)$ amortized time of each call of DECREASE-KEY adds up to a big improvement over the $\Theta(\lg n)$ worst-case time of binary heaps. Fast algorithms for problems such as computing minimum spanning trees (Chapter 23) and finding single-source shortest paths (Chapter 24) make essential use of Fibonacci heaps.
19.1 Structure of Fibonacci heaps

From a practical point of view, however, the constant factors and programming complexity of Fibonacci heaps make them less desirable than ordinary binary (or $k$-ary) heaps for most applications, except for certain applications that manage large amounts of data. Thus, Fibonacci heaps are predominantly of theoretical interest. If a much simpler data structure with the same amortized time bounds as Fibonacci heaps were developed, it would be of practical use as well.

Both binary heaps and Fibonacci heaps are inefficient in how they support the operation **SEARCH**; it can take a while to find an element with a given key. For this reason, operations such as **DECREASE-KEY** and **DELETE** that refer to a given element require a pointer to that element as part of their input. As in our discussion of priority queues in Section 6.5, when we use a mergeable heap in an application, we often store a handle to the corresponding application object in each mergeable-heap element, as well as a handle to the corresponding mergeable-heap element in each application object. The exact nature of these handles depends on the application and its implementation.

Like several other data structures that we have seen, Fibonacci heaps are based on rooted trees. We represent each element by a node within a tree, and each node has a **key** attribute. For the remainder of this chapter, we shall use the term “node” instead of “element.” We shall also ignore issues of allocating nodes prior to insertion and freeing nodes following deletion, assuming instead that the code calling the heap procedures deals with these details.

Section 19.1 defines Fibonacci heaps, discusses how we represent them, and presents the potential function used for their amortized analysis. Section 19.2 shows how to implement the mergeable-heap operations and achieve the amortized time bounds shown in Figure 19.1. The remaining two operations, **DECREASE-KEY** and **DELETE**, form the focus of Section 19.3. Finally, Section 19.4 finishes a key part of the analysis and also explains the curious name of the data structure.

19.1 Structure of Fibonacci heaps

A **Fibonacci heap** is a collection of rooted trees that are **min-heap ordered**. That is, each tree obeys the **min-heap property**: the key of a node is greater than or equal to the key of its parent. Figure 19.2(a) shows an example of a Fibonacci heap.

As Figure 19.2(b) shows, each node $x$ contains a pointer $x.p$ to its parent and a pointer $x.child$ to any one of its children. The children of $x$ are linked together in a circular, doubly linked list, which we call the **child list** of $x$. Each child $y$ in a child list has pointers $y.left$ and $y.right$ that point to $y$’s left and right siblings, respectively. If node $y$ is an only child, then $y.left = y.right = y$. Siblings may appear in a child list in any order.
Circular, doubly linked lists (see Section 10.2) have two advantages for use in Fibonacci heaps. First, we can insert a node into any location or remove a node from anywhere in a circular, doubly linked list in $O(1)$ time. Second, given two such lists, we can concatenate them (or “splice” them together) into one circular, doubly linked list in $O(1)$ time. In the descriptions of Fibonacci heap operations, we shall refer to these operations informally, letting you fill in the details of their implementations if you wish.

Each node has two other attributes. We store the number of children in the child list of node $x$ in $x\.degree$. The boolean-valued attribute $x\.mark$ indicates whether node $x$ has lost a child since the last time $x$ was made the child of another node. Newly created nodes are unmarked, and a node $x$ becomes unmarked whenever it is made the child of another node. Until we look at the DECREASE-KEY operation in Section 19.3, we will just set all $mark$ attributes to FALSE.

We access a given Fibonacci heap $H$ by a pointer $H\.min$ to the root of a tree containing the minimum key; we call this node the **minimum node** of the Fibonacci heap.
heap. If more than one root has a key with the minimum value, then any such root may serve as the minimum node. When a Fibonacci heap \( H \) is empty, \( H \cdot \text{min} \) is NIL.

The roots of all the trees in a Fibonacci heap are linked together using their left and right pointers into a circular, doubly linked list called the root list of the Fibonacci heap. The pointer \( H \cdot \text{min} \) thus points to the node in the root list whose key is minimum. Trees may appear in any order within a root list.

We rely on one other attribute for a Fibonacci heap \( H \): \( H \cdot n \), the number of nodes currently in \( H \).

### Potential function

As mentioned, we shall use the potential method of Section 17.3 to analyze the performance of Fibonacci heap operations. For a given Fibonacci heap \( H \), we indicate by \( t(H) \) the number of trees in the root list of \( H \) and by \( m(H) \) the number of marked nodes in \( H \). We then define the potential \( \Phi(H) \) of Fibonacci heap \( H \) by

\[
\Phi(H) = t(H) + 2m(H).
\]

(We will gain some intuition for this potential function in Section 19.3.) For example, the potential of the Fibonacci heap shown in Figure 19.2 is \( 5 + 2 \cdot 3 = 11 \). The potential of a set of Fibonacci heap is the sum of the potentials of its constituent Fibonacci heaps. We shall assume that a unit of potential can pay for a constant amount of work, where the constant is sufficiently large to cover the cost of any of the specific constant-time pieces of work that we might encounter.

We assume that a Fibonacci heap application begins with no heaps. The initial potential, therefore, is 0, and by equation (19.1), the potential is nonnegative at all subsequent times. From equation (17.3), an upper bound on the total amortized cost provides an upper bound on the total actual cost for the sequence of operations.

### Maximum degree

The amortized analyses we shall perform in the remaining sections of this chapter assume that we know an upper bound \( D(n) \) on the maximum degree of any node in an \( n \)-node Fibonacci heap. We won’t prove it, but when only the mergeable-heap operations are supported, \( D(n) \leq \lfloor \lg n \rfloor \). (Problem 19-2(d) asks you to prove this property.) In Sections 19.3 and 19.4, we shall show that when we support \textsc{decrease-key} and \textsc{delete} as well, \( D(n) = O(\lg n) \).
19.2 Mergeable-heap operations

The mergeable-heap operations on Fibonacci heaps delay work as long as possible. The various operations have performance trade-offs. For example, we insert a node by adding it to the root list, which takes just constant time. If we were to start with an empty Fibonacci heap and then insert \( k \) nodes, the Fibonacci heap would consist of just a root list of \( k \) nodes. The trade-off is that if we then perform an \texttt{EXTRACT-MIN} operation on Fibonacci heap \( H \), after removing the node that \( H.min \) points to, we would have to look through each of the remaining \( k - 1 \) nodes in the root list to find the new minimum node. As long as we have to go through the entire root list during the \texttt{EXTRACT-MIN} operation, we also consolidate nodes into min-heap-ordered trees to reduce the size of the root list. We shall see that, no matter what the root list looks like before a \texttt{EXTRACT-MIN} operation, afterward each node in the root list has a degree that is unique within the root list, which leads to a root list of size at most \( D(n) + 1 \).

Creating a new Fibonacci heap

To make an empty Fibonacci heap, the \texttt{MAKE-FIB-HEAP} procedure allocates and returns the Fibonacci heap object \( H \), where \( H.n = 0 \) and \( H.min = \text{NIL} \); there are no trees in \( H \). Because \( t(H) = 0 \) and \( m(H) = 0 \), the potential of the empty Fibonacci heap is \( \Phi(H) = 0 \). The amortized cost of \texttt{MAKE-FIB-HEAP} is thus equal to its \( O(1) \) actual cost.

Inserting a node

The following procedure inserts node \( x \) into Fibonacci heap \( H \), assuming that the node has already been allocated and that \( x.key \) has already been filled in.

\begin{verbatim}
\textbf{FIB-HEAP-INSERT}(H, x)
1  x.degree = 0
2  x.p = NIL
3  x.child = NIL
4  x.mark = FALSE
5  if H.min == NIL
6      create a root list for H containing just x
7  else insert x into H’s root list
8      if x.key < H.min.key
9          H.min = x
10     H.n = H.n + 1
\end{verbatim}
19.2 Mergeable-heap operations

Lines 1–4 initialize some of the structural attributes of node \( x \). Line 5 tests to see whether Fibonacci heap \( H \) is empty. If it is, then lines 6–7 make \( x \) be the only node in \( H \)'s root list and set \( H.min \) to point to \( x \). Otherwise, lines 8–10 insert \( x \) into \( H \)'s root list and update \( H.min \) if necessary. Finally, line 11 increments \( H.n \) to reflect the addition of the new node. Figure 19.3 shows a node with key 21 inserted into the Fibonacci heap of Figure 19.2.

To determine the amortized cost of \textsc{Fib-Heap-Insert}, let \( H \) be the input Fibonacci heap and \( H' \) be the resulting Fibonacci heap. Then, \( t(H') = t(H) + 1 \) and \( m(H') = m(H) \), and the increase in potential is

\[
((t(H) + 1) + 2m(H)) - (t(H) + 2m(H)) = 1.
\]

Since the actual cost is \( O(1) \), the amortized cost is \( O(1) + 1 = O(1) \).

**Finding the minimum node**

The minimum node of a Fibonacci heap \( H \) is given by the pointer \( H.min \), so we can find the minimum node in \( O(1) \) actual time. Because the potential of \( H \) does not change, the amortized cost of this operation is equal to its \( O(1) \) actual cost.

**Uniting two Fibonacci heaps**

The following procedure unites Fibonacci heaps \( H_1 \) and \( H_2 \), destroying \( H_1 \) and \( H_2 \) in the process. It simply concatenates the root lists of \( H_1 \) and \( H_2 \) and then determines the new minimum node. Afterward, the objects representing \( H_1 \) and \( H_2 \) will never be used again.

---

**Figure 19.3** Inserting a node into a Fibonacci heap. (a) A Fibonacci heap \( H \). (b) Fibonacci heap \( H \) after inserting the node with key 21. The node becomes its own min-heap-ordered tree and is then added to the root list, becoming the left sibling of the root.
FIB-HEAP-UNION($H_1, H_2$)
1. $H = \text{MAKE-FIB-HEAP}()$
2. $H.min = H_1.min$
3. concatenate the root list of $H_2$ with the root list of $H$
4. if ($H_1.min == \text{NIL}$) or ($H_2.min \neq \text{NIL}$ and $H_2.min.key < H_1.min.key$)
   5. $H.min = H_2.min$
6. $H.n = H_1.n + H_2.n$
7. return $H$

Lines 1–3 concatenate the root lists of $H_1$ and $H_2$ into a new root list $H$. Lines 2, 4, and 5 set the minimum node of $H$, and line 6 sets $H.n$ to the total number of nodes. Line 7 returns the resulting Fibonacci heap $H$. As in the FIB-HEAP-INSERT procedure, all roots remain roots.

The change in potential is

$$\Phi(H) - (\Phi(H_1) + \Phi(H_2)) = (t(H) + 2m(H)) - ((t(H_1) + 2m(H_1)) + (t(H_2) + 2m(H_2))) = 0,$$

because $t(H) = t(H_1) + t(H_2)$ and $m(H) = m(H_1) + m(H_2)$. The amortized cost of FIB-HEAP-UNION is therefore equal to its $O(1)$ actual cost.

**Extracting the minimum node**

The process of extracting the minimum node is the most complicated of the operations presented in this section. It is also where the delayed work of consolidating trees in the root list finally occurs. The following pseudocode extracts the minimum node. The code assumes for convenience that when a node is removed from a linked list, pointers remaining in the list are updated, but pointers in the extracted node are left unchanged. It also calls the auxiliary procedure CONSOLIDATE, which we shall see shortly.
19.2 Mergeable-heap operations

FIB-HEAP-EXTRACT-MIN(H)
1  z = H.min
2  if z ≠ NIL
3    for each child x of z
4      add x to the root list of H
5          x.p = NIL
6    if z == z.right
7      H.min = NIL
8      else H.min = z.right
9    CONSOLIDATE(H)
10   H.n = H.n - 1
11  return z

As Figure 19.4 illustrates, FIB-HEAP-EXTRACT-MIN works by first making a root out of each of the minimum node’s children and removing the minimum node from the root list. It then consolidates the root list by linking roots of equal degree until at most one root remains of each degree.

We start in line 1 by saving a pointer z to the minimum node; the procedure returns this pointer at the end. If z is NIL, then Fibonacci heap H is already empty and we are done. Otherwise, we delete node z from H by making all of z’s children roots of H in lines 3–5 (putting them into the root list) and removing z from the root list in line 6. If z is its own right sibling after line 6, then z was the only node on the root list and it had no children, so all that remains is to make the Fibonacci heap empty in line 8 before returning z. Otherwise, we set the pointer H.min into the root list to point to a root other than z (in this case, z’s right sibling), which is not necessarily going to be the new minimum node when FIB-HEAP-EXTRACT-MIN is done. Figure 19.4(b) shows the Fibonacci heap of Figure 19.4(a) after executing line 9.

The next step, in which we reduce the number of trees in the Fibonacci heap, is consolidating the root list of H, which the call CONSOLIDATE(H) accomplishes. Consolidating the root list consists of repeatedly executing the following steps until every root in the root list has a distinct degree value:

1. Find two roots x and y in the root list with the same degree. Without loss of generality, let x.key ≤ y.key.
2. Link y to x: remove y from the root list, and make y a child of x by calling the FIB-HEAP-LINK procedure. This procedure increments the attribute x.degree and clears the mark on y.
Figure 19.4 The action of \texttt{FIB-HEAP-EXTRACT-MIN}. (a) A Fibonacci heap \(H\). (b) The situation after removing the minimum node \(z\) from the root list and adding its children to the root list. (c)–(e) The array \(A\) and the trees after each of the first three iterations of the \texttt{for} loop of lines 4–14 of the procedure \texttt{CONSOLIDATE}. The procedure processes the root list by starting at the node pointed to by \(H\. \texttt{min}\) and following right pointers. Each part shows the values of \(w\) and \(x\) at the end of an iteration. (f)–(h) The next iteration of the \texttt{for} loop, with the values of \(w\) and \(x\) shown at the end of each iteration of the \texttt{while} loop of lines 7–13. Part (i) shows the situation after the first time through the \texttt{while} loop. The node with key 23 has been linked to the node with key 7, which \(x\) now points to. In part (g), the node with key 17 has been linked to the node with key 7, which \(x\) still points to. In part (h), the node with key 24 has been linked to the node with key 7. Since no node was previously pointed to by \(A[3]\), at the end of the \texttt{for} loop iteration, \(A[3]\) is set to point to the root of the resulting tree.
The procedure CONSOLIDATE uses an auxiliary array $A[0\. \cdot D(H.n)]$ to keep track of roots according to their degrees. If $A[i] = y$, then $y$ is currently a root with $y\. degree = i$. Of course, in order to allocate the array we have to know how to calculate the upper bound $D(H.n)$ on the maximum degree, but we will see how to do so in Section 19.4.
CONSOLIDATE($H$)

1. let $A[0 \ldots D(H,n)]$ be a new array
2. for $i = 0$ to $D(H,n)$
3.   $A[i] = \text{NIL}$
4. for each node $w$ in the root list of $H$
5.   $x = w$
6.   $d = x.\text{degree}$
7.   while $A[d] \neq \text{NIL}$
8.     $y = A[d]$ \hspace{1em} // another node with the same degree as $x$
9.     if $x.\text{key} > y.\text{key}$
10.    exchange $x$ with $y$
11.   FIB-HEAP-LINK($H, y, x$)
12.   $A[d] = \text{NIL}$
13.   $d = d + 1$
15. $H.\text{min} = \text{NIL}$
16. for $i = 0$ to $D(H,n)$
17.   if $A[i] \neq \text{NIL}$
18.     if $H.\text{min} == \text{NIL}$
19.       create a root list for $H$ containing just $A[i]$
20.       $H.\text{min} = A[i]$
21.     else insert $A[i]$ into $H$’s root list
22.     if $A[i].\text{key} < H.\text{min}.\text{key}$
23.       $H.\text{min} = A[i]$

FIB-HEAP-LINK($H, y, x$)

1. remove $y$ from the root list of $H$
2. make $y$ a child of $x$, incrementing $x.\text{degree}$
3. $y.\text{mark} = \text{FALSE}$

In detail, the CONSOLIDATE procedure works as follows. Lines 1–3 allocate and initialize the array $A$ by making each entry NIL. The for loop of lines 4–14 processes each root $w$ in the root list. As we link roots together, $w$ may be linked to some other node and no longer be a root. Nevertheless, $w$ is always in a tree rooted at some node $x$, which may or may not be $w$ itself. Because we want at most one root with each degree, we look in the array $A$ to see whether it contains a root $y$ with the same degree as $x$. If it does, then we link the roots $x$ and $y$ but guaranteeing that $x$ remains a root after linking. That is, we link $y$ to $x$ after first exchanging the pointers to the two roots if $y$’s key is smaller than $x$’s key. After we link $y$ to $x$, the degree of $x$ has increased by 1, and so we continue this process, linking $x$ and another root whose degree equals $x$’s new degree, until no other root
that we have processed has the same degree as $x$. We then set the appropriate entry of $A$ to point to $x$, so that as we process roots later on, we have recorded that $x$ is the unique root of its degree that we have already processed. When this for loop terminates, at most one root of each degree will remain, and the array $A$ will point to each remaining root.

The while loop of lines 7–13 repeatedly links the root $x$ of the tree containing node $w$ to another tree whose root has the same degree as $x$, until no other root has the same degree. This while loop maintains the following invariant:

At the start of each iteration of the while loop, $d = x.\text{degree}$.

We use this loop invariant as follows:

**Initialization:** Line 6 ensures that the loop invariant holds the first time we enter the loop.

**Maintenance:** In each iteration of the while loop, $A[d]$ points to some root $y$. Because $d = x.\text{degree} = y.\text{degree}$, we want to link $x$ and $y$. Whichever of $x$ and $y$ has the smaller key becomes the parent of the other as a result of the link operation, and so lines 9–10 exchange the pointers to $x$ and $y$ if necessary. Next, we link $y$ to $x$ by the call $\text{FIB-HEAP-LINK}(H, y, x)$ in line 11. This call increments $x.\text{degree}$ but leaves $y.\text{degree}$ as $d$. Node $y$ is no longer a root, and so line 12 removes the pointer to it in array $A$. Because the call of $\text{FIB-HEAP-LINK}$ increments the value of $x.\text{degree}$, line 13 restores the invariant that $d = x.\text{degree}$.

**Termination:** We repeat the while loop until $A[d] = \text{NIL}$, in which case there is no other root with the same degree as $x$.

After the while loop terminates, we set $A[d]$ to $x$ in line 14 and perform the next iteration of the for loop.

Figures 19.4(c)–(e) show the array $A$ and the resulting trees after the first three iterations of the for loop of lines 4–14. In the next iteration of the for loop, three links occur; their results are shown in Figures 19.4(f)–(h). Figures 19.4(i)–(l) show the result of the next four iterations of the for loop.

All that remains is to clean up. Once the for loop of lines 4–14 completes, line 15 empties the root list, and lines 16–23 reconstruct it from the array $A$. The resulting Fibonacci heap appears in Figure 19.4(m). After consolidating the root list, $\text{FIB-HEAP-EXTRACT-MIN}$ finishes up by decrementing $H.n$ in line 11 and returning a pointer to the deleted node $z$ in line 12.

We are now ready to show that the amortized cost of extracting the minimum node of an $n$-node Fibonacci heap is $O(D(n))$. Let $H$ denote the Fibonacci heap just prior to the $\text{FIB-HEAP-EXTRACT-MIN}$ operation.

We start by accounting for the actual cost of extracting the minimum node. An $O(D(n))$ contribution comes from $\text{FIB-HEAP-EXTRACT-MIN}$ processing at
most $D(n)$ children of the minimum node and from the work in lines 2–3 and 16–23 of CONSOLIDATE. It remains to analyze the contribution from the for loop of lines 4–14 in CONSOLIDATE, for which we use an aggregate analysis. The size of the root list upon calling CONSOLIDATE is at most $D(n) + t(H) - 1$, since it consists of the original $t(H)$ root-list nodes, minus the extracted root node, plus the children of the extracted node, which number at most $D(n)$. Within a given iteration of the for loop of lines 4–14, the number of iterations of the while loop of lines 7–13 depends on the root list. But we know that every time through the while loop, one of the roots is linked to another, and thus the total number of iterations of the while loop over all iterations of the for loop is at most the number of roots in the root list. Hence, the total amount of work performed in the for loop is at most proportional to $D(n) + t(H)$. Thus, the total actual work in extracting the minimum node is $O(D(n) + t(H))$.

The potential before extracting the minimum node is $t(H) + 2m(H)$, and the potential afterward is at most $(D(n) + 1) + 2m(H)$, since at most $D(n) + 1$ roots remain and no nodes become marked during the operation. The amortized cost is thus at most

$$O(D(n) + t(H)) + ((D(n) + 1) + 2m(H)) - (t(H) + 2m(H)) = O(D(n)) + O(t(H)) - t(H) = O(D(n)),$$

since we can scale up the units of potential to dominate the constant hidden in $O(t(H))$. Intuitively, the cost of performing each link is paid for by the reduction in potential due to the link’s reducing the number of roots by one. We shall see in Section 19.4 that $D(n) = O(\lg n)$, so that the amortized cost of extracting the minimum node is $O(\lg n)$.

**Exercises**

**19.2-1**
Show the Fibonacci heap that results from calling `FIB-HEAP-EXTRACT-MIN` on the Fibonacci heap shown in Figure 19.4(m).

### 19.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node in a Fibonacci heap in $O(1)$ amortized time and how to delete any node from an $n$-node Fibonacci heap in $O(D(n))$ amortized time. In Section 19.4, we will show that the maxi-
19.3 Decreasing a key and deleting a node

mum degree $D(n)$ is $O(\lg n)$, which will imply that FIB-HEAP-EXTRACT-MIN and FIB-HEAP-DELETE run in $O(\lg n)$ amortized time.

**Decreasing a key**

In the following pseudocode for the operation FIB-HEAP-DECREASE-KEY, we assume as before that removing a node from a linked list does not change any of the structural attributes in the removed node.

FIB-HEAP-DECREASE-KEY$(H, x, k)$

1. if $k > x.key$
2. \[ \textbf{error} \] “new key is greater than current key”
3. $x.key = k$
4. $y = x.p$
5. if $y \neq \text{NIL}$ and $x.key < y.key$
6. \[ \text{CUT}(H, x, y) \]
7. \[ \text{CASCADING-CUT}(H, y) \]
8. if $x.key < H.min.key$
9. \[ H.min = x \]

CUT$(H, x, y)$

1. remove $x$ from the child list of $y$, decrementing $y.degree$
2. add $x$ to the root list of $H$
3. $x.p = \text{NIL}$
4. $x.mark = \text{FALSE}$

CASCADING-CUT$(H, y)$

1. $z = y.p$
2. if $z \neq \text{NIL}$
3. if $y.mark == \text{FALSE}$
4. $y.mark = \text{TRUE}$
5. else \[ \text{CUT}(H, y, z) \]
6. \[ \text{CASCADING-CUT}(H, z) \]

The FIB-HEAP-DECREASE-KEY procedure works as follows. Lines 1–3 ensure that the new key is no greater than the current key of $x$ and then assign the new key to $x$. If $x$ is a root or if $x.key \geq y.key$, where $y$ is $x$’s parent, then no structural changes need occur, since min-heap order has not been violated. Lines 4–5 test for this condition.

If min-heap order has been violated, many changes may occur. We start by cutting $x$ in line 6. The CUT procedure “cuts” the link between $x$ and its parent $y$, making $x$ a root.
We use the mark attributes to obtain the desired time bounds. They record a little piece of the history of each node. Suppose that the following events have happened to node \( x \):

1. at some time, \( x \) was a root,
2. then \( x \) was linked to (made the child of) another node,
3. then two children of \( x \) were removed by cuts.

As soon as the second child has been lost, we cut \( x \) from its parent, making it a new root. The attribute \( x.\text{mark} \) is TRUE if steps 1 and 2 have occurred and one child of \( x \) has been cut. The Cut procedure, therefore, clears \( x.\text{mark} \) in line 4, since it performs step 1. (We can now see why line 3 of Fib-Heap-Link clears \( y.\text{mark} \): node \( y \) is being linked to another node, and so step 2 is being performed. The next time a child of \( y \) is cut, \( y.\text{mark} \) will be set to TRUE.)

We are not yet done, because \( x \) might be the second child cut from its parent \( y \) since the time that \( y \) was linked to another node. Therefore, line 7 of Fib-Heap-Decr-Key attempts to perform a cascading-cut operation on \( y \). If \( y \) is a root, then the test in line 2 of Cascading-Cut causes the procedure to just return. If \( y \) is unmarked, the procedure marks it in line 4, since its first child has just been cut, and returns. If \( y \) is marked, however, it has just lost its second child; \( y \) is cut in line 5, and Cascading-Cut calls itself recursively in line 6 on \( y \)’s parent \( z \). The Cascading-Cut procedure recurses its way up the tree until it finds either a root or an unmarked node.

Once all the cascading cuts have occurred, lines 8–9 of Fib-Heap-Decr-Key finish up by updating \( H.\text{min} \) if necessary. The only node whose key changed was the node \( x \) whose key decreased. Thus, the new minimum node is either the original minimum node or node \( x \).

Figure 19.5 shows the execution of two calls of Fib-Heap-Decr-Key, starting with the Fibonacci heap shown in Figure 19.5(a). The first call, shown in Figure 19.5(b), involves no cascading cuts. The second call, shown in Figures 19.5(c)–(e), invokes two cascading cuts.

We shall now show that the amortized cost of Fib-Heap-Decr-Key is only \( O(1) \). We start by determining its actual cost. The Fib-Heap-Decr-Key procedure takes \( O(1) \) time, plus the time to perform the cascading cuts. Suppose that a given invocation of Fib-Heap-Decr-Key results in \( c \) calls of Cascading-Cut (the call made from line 7 of Fib-Heap-Decr-Key followed by \( c - 1 \) recursive calls of Cascading-Cut). Each call of Cascading-Cut takes \( O(1) \) time exclusive of recursive calls. Thus, the actual cost of Fib-Heap-Decr-Key, including all recursive calls, is \( O(c) \).

We next compute the change in potential. Let \( H \) denote the Fibonacci heap just prior to the Fib-Heap-Decr-Key operation. The call to Cut in line 6 of
19.3 Decreasing a key and deleting a node

**Figure 19.5** Two calls of **FIB-HEAP-DECREASE-KEY**. (a) The initial Fibonacci heap. (b) The node with key 46 has its key decreased to 15. The node becomes a root, and its parent (with key 24), which had previously been unmarked, becomes marked. (c)–(e) The node with key 35 has its key decreased to 5. In part (c), the node, now with key 5, becomes a root. Its parent, with key 26, is marked, so a cascading cut occurs. The node with key 26 is cut from its parent and made an unmarked root in (d). Another cascading cut occurs, since the node with key 24 is marked as well. This node is cut from its parent and made an unmarked root in part (e). The cascading cuts stop at this point, since the node with key 7 is a root. (Even if this node were not a root, the cascading cuts would stop, since it is unmarked.) Part (e) shows the result of the **FIB-HEAP-DECREASE-KEY** operation, with \( H.min \) pointing to the new minimum node.

**FIB-HEAP-DECREASE-KEY** creates a new tree rooted at node \( x \) and clears \( x \)'s mark bit (which may have already been false). Each call of **CASCADING-CUT**, except for the last one, cuts a marked node and clears the mark bit. Afterward, the Fibonacci heap contains \( t(H) + c \) trees (the original \( t(H) \) trees, \( c-1 \) trees produced by cascading cuts, and the tree rooted at \( x \)) and at most \( m(H) - c + 2 \) marked nodes (\( c-1 \) were unmarked by cascading cuts and the last call of **CASCADING-CUT** may have marked a node). The change in potential is therefore at most

\[
((t(H) + c) + 2(m(H) - c + 2)) - (t(H) + 2m(H)) = 4 - c .
\]
Thus, the amortized cost of \textsc{Fib-Heap-Decrease-Key} is at most
\[ O(c) + 4 - c = O(1), \]
since we can scale up the units of potential to dominate the constant hidden in \( O(c) \).

You can now see why we defined the potential function to include a term that is
twice the number of marked nodes. When a marked node \( y \) is cut by a cascading cut,
its mark bit is cleared, which reduces the potential by \( 2 \). One unit of potential
pays for the cut and the clearing of the mark bit, and the other unit compensates
for the unit increase in potential due to node \( y \) becoming a root.

**Deleting a node**

The following pseudocode deletes a node from an \( n \)-node Fibonacci heap in
\( O(D(n)) \) amortized time. We assume that there is no key value of \(-\infty\) currently
in the Fibonacci heap.

\[
\textsc{Fib-Heap-Delete}(H, x)
\]
1. \textsc{Fib-Heap-Decrease-Key}(\( H, x, -\infty \))
2. \textsc{Fib-Heap-Extract-Min}(\( H \))

\textsc{Fib-Heap-Delete} makes \( x \) become the minimum node in the Fibonacci heap by
giving it a uniquely small key of \(-\infty\). The \textsc{Fib-Heap-Extract-Min} procedure
then removes node \( x \) from the Fibonacci heap. The amortized time of \textsc{Fib-Heap-Delete}
is the sum of the \( O(1) \) amortized time of \textsc{Fib-Heap-Decrease-Key}
and the \( O(D(n)) \) amortized time of \textsc{Fib-Heap-Extract-Min}. Since we shall see
in Section 19.4 that \( D(n) = O(\lg n) \), the amortized time of \textsc{Fib-Heap-Delete}
is \( O(\lg n) \).

**Exercises**

19.3-1
Suppose that a root \( x \) in a Fibonacci heap is marked. Explain how \( x \) came to be
a marked root. Argue that it doesn’t matter to the analysis that \( x \) is marked, even
though it is not a root that was first linked to another node and then lost one child.

19.3-2
Justify the \( O(1) \) amortized time of \textsc{Fib-Heap-Decrease-Key} as an average cost
per operation by using aggregate analysis.
To prove that the amortized time of \textsc{Fib-Heap-Extract-Min} and \textsc{Fib-Heap-Delete} is $O(\lg n)$, we must show that the upper bound $D(n)$ on the degree of any node of an $n$-node Fibonacci heap is $O(\lg n)$. In particular, we shall show that $D(n) \leq \lceil \log \phi n \rceil$, where $\phi$ is the golden ratio, defined in equation (3.24) as

\[
\phi = \frac{1 + \sqrt{5}}{2} = 1.61803\ldots
\]

The key to the analysis is as follows. For each node $x$ within a Fibonacci heap, define size$(x)$ to be the number of nodes, including $x$ itself, in the subtree rooted at $x$. (Note that $x$ need not be in the root list—it can be any node at all.) We shall show that size$(x)$ is exponential in $x$.\degree$. Bear in mind that $x$.\degree$ is always maintained as an accurate count of the degree of $x$.

\textbf{Lemma 19.1}

Let $x$ be any node in a Fibonacci heap, and suppose that $x$.\degree$ = $k$. Let $y_1, y_2, \ldots, y_k$ denote the children of $x$ in the order in which they were linked to $x$, from the earliest to the latest. Then, $y_1$.\degree$ \geq 0$ and $y_i$.\degree$ \geq i - 2$ for $i = 2, 3, \ldots, k$.

\textbf{Proof}  Obviously, $y_1$.\degree$ \geq 0$.

For $i \geq 2$, we note that when $y_i$ was linked to $x$, all of $y_1, y_2, \ldots, y_{i-1}$ were children of $x$, and so we must have had $x$.\degree$ \geq i - 1$. Because node $y_i$ is linked to $x$ (by CONSOLIDATE) only if $x$.\degree$ = y_i$.\degree$, we must have also had $y_i$.\degree$ \geq i - 1$ at that time. Since then, node $y_i$ has lost at most one child, since it would have been cut from $x$ (by CASCADING-CUT) if it had lost two children. We conclude that $y_i$.\degree$ \geq i - 2$.

We finally come to the part of the analysis that explains the name “Fibonacci heaps.” Recall from Section 3.2 that for $k = 0, 1, 2, \ldots$, the $k$th Fibonacci number is defined by the recurrence

\[
F_k = \begin{cases} 
0 & \text{if } k = 0, \\
1 & \text{if } k = 1, \\
F_{k-1} + F_{k-2} & \text{if } k \geq 2.
\end{cases}
\]

The following lemma gives another way to express $F_k$. 

\textbf{Lemma 19.1''}

Let $x$ be any node in a Fibonacci heap, and suppose that $x$.\degree$ = k$. Let $y_1, y_2, \ldots, y_k$ denote the children of $x$ in the order in which they were linked to $x$, from the earliest to the latest. Then, $y_1$.\degree$ \geq 0$ and $y_i$.\degree$ \geq i - 2$ for $i = 2, 3, \ldots, k$.

\textbf{Proof}  Obviously, $y_1$.\degree$ \geq 0$.

For $i \geq 2$, we note that when $y_i$ was linked to $x$, all of $y_1, y_2, \ldots, y_{i-1}$ were children of $x$, and so we must have had $x$.\degree$ \geq i - 1$. Because node $y_i$ is linked to $x$ (by CONSOLIDATE) only if $x$.\degree$ = y_i$.\degree$, we must have also had $y_i$.\degree$ \geq i - 1$ at that time. Since then, node $y_i$ has lost at most one child, since it would have been cut from $x$ (by CASCADING-CUT) if it had lost two children. We conclude that $y_i$.\degree$ \geq i - 2$.

We finally come to the part of the analysis that explains the name “Fibonacci heaps.” Recall from Section 3.2 that for $k = 0, 1, 2, \ldots$, the $k$th Fibonacci number is defined by the recurrence

\[
F_k = \begin{cases} 
0 & \text{if } k = 0, \\
1 & \text{if } k = 1, \\
F_{k-1} + F_{k-2} & \text{if } k \geq 2.
\end{cases}
\]

The following lemma gives another way to express $F_k$.
**Lemma 19.2**
For all integers $k \geq 0$,

$$F_{k+2} = 1 + \sum_{i=0}^{k} F_i .$$

**Proof**
The proof is by induction on $k$. When $k = 0$,

$$1 + \sum_{i=0}^{0} F_i = 1 + F_0 = 1 + 0 = F_2 .$$

We now assume the inductive hypothesis that $F_{k+1} = 1 + \sum_{i=0}^{k-1} F_i$, and we have

$$F_{k+2} = F_k + F_{k+1}$$

$$= F_k + \left( 1 + \sum_{i=0}^{k-1} F_i \right)$$

$$= 1 + \sum_{i=0}^{k} F_i .$$

**Lemma 19.3**
For all integers $k \geq 0$, the $(k + 2)$nd Fibonacci number satisfies $F_{k+2} \geq \phi^k$.

**Proof**
The proof is by induction on $k$. The base cases are for $k = 0$ and $k = 1$. When $k = 0$ we have $F_2 = 1 = \phi^0$, and when $k = 1$ we have $F_3 = 2 > 1.619 > \phi^1$. The inductive step is for $k \geq 2$, and we assume that $F_{i+2} > \phi^i$ for $i = 0, 1, \ldots, k-1$. Recall that $\phi$ is the positive root of equation (3.23), $x^2 = x + 1$. Thus, we have

$$F_{k+2} = F_{k+1} + F_k$$

$$\geq \phi^{k-1} + \phi^{k-2}$$

(by the inductive hypothesis)

$$= \phi^{k-2}(\phi + 1)$$

$$= \phi^{k-2} \cdot \phi^2$$

(by equation (3.23))

$$= \phi^k .$$

The following lemma and its corollary complete the analysis.
19.4 Bounding the maximum degree

**Lemma 19.4**
Let \( x \) be any node in a Fibonacci heap, and let \( k = x.\text{degree} \). Then \( \text{size}(x) \geq F_{k+2} \geq \phi^k \), where \( \phi = (1 + \sqrt{5})/2 \).

**Proof** Let \( s_k \) denote the minimum possible size of any node of degree \( k \) in any Fibonacci heap. Trivially, \( s_0 = 1 \) and \( s_1 = 2 \). The number \( s_k \) is at most \( \text{size}(x) \) and, because adding children to a node cannot decrease the node’s size, the value of \( s_k \) increases monotonically with \( k \). Consider some node \( z \), in any Fibonacci heap, such that \( z.\text{degree} = k \) and \( \text{size}(z) = s_k \). Because \( s_k \leq \text{size}(x) \), we compute a lower bound on \( \text{size}(x) \) by computing a lower bound on \( s_k \). As in Lemma 19.1, let \( y_1, y_2, \ldots, y_k \) denote the children of \( z \) in the order in which they were linked to \( z \). To bound \( s_k \), we count one for \( z \) itself and one for the first child \( y_1 \) (for which \( \text{size}(y_1) \geq 1 \)), giving

\[
\text{size}(x) \geq s_k \geq 2 + \sum_{i=2}^{k} s_{y_i.\text{degree}} \geq 2 + \sum_{i=2}^{k} s_{i-2},
\]

where the last line follows from Lemma 19.1 (so that \( y_i.\text{degree} \geq i - 2 \)) and the monotonicity of \( s_k \) (so that \( s_{y_i.\text{degree}} \geq s_{i-2} \)).

We now show by induction on \( k \) that \( s_k \geq F_{k+2} \) for all nonnegative integers \( k \). The bases, for \( k = 0 \) and \( k = 1 \), are trivial. For the inductive step, we assume that \( k \geq 2 \) and that \( s_i \geq F_{i+2} \) for \( i = 0, 1, \ldots, k - 1 \). We have

\[
s_k \geq 2 + \sum_{i=2}^{k} s_{i-2} \geq 2 + \sum_{i=2}^{k} F_i = 1 + \sum_{i=0}^{k} F_i = F_{k+2} \quad \text{(by Lemma 19.2)} \geq \phi^k \quad \text{(by Lemma 19.3)}.
\]

Thus, we have shown that \( \text{size}(x) \geq s_k \geq F_{k+2} \geq \phi^k \).
Corollary 19.5
The maximum degree $D(n)$ of any node in an $n$-node Fibonacci heap is $O(\lg n)$.

Proof  Let $x$ be any node in an $n$-node Fibonacci heap, and let $k = x.\text{degree}$. By Lemma 19.4, we have $n \geq \text{size}(x) \geq \phi^k$. Taking base-$\phi$ logarithms gives us $k \leq \log_\phi n$. (In fact, because $k$ is an integer, $k \leq \lfloor \log_\phi n \rfloor$.) The maximum degree $D(n)$ of any node is thus $O(\lg n)$.

Exercises

19.4-1
Professor Pinocchio claims that the height of an $n$-node Fibonacci heap is $O(\lg n)$. Show that the professor is mistaken by exhibiting, for any positive integer $n$, a sequence of Fibonacci-heap operations that creates a Fibonacci heap consisting of just one tree that is a linear chain of $n$ nodes.

19.4-2
Suppose we generalize the cascading-cut rule to cut a node $x$ from its parent as soon as it loses its $k$th child, for some integer constant $k$. (The rule in Section 19.3 uses $k = 2$.) For what values of $k$ is $D(n) = O(\lg n)$?

Problems

19-1 Alternative implementation of deletion
Professor Pisano has proposed the following variant of the FIB-HEAP-DELETE procedure, claiming that it runs faster when the node being deleted is not the node pointed to by $H.\text{min}$.

PISANO-DELETE$(H, x)$
1  if $x == H.\text{min}$
2    FIB-HEAP-EXTRACT-MIN$(H)$
3  else $y = x.p$
4    if $y \neq \text{NIL}$
5      CUT$(H, x, y)$
6    CASCARDING-CUT$(H, y)$
7    add $x$’s child list to the root list of $H$
8    remove $x$ from the root list of $H$
Problems for Chapter 19

a. The professor’s claim that this procedure runs faster is based partly on the assumption that line 7 can be performed in $O(1)$ actual time. What is wrong with this assumption?

b. Give a good upper bound on the actual time of PISANO-DELETE when $x$ is not $H\.min$. Your bound should be in terms of $x\.degree$ and the number $c$ of calls to the CASCADING-CUT procedure.

c. Suppose that we call PISANO-DELETE($H, x$), and let $H'$ be the Fibonacci heap that results. Assuming that node $x$ is not a root, bound the potential of $H'$ in terms of $x\.degree, c, t(H)$, and $m(H)$.

d. Conclude that the amortized time for PISANO-DELETE is asymptotically no better than for FIB-HEAP-DELETE, even when $x \neq H\.min$.

19-2 Binomial trees and binomial heaps

The binomial tree $B_k$ is an ordered tree (see Section B.5.2) defined recursively. As shown in Figure 19.6(a), the binomial tree $B_0$ consists of a single node. The binomial tree $B_k$ consists of two binomial trees $B_{k-1}$ that are linked together so that the root of one is the leftmost child of the root of the other. Figure 19.6(b) shows the binomial trees $B_0$ through $B_4$.

a. Show that for the binomial tree $B_k$,

1. there are $2^k$ nodes,
2. the height of the tree is $k$,
3. there are exactly $\binom{k}{i}$ nodes at depth $i$ for $i = 0, 1, \ldots, k$, and
4. the root has degree $k$, which is greater than that of any other node; moreover, as Figure 19.6(c) shows, if we number the children of the root from left to right by $k - 1, k - 2, \ldots, 0$, then child $i$ is the root of a subtree $B_i$.

A binomial heap $H$ is a set of binomial trees that satisfies the following properties:

1. Each node has a key (like a Fibonacci heap).
2. Each binomial tree in $H$ obeys the min-heap property.
3. For any nonnegative integer $k$, there is at most one binomial tree in $H$ whose root has degree $k$.

b. Suppose that a binomial heap $H$ has a total of $n$ nodes. Discuss the relationship between the binomial trees that $H$ contains and the binary representation of $n$. Conclude that $H$ consists of at most $\lceil \lg n \rceil + 1$ binomial trees.
Suppose that we represent a binomial heap as follows. The left-child, right-sibling scheme of Section 10.4 represents each binomial tree within a binomial heap. Each node contains its key; pointers to its parent, to its leftmost child, and to the sibling immediately to its right (these pointers are nil when appropriate); and its degree (as in Fibonacci heaps, how many children it has). The roots form a singly linked root list, ordered by the degrees of the roots (from low to high), and we access the binomial heap by a pointer to the first node on the root list.

c. Complete the description of how to represent a binomial heap (i.e., name the attributes, describe when attributes have the value nil, and define how the root list is organized), and show how to implement the same seven operations on binomial heaps as this chapter implemented on Fibonacci heaps. Each operation should run in $O(\lg n)$ worst-case time, where $n$ is the number of nodes in
the binomial heap (or in the case of the \texttt{Union} operation, in the two binomial heaps that are being united). The \texttt{Make-Heap} operation should take constant time.

d. Suppose that we were to implement only the mergeable-heap operations on a Fibonacci heap (i.e., we do not implement the \texttt{Decrease-Key} or \texttt{Delete} operations). How would the trees in a Fibonacci heap resemble those in a binomial heap? How would they differ? Show that the maximum degree in an \( n \)-node Fibonacci heap would be at most \( \lfloor \lg n \rfloor \).

e. Professor McGee has devised a new data structure based on Fibonacci heaps. A McGee heap has the same structure as a Fibonacci heap and supports just the mergeable-heap operations. The implementations of the operations are the same as for Fibonacci heaps, except that insertion and union consolidate the root list as their last step. What are the worst-case running times of operations on McGee heaps?

19-3 More Fibonacci-heap operations
We wish to augment a Fibonacci heap \( H \) to support two new operations without changing the amortized running time of any other Fibonacci-heap operations.

a. The operation \texttt{Fib-Heap-Change-Key}(\( H, x, k \)) changes the key of node \( x \) to the value \( k \). Give an efficient implementation of \texttt{Fib-Heap-Change-Key}, and analyze the amortized running time of your implementation for the cases in which \( k \) is greater than, less than, or equal to \( x \).key.

b. Give an efficient implementation of \texttt{Fib-Heap-Prune}(\( H, r \)), which deletes \( q = \min(r, H.n) \) nodes from \( H \). You may choose any \( q \) nodes to delete. Analyze the amortized running time of your implementation. (Hint: You may need to modify the data structure and potential function.)

19-4 2-3-4 heaps
Chapter 18 introduced the 2-3-4 tree, in which every internal node (other than possibly the root) has two, three, or four children and all leaves have the same depth. In this problem, we shall implement \textbf{2-3-4 heaps}, which support the mergeable-heap operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways. In 2-3-4 heaps, only leaves store keys, and each leaf \( x \) stores exactly one key in the attribute \( x.key \). The keys in the leaves may appear in any order. Each internal node \( x \) contains a value \( x.small \) that is equal to the smallest key stored in any leaf in the subtree rooted at \( x \). The root \( r \) contains an attribute \( r.height \) that gives the height of the
tree. Finally, 2-3-4 heaps are designed to be kept in main memory, so that disk reads and writes are not needed.

Implement the following 2-3-4 heap operations. In parts (a)–(e), each operation should run in $O(\lg n)$ time on a 2-3-4 heap with $n$ elements. The UNION operation in part (f) should run in $O(\lg n)$ time, where $n$ is the number of elements in the two input heaps.

a. **MINIMUM**, which returns a pointer to the leaf with the smallest key.

b. **DECREASE-KEY**, which decreases the key of a given leaf $x$ to a given value $k \leq x.key$.

c. **INSERT**, which inserts leaf $x$ with key $k$.

d. **DELETE**, which deletes a given leaf $x$.

e. **EXTRACT-MIN**, which extracts the leaf with the smallest key.

f. **UNION**, which unites two 2-3-4 heaps, returning a single 2-3-4 heap and destroying the input heaps.

---

**Chapter notes**

Fredman and Tarjan [114] introduced Fibonacci heaps. Their paper also describes the application of Fibonacci heaps to the problems of single-source shortest paths, all-pairs shortest paths, weighted bipartite matching, and the minimum-spanning-tree problem.

Subsequently, Driscoll, Gabow, Shrairman, and Tarjan [96] developed “relaxed heaps” as an alternative to Fibonacci heaps. They devised two varieties of relaxed heaps. One gives the same amortized time bounds as Fibonacci heaps. The other allows **DECREASE-KEY** to run in $O(1)$ worst-case (not amortized) time and **EXTRACT-MIN** and **DELETE** to run in $O(\lg n)$ worst-case time. Relaxed heaps also have some advantages over Fibonacci heaps in parallel algorithms.

See also the chapter notes for Chapter 6 for other data structures that support fast **DECREASE-KEY** operations when the sequence of values returned by **EXTRACT-MIN** calls are monotonically increasing over time and the data are integers in a specific range.