
Optimum Branchings

and Spanning Aborescences

Ali Tofigh

September 23, 2009

1 Introduction

A branching in a directed graph G = 〈V,E〉 is defined as a set of edges
B ⊆ E such that

1. B does not contain a cycle, and

2. no two edges of B enter the same vertex, i.e., if (u, v) and (u′, v′) are
distinct edges of B, then v 6= v′.

A vertex v of G is a root of B if no edge in B is directed towards v. Notice
that in our terminoligy, if B = ∅, then B is a branching of G in which ev-
ery vertex of G is a root. Clearly, every branching has at least one root. A
branching that has exactly one root, is sometimes called a spanning arbores-
cence. A spanning arborescence is, of course, nothing other than a rooted
tree. In tree terminolgy, a branching is a forest of rooted trees.

Given a weight function w : E → R on the edges of G, the weight of a
subset E′ ⊆ E is defined as the sum of the weights of the edges in E′:

w(E′) =
∑
e∈E′

w(e).

An optimum branching is then defined as a branching with optimum weight
among all possible branchings for G. Depending on context, optimum can
mean either minimum or maximum. Without loss of generality, we will
confine our discussion to maximum branchings.

Polynomial time algorithms for finding optimum branchings were inde-
pendently discovered by Edmonds [5], Chu and Liu [4], and Bock [1]. These
algorithms are all based on the same method. The correctness proof in [5] is
based on concepts in linear programming and Karp gave a simplified, purely
combinatorial proof in [7]. Tarjan described an efficient implementation of
Edmonds’s algorithm in [8]. The algorithm can be implemented to run in
time O(m log n), where n is the number of vertices of the graph and m is
the number of edges. With a slight modification, the implementation can

1

be made to run in time O(n2), which is preferable when dealing with dense
graphs. Camerini et. al. [2] corrected an error in [8]. In a later paper [3],
the same authors give an implementation of an algorithm for finding the
K best spanning arborescences, i.e., maximum branchings with exactly one
root. The root, however, must be specified beforehand. In [6], Gabow et.
al. give an O(n log n+m) time implementation of Edmonds’s algorithm for
finding an optimum spanning arborescence. They note that the algorithm
can be modified to either use a specified vertex as root, or to find a best root
vertex by itself. The algorithm in [6] uses F-heaps as a main data structure.
The authors also note that a better time complexity cannot be achieved
by any implementation of Edmonds’s algorithm since Edmonds’s algorithm
can be used to sort n numbers (sorting n numbers by comparison requires
Ω(n log n) time, and since we always have to look at every edge of the graph,
we cannot achieve a better time complexity for Edmonds’s algorithm than
O(n log n+m).

In this document we will review Karp’s proof of the correctness of Ed-
monds’s algorithm and restate Tarjan’s implementation. We will also discuss
how slight modifications of Tarjan’s algorithm can produce branchings with
different criteria:

1. An optimum branching with arbitrary roots (this is the original ver-
sion)

2. An optimum branching with a prespecified set of roots

3. An optimum branching with one unspecified root.

2 Karp’s Derivation of Edmonds’s Algorithm

In this section we will review Karp’s derivation of Edmonds’s algorithm. In
the next section we will discuss Tarjan’s implementation.

We will first give a thorough description of how a maximum spanning
arborescence (MSA) with an arbitrary root can be obtained, after which
we will describe the changes needed to obtain either a maximum spanning
arborescence with a prespecified root, or a branching with arbitrary roots.

Let G = 〈V,E〉 and w : E → R be given. In the most general setting,
a graph may have several edges between the same two vertices; therefore,
we will assume that E is a multiset. Furthermore, we will assume that the
weight function w assigns weights to each occurrence of an edge indepen-
dently. So, although the fact that E is a multiset will not be made explicit
in our notation, we assume that any implementation of the algorithm treats
each edge between the same two vertices as distinct elements. Achieving
this in any standard programming language is, of course, trivial. We also
assume that there are no loops in E, that is (u, u) /∈ E for any vertex u ∈ V .

2

The following is some of the notation that we will use. If e = (u, v) is
an edge, then tail(e) = u and head(e) = v. A path is a sequence of distinct
edges e1, . . . , ek such that head(ei) = tail(ei+1) for i = 1, . . . , k − 1. A path
is called a cycle if, in addition, head(ek) = tail(e1). If F ⊆ E, we let u→

F
v

mean that there is a path in F from u to v, i.e., there is a path e1, . . . , ek in
F such that tail(e1) = u and head(ek) = v.

Assume that there exists a MSA in G. Call an edge e = (u, v) critical if
w(e) is maximal among all edges coming in to v. A set H ⊆ E is called a
critical graph if:

1. each edge of H is critical, and

2. no two edges of H are directed towards the same vertex.

A critical graph is maximal if it is not a proper subset of another critical
graph. Note that in order to obtain a maximal critical graph we only need to
choose one maxium-weight incoming edge for each vertex of G with indegree
> 0.

Lemma 1. If H is a maximal critical graph that contains no cycles, then
H is a MSA.

Proof. If H does not contain a cycle, then H is a branching. Any branching
has at least one root, so H has at least one root. By our assumption that
there exists an MSA in G, at most one vertex of G has indegree zero, and
therefore, by the maximality of H, H has at most one root. Hence, H
has exactly one root and is a spanning arborescence. To see that H is a
maximum spanning arborescence, simply note that for each vertex v ∈ V ,
and for any branching B of G,

w({(u, v) ∈ H}) ≥ w({(u′, v) ∈ B}).

Summing over all vertices v in G, we have that

w(H) ≥ w(B).

Lemma 2. Each edge of a critical graph H is in at most one cycle of H.

Proof. By definition, a critical graph H has at most one edge directed to-
wards each vertex, and therefore, for each edge e ∈ H, there is a unique
maximal path e1, . . . , en in H such that en = e. Hence, if e is part of a
cycle, then the cycle must consist of exactly the edges e1, . . . , en.

Lemma 3. Let B be a branching and let u, v, and w be distinct vertices of
G. If u→

B
w and v→

B
w, then either u→

B
v→

B
w or v→

B
u→

B
w.

3

Proof. Assume that u→
B
w and v→

B
w. Since B is a branching, B has at

most one edge directed towards each vertex, and therefore, there is a unique
maximal path in B ending with w. Clearly, both u and v are in this path.
Hence, either u→

B
v→

B
w or v→

B
u→

w
.

If B is a branching and e is an edge not in B, then e is called eligible
with respect to B if and only if

B′ = B ∪ {e} − {f ∈ B : head(f) = head(e)}

is a branching. Intuitively, an edge (u, v) is eligible with respect to a branch-
ing B if the set obtained from B by adding (u, v) and removing any other
edge directed towards v is a branching. Clearly, an edge e is eligible with
respect to B if and only if adding e to B does not create a cycle.

Lemma 4. Let B be a branching and let C ⊆ E be a cycle in G. If |C−B| ≥
2, then at least one of the edges in C −B is eligible with respect to B.

Proof. Assume that |C −B| ≥ 2 and that no edge of C −B is eligible with
respect to B. Let e and e′ be edges of C −B such that head(e) →

C∩B
tail(e′),

i.e., e and e′ are edges of C −B such that every edge in C between e and e′

is in B. We will show that there is a path from head(e′) to head(e) in B.
Let e = (u, v) and e′ = (w, z). Since e′ is not eligible with respect to

B, adding e′ to B creates a cycle; in other words, z→
B
w. If v = w, then we

are done. Assume instead that v 6= w. Clearly, v→
B
w. By Lemma 3, either

v→
B
z→

B
w or z→

B
v→

B
w. But clearly, z is not on the path in B from v to w.

Hence, we must have that z→
B
v→

B
w. This proves that head(e′)→

B
head(e).

Now, let e1, . . . , ek be the edges of C − B in the order of their ap-
pearance in the cycle, i.e., head(ei) →

C∩B
tail(ei+1) for i = 1, . . . , k − 1, and

head(ek) →
C∩B

tail(e1). Applying our previous result to all consecutive pairs

of edges in the sequence e1, . . . , ek, we see that

head(ei+1)→
B

head(ei)

for i = 2, . . . , k and
head(e1)→

B
head(ek).

This demonstrates a cycle in B which contradicts the assumption of the
lemma. Hence, at least one of the edges in C −B is eligible with respect to
B.

Theorem 1. Let H be a maximal critical graph of G. Then there exists a
MSA B of G such that for each cycle C in H, |C −B| = 1.

4

Proof. Let C be a cycle ofH and letB be an MSA ofG such that |C−B| ≥ 2.
By Lemma 4, there is an edge e in C −B that is eligible with respect to B.
Let B′ be the branching

B′ = B ∪ {e} − {f ∈ B : head(f) = head(e)}

Clearly, the weight of B′ is no less than that of B (remember that e is a
critical edge). It is also easy to see that B′ must be a spanning arborescence:
we have simply moved the subtree rooted at head(e) (head(e) cannot be
the root of B since e would not be eligible in that case). Hence, B′ is a
maximum spanning arborescence containing more edges of C compared to
B. By repeated application of Lemma 4, we can obtain a maximum spanning
arborescence such that |C −B| = 1.

For a critical graph H of G, we say that a branching B of G is H-
constrained if and only if |C −B| = 1 for each cycle C of H.

Let H be a maximal critical graph of G and let C1, . . . , Ck be the (dis-
joint) cycles of H. Let Vi be the vertices of cycle Ci. By the previous
theorem, there is an H-constrained MSA of G. We will now construct a
graph Ĝ that has fewer edges and vertices than G, such that we can easily
obtain an MSA of G given an MSA of Ĝ.

Let Ĝ = 〈V̂ , Ê〉. We want to contract each cycle of H into one vertex
and change the weights of edges coming into this supervertex. To this end
we will remove from V all vertices in V1, . . . , Vk, and add as vertices the sets
V1, . . . , Vk themselves:

V̂ = (V −
k⋃

i=1

Vi) ∪ {V1, . . . , Vk}.

Corresponding to each vertex in V , there is a unique vertex in V̂ defined by
the function f : V → V̂

f(v) =

{
Vi if v ∈ Vi for some i = 1, . . . , k,
v otherwise.

We now define the edges of Ĝ:

Ê =
{(
f(u), f(v)

)
: (u, v) ∈ E

}
− {(u, u) : u ∈ V̂ }.

For each edge ê ∈ Ê we can assign a unique corresponding edge e ∈ E such
that ê =

(
f(tail(e)), f(head(e))

)
. Let g : Ê → E be any such assignment.

Let e0i be an edge of Ci with minimum weight among the edges of Ci.
We define the weights on the edges of Ĝ as follows:

ŵ(ê) =

{
w(g(ê))− w(ci(g(ê))) + w(e0i) if head(g(ê)) = Vi, i = 1, . . . , k
w(g(ê)) otherwise,

5

where ci(e) is the unique edge of Ci that is directed towards the same vertex
as e. This ends our construction of a new simpler instance of MSA. We will
now prove that finding an MSA in Ĝ is equivalent to finding an MSA in G.

Theorem 2. Let B̂ be an MSA of Ĝ. Let D = {g(ê) : ê ∈ B̂}. If there is
an edge (u, v) in D such that v ∈ Vi, then let fi be the unique edge of Ci

that is directed towards v. Otherwise, let fi = e0i . The set B defined as

B = D ∪
k⋃

i=1

(Ci − fi),

is an H-constrained MSA of G.

Proof. Clearly, B is an H-constrained spanning arborescence of G. We need
to show that B is also maximum. Assume not. Let X be an H-constrained
MSA of G. Note that Theorem 2 guarantees the existance of X. Since X is
maxium but not B, we have that w(X) > w(B). Let

X̂ = {ê ∈ Ê : g(ê) ∈ X}.

We will show that ŵ(X̂) > ŵ(B̂) contradicting the optimality of B̂.
Now X̂ does not have any cycles, since that would imply cycles in X.

Also, since X is H-constrained, at most one edge of X is directed towards
any cycle of H. Hence, no two distinct edges of X̂ are directed towards the
same vertex in V̂ . Thus, X̂ is a branching. If X̂ has more than one root,
then so does X. Hence, X̂ is a spanning arborescence of Ĝ.

By the definition ŵ, it is fairly simple to verify that

ŵ(B̂) = w(B)−
k∑

i=1

w(Ci) +
k∑

i=1

w(e0i).

Note that the above equation applies even if the root of B̂ is a cycle of H.
Similarly, we have that

ŵ(X̂) = w(X)−
k∑

i=1

w(Ci) +
k∑

i=1

w(e0i).

Since w(x) > w(B), we get

ŵ(X̂)− ŵ(B̂) = w(X)− w(B) > 0.

Hence, ŵ(X̂) > ŵ(B̂) which is a contradition.

6

2.1 Variations

If instead of an arbitrary root, we wish to find an MSA of G rooted at a
specific vertex r, then we can proceed as follows. Simply remove from G any
edges directed towards r. Assuming that there is an MSA in G rooted at
r, then clearly, the algorithm described above will find it. More generally,
assume that we wish to find a maximum branching with a set of specified
root R. Assuming that there is such a branching, then we can remove the
edges directed towards any vertex in R and apply Edmonds’s algorithm.
The only results that need to be modified are Lemma 1, Theorem 1, and
Theorem 2. The modifications are trivial.

To obtain a maximum branching with arbitrary roots, we only need to
change the definition of a critical edge: we call an edge e = (u, v) critical if
w(e) is maximal among all edges coming in to v and w(e) > 0. Again, with
this modified definition, the corresponding modified results of the previous
section can easily be proved.

In terms of implementations of algorithms, if a set of roots is specified,
then simply do not include in H edges coming into a root. If a branching
with arbitrary roots is desired rather than an MSA with an arbitrary root,
simply do not include in H any edges whose weight is zero or negative.

3 Tarjan’s Implementation

This section contains pseudocode for Tarjan’s implementation of Edmonds’s
algorithm. The variant of the code given here finds an MSA with an arbi-
trary root assuming that there is at least one spanning arborescence in
the input graph. This code uses Tarjan’s modification for dense graphs to
achieve a running time of O(n2), and incorporates the corrections given by
Camerini et. al. in [2]. See the pseudocode at the end of this section.

The algorithm works by attempting to build a maximal critical graph
by arbitrarily choosing one of the maximum weight incoming edges of each
vertex. However, as soon a cycle is formed, the cycle is contracted and
treated as a single vertex. To keep track of the vertices and supervertices, as
well as being able to detect cycles efficiently, two disjoint set datastructures
are used.

Disjoint sets are datastructures on which three operations are defined:
makeset, find, union. The operation makeset(i) creates a set containing i
as the sole member. In this case i will also be the representative of the set.
The operation find(i) will return the representative of the set containing i.
Finally, union(i, j) will destroy the sets represented by i and j and create
a new set containing the elements of both sets. The representative of the
new set will be some member of the new set. A sequence of m operations
on such a datastructure takes time O(mα(m)), where α(m) is the inverse
of the extremely quickly-growing ackermann function A(m,m). The value

7

of α(m) is less than 5 for all remotely practical purposes and can thus be
viewed as a constant.

A datastructure S is used to keep track of all current supervertices (these
were referred to as strongly connected components in [8]). When a cycle has
been created, the sets corresponding to the vertices of the cycle are unioned
into one component in S. Also, a disjoint set datastructure called W is used
to keep track of the, so called, weakly connected components. Whenever
an edge is added to the critical graph, either a cycle has been created, or
two distinct connected components of the critical graph have been joined
together to one connected component. Each vertex of G belongs to one
weakly connected component in W . Hence, the addition of an edge (u, v)
into the critical graph creates a cycle if and only if u and v belong to the
same weakly connected component.

We use a rooted forrest of edges of G to keep track of the edges currently
in the critical graph. Each time an edge is conceptually chosen as an edge
in the critical graph, it is also added to F . If the edge points into a set of S
that consists of more than one vertex of G, i.e., the set in S corresponds to
a cycle, then the edges in the cycle become the children of the newly added
edge in F . In this way, the roots of F are the edges of the current critical
graph of the graph whose vertices are the sets in S.

When extending the critical graph we need to find a maximum weight
incoming edge of our chosen vertex v. To this end, we keep a list I[v]
that holds all incoming edges of v. The list is sorted on the tails of the
edges and contains at most one edge from any vertex, i.e., if (u, v) ∈ I[v]
and (u′, v) ∈ I[v] are distinct edges, then u 6= u′. This allows us to find
a maximum weight incoming edge of v in time O(|V |) and also allows for
efficient join operation of two lists. Whenever two or more sets in S are
unioned into one set, then the corresponding lists of incoming edges must
also be joined into one list.

Other variables and datastructures in the algorithm are:

roots contains the strongly connected components that are roots in the
current critical graph, i.e., no incoming edge has been chosen for these
vertices/supervertices.

min keeps track of the possible roots of the MSA. If a supervertex repre-
sented by v has been chosen as root at the end of the algorithm, then
min[v] is the vertex of G that will be the root of the MSA.

root is the vertex that has been identified as the final root in the critical
graph. Note that this may be a supervertex, in which case min[root]
is the vertex of G that is chosen as the root of the MSA.

enter keeps track of the incoming edges of the strongly connected compo-
nents in the critical graph. If v is the representative of the strongly

8

connected component Sv, then enter[v] is the edge of the critical
graph that points into Sv (or ∅ if no such edge exists).

λ is an array of pointers, pointing to leaves of F . More specifically, if v ∈ V ,
then λ[v] is the leaf of F whose head is v. If no such leaf exists, then
λ[v] is ∅.

cycle contains the edges comprising the cycles of the strongly connected
components of the critical graph.

As for the time complexity, we can reason informally as follows. During
the execution of the first part of the algorithm, i.e., while we are adding edges
to the critical graph, we will create O(n) strongly connected components.
Therefore, the first while-loop will be executed at most O(n) times. Finding
a maximum weight incoming edge on line 16 takes O(n). Finding a cycle on
line 25 takes O(n) since the critical graph never contains more than O(n)
edges. We can subract a number from all edges in a list I[v] on line 31 by
storing the subtracted value with I[v]. We can then use this to subtract
the actual weights from the edges when merging lists. So this takes O(1).
There are at most O(n) union operations in total on line 34 during the entire
execution of the algorithm (again, since at moste O(n) strongly connected
components are created). By the same reasoning, no more than O(n) list
merges are performed during the entire algorithm on line 39, where each
merge takes O(n) time. Hence, the first part of the algorithm takes O(n)
time. It is easy to verify that the second part of the algorithm, where the
expansion takes place, takes time O(n). Hence, the entire algorithm takes
time O(n2).

For sparse graphs a time complexity of O(m log n) is preferable. This
can be achieved by changing the datastructure used to keep track of the
incoming edges of each vertex, i.e., lists, to priority queues. We will need
an implementation of priority queues that allows merging of distinc queues
in time O(logn) where n is the total number of elements in the two queues.

It is easy to modify the algorithm to accomodate the different variations.
To obtain an MSA rooted at a specified vertex ρ, just initialize root to ρ
and remove ρ from roots. This has the same effect as if ρ had no incoming
edges at all. To obtain a maximum branching with a specified set of roots,
let root be the set of specified roots instead and remove these from roots
in the beginning of the algorithm. The if-statement on line 43 then becomes
a while loop instead. In both these cases, the array min can be dispensed
with. Finally, to obtain a maximum branching with arbitrary roots, only
add edges to F if the current cost is positive. Line 16 needs to be changed
in that case. Also, root becomes a set and must be updated during the
algorithm.

9

Input: Directed Graph G = 〈E, V 〉, weight function w : E → <
Output: An MSA of G
S ← new disjoint set; W ← new disjoint set1

F ← new empty forest2

For each v ∈ V , let I[v] be the list of all incoming edges of v3

foreach v ∈ V do4

Sort the edges in I[v] by the tails using radix sort5

S.makeset(v); W.makeset(v)6

min[v]← v7

end8

roots← V9

while roots 6= ∅ do10

r ← roots.pop()11

if I[r] = ∅ then12

root← r13

break14

end15

(u, v)← argmax
e∈I[r]

w(e)
16

Insert (u, v) as a node in F with any edges in cycle[r] as children17

if cycle[r] = ∅ then18

λ[v]← pointer that points to the node (u, v) of F19

end20

if W.find(u) 6= W.find(u) then21

W.union(W.find(u), W.find(v))22

enter[r]← (u, v)23

else24

C ← the edges of the newly created cycle between components in S25

e← argmin
e′∈C

w(e′)
26

X ← ∅27

for (u′, v′) ∈ C do28

k ← S.find(v’)29

X ← X ∪ {k}30

Subract w(u′, v′)− w(e) from the cost of all elements in I[k]31

end32

m← min[S.find(head(e))]33

Union all components in X into one component of S34

Let r′ be the representative of the new component35

min[r′]← m36

roots← roots ∪ {r′}37

cycle[r′]← C38

Merge the lists I[k] for k ∈ X into one list I[r′]39

omitting any edges from Sr′ to Sr′40

end41

end42

if λ[min[root]] 6= ∅ then43

Identify the path P in F from a root node to λ[min[root]]44

Delete from F all nodes of P and all arcs directed out of these nodes45

end46

B ← ∅47

N ← set of root vertices of F48

while N 6= ∅ do49

pick any root node (u, v) ∈ N and add it to B50

Identify the path P in F from (u, v) to λ[v]51

Delete from F all nodes of P and all arcs directed out of these nodes52

Update the set N with any new root nodes of F53

end54

return B55

References

[1] F. Bock. An algorithm to construct a minimum directed spanning tree
in a directed network. Developments in Operations Res. 1, Proc. 3rd
annual Israel Conf. Operations Res., 1969.

[2] P. M. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum
branchings. Networks, 9(4):309–312, 1979.

[3] P.M. Camerini, L. Fratta, and F. Maffioli. The K best spanning arbores-
cences of a network. Networks, 10(2):91–110, 1980.

[4] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed
graph. Sci. Sinica, 14:1396–1400, 1965.

[5] J. Edmonds. Optimum Branchings, Mathematics and the Decision Sci-
ences, Part 1. Amer. Math. Soc. Lectures Appl. Math, 11:335–345, 1968.

[6] H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan. Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs.
Combinatorica, 6(2):109–122, 1986.

[7] RM Karp. A simple derivation of Edmonds’ algorithm for optimum
branching. Networks, 1(265-272):5, 1971.

[8] R. E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

11

