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Heaps [haldy]
 heap

 a heap is a specialized data structure (usually tree-based) that satisfies the            

heap property: 

If B is a child node of A, then key(B) ≥ key(A). 

 The heap is one the most efficient implementation of an abstract data type called a 

priority queue. 

 The operations commonly performed with a heap are:

 Insert (x)

 adds a new key x to the heap.

 AccessMin

 finds and returns the minimum item of the heap.

 DeleteMin

 removes the minimum node of the heap (usually, the minimum node is the root of a 

heap).

 DecreaseKey (x,d)

 decreases x key within the heap by d.

 Merge (H1, H2)

 joins two heaps H1 and H2 to form a valid new heap containing all the elements of both.

 Delete (x)

 removes a key x of a heap.
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Binary Heap [binární halda]

 binary heap
 A binary heap is a binary tree with two additional constraints:

1) It is a complete binary tree except the last level; that is, all levels of 

the tree, except possibly the last one (deepest) are fully filled. If the 

last level of the tree is not complete, the nodes of that level are 

filled from left to right.

2) Each node is less than or equal to each of its children according to 

a comparison predicate ≤ over keys.
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3

Binary Heap - Insert

 Insert (x)
1. Add a node x at the end of the heap;

2. while ( key(parent(x)†) > key(x) ) {

3. Swap a location of the node x with the node parent(x);

4. } 
†parent(x) returns the parent of a node x. It returns x in the case where x  has no parent.

3

3
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Binary Heap
 AccessMin

 Returns the root of the heap’s binary tree.

 DeleteMin
1. &x = a location of the root of the heap;

2. key(x) = +∞; 

3. &y = a location of the last node of the heap;

4. do {

5. Swap a location of the node x with a location of the node y; 

6. &x = &y;

7. for each z ∈ descendants(x) do

8. if ( key(y) > key(z) ) then &y = &z;

9. } while ( &x ≠ &y );

10. Remove the last node of the heap.

 DecreaseKey (x , d )
 First, decrease the key of x by d and then apply the similar algorithm as in Insert

case.
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+∞

Binary Heap - Delete

 Delete (&x)
1. key(x) = +∞; &y = a location of the last node of the heap;

2. do {

3. Swap a location of the node x with a location of the node y;

4. &x = &y;

5. for each z ∈ descendants(x) do

6. if ( key(y) > key(z) ) then &y = &z;

7. } while (&x ≠ &y );

8. while ( key(parent(x)) > key(x) ) {

9. Swap a location of the node x with the node parent(x);

10. }

11. Remove the last node of the heap.
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Binary Heap - Representation

 data representation
 bidirectional tree structure        

(using pointers)

 array (the root is placed at index 1)

node
n

1st child
2*n

or equivalently n << 1

2nd child
(2*n)+1

or equivalently (n << 1) + 1

parent
n div 2

or equivalently n >> 1

…
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Binary Heap - BuildHeap
 BuildHeap ( array A )

1. for i = 
length(𝐴)

2
downto 1 do {

2. Heapify(A,i);

3. }

 Heapify ( array A, index i )

1. min = i;

2. do {

3. left = 2∙i;

4. right = 2∙i  +  1;

5. if (left ≤ length(A)) and (A[left] < A[min]) then min = left;

6. if (right ≤ length(A)) and (A[right] < A[min]) then min = right;

7. if min = i then break; 

8. swap A[i] ↔ A[min];

9. i = min;

10. } while true;
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Binary Heap – Time Complexity
 Insert

 O(log(n))

 Delete
 O(log(n))

 AccessMin
 O(1)

 DeleteMin
 O(log(n))

 DecreaseKey
 O(log(n))

 BuildHeap

  ℎ=0
log 𝑛

number of nodes at heigh ℎ ∙ Ο(ℎ) ≤  ℎ=0
log 𝑛 𝑛

2ℎ+1
∙ Ο(ℎ) ≤Ο(𝑛 ∙  ℎ=0

∞ ℎ

2ℎ
) =

O(n) 

 Merge
 O(n) by building a new heap.
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d-ary heap [d-regulární halda]

 A d-ary heap is a generalization of the binary heap in which the 
nodes have d children instead of 2.

 Operations for d-ary heap are analogical to the operations for binary 
heap.

 Asymptotic time complexity of d-ary heap operations is the same as 
binary heap operations.

 Exact complexity differs because of a different logarithm base (the 
base is d). For Delete operation it is needed to check d instead of 2 
descendants in every loop.

 For an efficient implementation it is convenient to choose d as 
powers of 2. In this case, bit shifts can be used for traversing the 
array representation.

 A d-ary heap typically runs much faster than a binary heap for heap 
sizes that exceed the size of the computer's cache memory.
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Binomial Heap [binomiální halda]
 binomial heap

 A binomial heap is a collection of binomial trees of degrees: 

i=0,…,⌊log(n)⌋. There can only be either one or zero binomial trees for 

each degree, including zero degree. Each binomial tree in a heap obeys 

the heap property: the key of a node is less than or equal to the key of 

its child.

 A binomial tree is defined recursively: 

 A binomial tree of order 0 is a single node 

 A binomial tree of degree k has a root node whose children are 

roots of binomial trees of degrees k−1, k−2, ..., 2, 1, 0 (in this order).

degree:     0       1                  2                                    3
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Binomial Heap – Binomial Tree

 for a binomial tree Bk (of degree k) it holds:
 It satisfies the heap property, 

 the height of the tree is k,

 its root has k children,

 there are 2k nodes,

 there are exactly 𝑘
𝑖

nodes at depth i for i = 0, 1, ..., k.

 an alternative definition of a binomial tree: 
 A binomial tree Bk (of degree k) consists of two binomial 

trees Bk-1 (of degree k-1) that are linked together: the 

root of one, which is greater than the other, is the 

leftmost child of the root of the other. 
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Binomial Heap – representation

 Because no operation requires random access to the root 
nodes of the binomial trees, the roots of the binomial trees 
can be stored in a linked list, ordered by increasing degree 
of the tree. But of course, binomial trees can be stored in 
array as well.

 The whole binomial heap is formed by binomial trees and 
an additional pointer to a binomial tree with a the 
minimum node of the whole heap (MIN pointer ). MIN is 
always root by the heap property. MIN must be updated 

when performing any operation other than AccessMin. 
This can be done in O(log n) without raising the running 
time of any operation.
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Binomial Heap – Insert, AccessMin, Merge

 Insert (x)

1. Create a new heap containing only this element (there is only one tree of 

degree 0).

2. Merge it with the original heap. 

 AccessMin

 It returns the root of a binomial tree from MIN pointer.

 Merge (H1, H2)

 Because each binomial tree in a binomial heap corresponds to a bit in the 

binary representation of its size, there is an analogy between the merging of 

two heaps and the binary addition of the sizes of the two heaps, from right-

to-left. Whenever a carry occurs during addition, this corresponds to a 

merging of two binomial trees during the merge. Due to the structure of 

binomial trees, they can be merged trivially. As their root node is the 

smallest element within the tree, by comparing  the two keys, the smaller of 

them is the minimum key, and becomes the new root node. Then the other 

tree becomes a subtree of the combined tree. In the end, we update MIN

pointer.
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Binomial Heap - Merge

MIN

MIN

MIN
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Binomial Heap - DeleteMin

1. procedure DeleteMin(binomial_heap H)

2. tree_with_minimum = H.MIN;

3. for each tree ∈ tree_with_minimum.subTrees do {

4. tmp.addTree(tree);

5. }

6. H.removeTree(tree_with_minimum )†;

7. H = Merge(H, tmp);

† Technically, this operation removes only the root of tree_with_minimum. 
All children subtrees of the root are used in tmp heap which is merged at 
line 7. 
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Binomial Heap – DecreaseKey, Delete

 DecreaseKey
 It is analogical to binary heap DecreaseKey.

 After decreasing the key of an element, it may become smaller 

than the key of its parent, violating the heap property. If this is 

the case, exchange the element with its parent, and possibly also 

with its grandparent, and so on, until the heap property is no 

longer violated. Each binomial tree has height at most log n, so 

this takes O(log n) time.

 Delete (x)
1. decrease x key to -∞ (that is, some value lower than any element 

in the heap) by DecreaseKey.

2. delete the minimum in the heap by DeleteMin.
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Binomial Heap – Time Complexity

 Merge
 O(log(n))

 Insert
 O(log(n))

 The amortized complexity is O(1). It is analogical to a binary counter increment.

 AccessMin
 O(1)

 DeleteMin
 O(log(n))

 DecreaseKey
 O(log(n))

 Delete
 O(log(n))
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Amortized Complexity [amortizovaná složitost]

 In an amortized analysis, the time required to perform a 
sequence of data-structure operations is averaged over all 
the operations performed.

 Amortized analysis can be used to show that the average 
cost of an operation is small, if one averages over a 
sequence of operations, even though a single operation 
within the sequence might be expensive. 

 Amortized analysis differs from average-case analysis in 
that probability is not involved; an amortized analysis 
guarantees the average performance of each 
operation in the worst case.
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Amortized Complexity
 Example: A Complexity of INSERT in a dynamic array

 A dynamic array is an array which resizes by a doubling in size in 

the case that it is full, and uses the reserved space for future 

expansions. 

 INSERT  without resize requires O(1), for N elements without resize 

O(N).

 If the array is full then the reallocation (resizing) is needed. In the 

worst case, this operation takes O(N). 

 For insertion of N elements including reallocation we need in the 

worst case O(N/2) + O(N/4) +...+ O(N/2 log N) + O(N) = O(N) + O(N) 

= O(N). 

 

𝑖=0

log 𝑁
𝑁

2𝑖
< 𝑁 ∙ 

𝑖=0

∞
1

2𝑖
= 2𝑁

 Then the amortized time complexity for one INSERT operation is 

O(N)/N = O(1).
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Fibonacci Heap [Fibonacciho halda]
 A Fibonacci heap, in fact, is loosely based on binomial heap.

 Fibonacci heaps have a more relaxed structure than binomial heaps, 
however, allowing for improved asymptotic time bounds.

 Fibonacci heaps support the same operations but have the 
advantage that operations that do not involve deleting an element 
(AccessMin, Merge, and DecreaseKey) run in O(1) amortized 
time.

 Operations Delete and DeleteMin have O(log(n)) amortized time 

complexity.

 The usage of Fibonacci heaps is not suitable for real-time systems, 
because some operations can have a linear time complexity in the 
worst case.

 From a practical point of view, however, the constant factors and 
programming complexity of Fibonacci heaps make them less 
desirable than ordinary binary (or d-ary) heaps for most 
applications.
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Fibonacci Heap

 Like a binomial heap, a Fibonacci heap is a collection of trees that satisfy 
the heap property.

 Unlike trees within binomial heaps, which are ordered, trees within 
Fibonacci heaps are rooted but unordered. 

 An unordered binomial tree is like a binomial tree, and it is also defined 
recursively. The unordered binomial tree U0 consists of a single node, and 
an unordered binomial tree Uk consists of two unordered binomial trees Uk-1

so that the root of one is made into any child of the root of the other.

 Compared with binomial heaps, the structure of a Fibonacci heap is more 
flexible. The trees do not have a prescribed shape and in the extreme case 
the heap can have every element in a separate tree. 

 This flexibility allows some operations to be executed in a "lazy" manner, 
postponing the work for later operations. For example merging heaps is 
done simply by concatenating the two lists of trees, and sometimes 
operation decrease key cuts a node from its parent and forms a new tree.
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Fibonacci Heap – Fibonacci Trees
 Every node has degree (= the number of children) at most O(log n) and the size of a subtree

rooted in a node of degree k is at least F k +2, where F k is the k-th Fibonacci number. 

F𝑛 =  
0, for 𝑛 = 0;
1, for 𝑛 = 1;

F𝑛−2 + F𝑛−1 otherwise.

 This is achieved by the following two Fibonacci tree rules: 

1. We can cut at most one child of each non-root node. 

2. When a second child is cut, the node itself needs to be cut from its parent and 

becomes the root of a new tree. 

 The number of trees is decreased in the operation DeleteMin, where trees are consolidated 
together. 
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Fibonacci Heap – Representation

 Unlike trees within binomial heaps, which are ordered, trees within Fibonacci heaps are rooted but 
unordered. Each node x contains a pointer to its parent and a pointer to any one of its children. The 
children of x are linked together in a circular, doubly linked list.

 The roots of all the trees in a Fibonacci heap are linked together into a circular, doubly linked list called 
the root list of the Fibonacci heap.

MIN

MIN
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Fibonacci Heap – Representation

 N is the actual number of elements in the heap.

 MIN is a pointer to the minimum element in the heap. It 
must be always a root from the root list of the heap.

 key(x) is a value of the key of the element x.

 mark(x) is a Boolean value which indicates whether node 
x has lost a child since the last time x was made the child 

of another node. Newly created nodes are unmarked, and 
a node x becomes unmarked whenever it is made the child 

of another node.

 descendants(x) returns all children of x. 

 parent(x) returns parent of a node x. It returns x in case 
where x has no parent.
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Fibonacci Heap – Merge, Insert

 Merge (H1, H2)
 Connect both doubly cyclic linked lists to one and then update 

pointer to MIN.

 O(1)

 AccessMin
 It returns the root of the Fibonacci tree from MIN pointer.

 O(1)

 Insert (x)
1. Create a new heap containing only x element (there is only one 

tree of degree 0).

2. mark(x) = false;

3. Merge it with the original heap. 

 O(1)
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Fibonacci Heap – DeleteMin

 DeleteMin
1. z = MIN;

2. if  z≠ null then {

3. for each x ∈ descendants(z) do

4. add x to the root list of the heap;

5. remove z from the root list of the heap;

6. if N = 1 then

7. MIN = null

8. else {

9. MIN = any pointer to a root from the root list of the heap;

10. Consolidate;

11. }

12. N--;

13. }

time complexity: O(N)

amortized: O(log(N))
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Fibonacci Heap – Consolidate
 Consolidate

1. for i = 0 to max. possible degree of a tree in Fibonacci heap of size N do A[i] = null;

2. for each w ∈ all trees in the root list of the heap do {

3. x = w; d = a degree of the tree w;

4. while A[d] ≠ null do {

5. y = A[d];

6. if key(x) > key(y) then swap x and y;

7. remove y from the root list of the Heap;

8. make y a child of x, incrementing the degree of x;

9. mark(y) = false; A[d] = null; d++;

10. }

11. A[d] = x;

12. }

13. MIN = null;

14. for i = 0 to max. degree of a tree in the array A do

15. if A[i] ≠ null then {

16. add A[i] to the root list of the heap;

17. If  (MIN = null) or (key(A[i]) < key(MIN)) then MIN = A[i]; 

18. }

time complexity: O(N)

amortized: O(log N)
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Fibonacci Heap – DeleteMin Example

MIN

MIN

1. Consider the following

Fibonacci heap.

2. The situation after the 

minimum node z is 
removed from the root list 
and its children are added 
to the root list.
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3. The array A and the trees 

after each of the first three 
iterations of the for each
loop of lines 2-12 of the 
procedure Consolidate. The 
root list is processed by 
starting at the node pointed 
to by MIN and following 
right pointers. Each part 
shows the values of w and x
at the end of an iteration.

4.

Fibonacci Heap – DeleteMin Example
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5.

6. The Figure shows the 

situation after the first time 
through the while loop. The 
node with key 23 has been 
linked to the node with key 
7, which is now pointed to 
by x.

Fibonacci Heap – DeleteMin Example
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7. The node with key 17 has 

been linked to the node with 
key 7, which is still pointed 
to by x.

8. The node with key 24 has 

been linked to the node with 
key 7. Since no node was 
previously pointed to by 
A[3], at the end of the for
each loop iteration, A[3] is 
set to point to the root of 
the resulting tree.

Fibonacci Heap – DeleteMin Example
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9. The situations after each of 

the next four iterations of the 
for each loop.

10.

Fibonacci Heap – DeleteMin Example
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11.

12.

Fibonacci Heap – DeleteMin Example
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13. The Fibonacci heap after 

reconstruction of the root list 
from the array A and 
determination of the new MIN
pointer. 

Fibonacci Heap – DeleteMin Example

MIN
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Fibonacci Heap – DecreaseKey, Delete

 DecreaseKey (x,d)
1. key(x) = key(x) – d;

2. y = parent(x);

3. if (x ≠ y) and (key(x) < key(y)) then {

4. Cut(x,y);

5. Cascading-Cut(y);

6. }

7. If key(x) < key(MIN) then MIN = x;

time complexity: O(log N)

amortized: O(1)

 Cascading-Cut (y)
1. z = parent(y);

2. if (y≠ z) then 

3. if mark(y) = false then mark(y) = true

4. else {    

5. Cut(y,z);

6. Cascading-Cut(z);

7. }

time complexity: O(log N)

amortized: O(1)

 Delete(x)
1. DecreaseKey(x,∞)

2. DeleteMin;

time complexity: O(N)

amortized: O(log N)

 Cut(x,y)
1. remove x from the child list of y, 

decrementing the degree of y;

2. add x to the root list of the heap;

3. mark(x) = false;

time complexity: O(1)
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Heaps – Comparison of Time Complexity

binary heap d -ary heap binomial
heap

Fibonacci
heap

AccessMin Θ(1) Θ(1) Θ(1) Θ(1)

DeleteMin Θ(log(n)) Θ(log(n)) Θ(log(n))
O(n)
amortized:
O(log(n))

Insert Θ(log(n)) Θ(log(n))
O(log(n))
amortized:
O(1)

Θ(1)

Delete Θ(log(n)) Θ(log(n)) O(log(n))
O(n)
amortized:
O(log(n))

Merge Θ(n) Θ(n) O(log(n)) Θ(1)

DecreaseKey Θ(log(n)) Θ(log(n)) Θ(log(n))
O(log(n))
amortized:
O(1)
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