
Advanced algorithms

binary heap, d-ary heap, binomial heap,

amortized analysis, Fibonacci heap

Jiří Vyskočil, Radek Mařík

2013

Advanced algorithms
2 / 38

Heaps [haldy]
 heap

 a heap is a specialized data structure (usually tree-based) that satisfies the

heap property:

If B is a child node of A, then key(B) ≥ key(A).

 The heap is one the most efficient implementation of an abstract data type called a

priority queue.

 The operations commonly performed with a heap are:

 Insert (x)

 adds a new key x to the heap.

 AccessMin

 finds and returns the minimum item of the heap.

 DeleteMin

 removes the minimum node of the heap (usually, the minimum node is the root of a

heap).

 DecreaseKey (x,d)

 decreases x key within the heap by d.

 Merge (H1, H2)

 joins two heaps H1 and H2 to form a valid new heap containing all the elements of both.

 Delete (x)

 removes a key x of a heap.

Advanced algorithms
3 / 38

Binary Heap [binární halda]

 binary heap
 A binary heap is a binary tree with two additional constraints:

1) It is a complete binary tree except the last level; that is, all levels of

the tree, except possibly the last one (deepest) are fully filled. If the

last level of the tree is not complete, the nodes of that level are

filled from left to right.

2) Each node is less than or equal to each of its children according to

a comparison predicate ≤ over keys.

Advanced algorithms
4 / 38

3

Binary Heap - Insert

 Insert (x)
1. Add a node x at the end of the heap;

2. while (key(parent(x)†) > key(x)) {

3. Swap a location of the node x with the node parent(x);

4. }
†parent(x) returns the parent of a node x. It returns x in the case where x has no parent.

3

3

Advanced algorithms
5 / 38

Binary Heap
 AccessMin

 Returns the root of the heap’s binary tree.

 DeleteMin
1. &x = a location of the root of the heap;

2. key(x) = +∞;

3. &y = a location of the last node of the heap;

4. do {

5. Swap a location of the node x with a location of the node y;

6. &x = &y;

7. for each z ∈ descendants(x) do

8. if (key(y) > key(z)) then &y = &z;

9. } while (&x ≠ &y);

10. Remove the last node of the heap.

 DecreaseKey (x , d)
 First, decrease the key of x by d and then apply the similar algorithm as in Insert

case.

Advanced algorithms
6 / 38

+∞

Binary Heap - Delete

 Delete (&x)
1. key(x) = +∞; &y = a location of the last node of the heap;

2. do {

3. Swap a location of the node x with a location of the node y;

4. &x = &y;

5. for each z ∈ descendants(x) do

6. if (key(y) > key(z)) then &y = &z;

7. } while (&x ≠ &y);

8. while (key(parent(x)) > key(x)) {

9. Swap a location of the node x with the node parent(x);

10. }

11. Remove the last node of the heap.

Advanced algorithms
7 / 38

Binary Heap - Representation

 data representation
 bidirectional tree structure

(using pointers)

 array (the root is placed at index 1)

node
n

1st child
2*n

or equivalently n << 1

2nd child
(2*n)+1

or equivalently (n << 1) + 1

parent
n div 2

or equivalently n >> 1

…

Advanced algorithms
8 / 38

Binary Heap - BuildHeap
 BuildHeap (array A)

1. for i =
length(𝐴)

2
downto 1 do {

2. Heapify(A,i);

3. }

 Heapify (array A, index i)

1. min = i;

2. do {

3. left = 2∙i;

4. right = 2∙i + 1;

5. if (left ≤ length(A)) and (A[left] < A[min]) then min = left;

6. if (right ≤ length(A)) and (A[right] < A[min]) then min = right;

7. if min = i then break;

8. swap A[i] ↔ A[min];

9. i = min;

10. } while true;

Advanced algorithms
9 / 38

Binary Heap – Time Complexity
 Insert

 O(log(n))

 Delete
 O(log(n))

 AccessMin
 O(1)

 DeleteMin
 O(log(n))

 DecreaseKey
 O(log(n))

 BuildHeap

 ℎ=0
log 𝑛

number of nodes at heigh ℎ ∙ Ο(ℎ) ≤ ℎ=0
log 𝑛 𝑛

2ℎ+1
∙ Ο(ℎ) ≤Ο(𝑛 ∙ ℎ=0

∞ ℎ

2ℎ
) =

O(n)

 Merge
 O(n) by building a new heap.

Advanced algorithms
10 / 38

d-ary heap [d-regulární halda]

 A d-ary heap is a generalization of the binary heap in which the
nodes have d children instead of 2.

 Operations for d-ary heap are analogical to the operations for binary
heap.

 Asymptotic time complexity of d-ary heap operations is the same as
binary heap operations.

 Exact complexity differs because of a different logarithm base (the
base is d). For Delete operation it is needed to check d instead of 2
descendants in every loop.

 For an efficient implementation it is convenient to choose d as
powers of 2. In this case, bit shifts can be used for traversing the
array representation.

 A d-ary heap typically runs much faster than a binary heap for heap
sizes that exceed the size of the computer's cache memory.

Advanced algorithms
11 / 38

Binomial Heap [binomiální halda]
 binomial heap

 A binomial heap is a collection of binomial trees of degrees:

i=0,…,⌊log(n)⌋. There can only be either one or zero binomial trees for

each degree, including zero degree. Each binomial tree in a heap obeys

the heap property: the key of a node is less than or equal to the key of

its child.

 A binomial tree is defined recursively:

 A binomial tree of order 0 is a single node

 A binomial tree of degree k has a root node whose children are

roots of binomial trees of degrees k−1, k−2, ..., 2, 1, 0 (in this order).

degree: 0 1 2 3

Advanced algorithms
12 / 38

Binomial Heap – Binomial Tree

 for a binomial tree Bk (of degree k) it holds:
 It satisfies the heap property,

 the height of the tree is k,

 its root has k children,

 there are 2k nodes,

 there are exactly 𝑘
𝑖

nodes at depth i for i = 0, 1, ..., k.

 an alternative definition of a binomial tree:
 A binomial tree Bk (of degree k) consists of two binomial

trees Bk-1 (of degree k-1) that are linked together: the

root of one, which is greater than the other, is the

leftmost child of the root of the other.

Advanced algorithms
13 / 38

Binomial Heap – representation

 Because no operation requires random access to the root
nodes of the binomial trees, the roots of the binomial trees
can be stored in a linked list, ordered by increasing degree
of the tree. But of course, binomial trees can be stored in
array as well.

 The whole binomial heap is formed by binomial trees and
an additional pointer to a binomial tree with a the
minimum node of the whole heap (MIN pointer). MIN is
always root by the heap property. MIN must be updated

when performing any operation other than AccessMin.
This can be done in O(log n) without raising the running
time of any operation.

Advanced algorithms
14 / 38

Binomial Heap – Insert, AccessMin, Merge

 Insert (x)

1. Create a new heap containing only this element (there is only one tree of

degree 0).

2. Merge it with the original heap.

 AccessMin

 It returns the root of a binomial tree from MIN pointer.

 Merge (H1, H2)

 Because each binomial tree in a binomial heap corresponds to a bit in the

binary representation of its size, there is an analogy between the merging of

two heaps and the binary addition of the sizes of the two heaps, from right-

to-left. Whenever a carry occurs during addition, this corresponds to a

merging of two binomial trees during the merge. Due to the structure of

binomial trees, they can be merged trivially. As their root node is the

smallest element within the tree, by comparing the two keys, the smaller of

them is the minimum key, and becomes the new root node. Then the other

tree becomes a subtree of the combined tree. In the end, we update MIN

pointer.

Advanced algorithms
15 / 38

Binomial Heap - Merge

MIN

MIN

MIN

Advanced algorithms
16 / 38

Binomial Heap - DeleteMin

1. procedure DeleteMin(binomial_heap H)

2. tree_with_minimum = H.MIN;

3. for each tree ∈ tree_with_minimum.subTrees do {

4. tmp.addTree(tree);

5. }

6. H.removeTree(tree_with_minimum)†;

7. H = Merge(H, tmp);

† Technically, this operation removes only the root of tree_with_minimum.
All children subtrees of the root are used in tmp heap which is merged at
line 7.

Advanced algorithms
17 / 38

Binomial Heap – DecreaseKey, Delete

 DecreaseKey
 It is analogical to binary heap DecreaseKey.

 After decreasing the key of an element, it may become smaller

than the key of its parent, violating the heap property. If this is

the case, exchange the element with its parent, and possibly also

with its grandparent, and so on, until the heap property is no

longer violated. Each binomial tree has height at most log n, so

this takes O(log n) time.

 Delete (x)
1. decrease x key to -∞ (that is, some value lower than any element

in the heap) by DecreaseKey.

2. delete the minimum in the heap by DeleteMin.

Advanced algorithms
18 / 38

Binomial Heap – Time Complexity

 Merge
 O(log(n))

 Insert
 O(log(n))

 The amortized complexity is O(1). It is analogical to a binary counter increment.

 AccessMin
 O(1)

 DeleteMin
 O(log(n))

 DecreaseKey
 O(log(n))

 Delete
 O(log(n))

Advanced algorithms
19 / 38

Amortized Complexity [amortizovaná složitost]

 In an amortized analysis, the time required to perform a
sequence of data-structure operations is averaged over all
the operations performed.

 Amortized analysis can be used to show that the average
cost of an operation is small, if one averages over a
sequence of operations, even though a single operation
within the sequence might be expensive.

 Amortized analysis differs from average-case analysis in
that probability is not involved; an amortized analysis
guarantees the average performance of each
operation in the worst case.

Advanced algorithms
20 / 38

Amortized Complexity
 Example: A Complexity of INSERT in a dynamic array

 A dynamic array is an array which resizes by a doubling in size in

the case that it is full, and uses the reserved space for future

expansions.

 INSERT without resize requires O(1), for N elements without resize

O(N).

 If the array is full then the reallocation (resizing) is needed. In the

worst case, this operation takes O(N).

 For insertion of N elements including reallocation we need in the

worst case O(N/2) + O(N/4) +...+ O(N/2 log N) + O(N) = O(N) + O(N)

= O(N).

𝑖=0

log 𝑁
𝑁

2𝑖
< 𝑁 ∙

𝑖=0

∞
1

2𝑖
= 2𝑁

 Then the amortized time complexity for one INSERT operation is

O(N)/N = O(1).

Advanced algorithms
21 / 38

Fibonacci Heap [Fibonacciho halda]
 A Fibonacci heap, in fact, is loosely based on binomial heap.

 Fibonacci heaps have a more relaxed structure than binomial heaps,
however, allowing for improved asymptotic time bounds.

 Fibonacci heaps support the same operations but have the
advantage that operations that do not involve deleting an element
(AccessMin, Merge, and DecreaseKey) run in O(1) amortized
time.

 Operations Delete and DeleteMin have O(log(n)) amortized time

complexity.

 The usage of Fibonacci heaps is not suitable for real-time systems,
because some operations can have a linear time complexity in the
worst case.

 From a practical point of view, however, the constant factors and
programming complexity of Fibonacci heaps make them less
desirable than ordinary binary (or d-ary) heaps for most
applications.

Advanced algorithms
22 / 38

Fibonacci Heap

 Like a binomial heap, a Fibonacci heap is a collection of trees that satisfy
the heap property.

 Unlike trees within binomial heaps, which are ordered, trees within
Fibonacci heaps are rooted but unordered.

 An unordered binomial tree is like a binomial tree, and it is also defined
recursively. The unordered binomial tree U0 consists of a single node, and
an unordered binomial tree Uk consists of two unordered binomial trees Uk-1

so that the root of one is made into any child of the root of the other.

 Compared with binomial heaps, the structure of a Fibonacci heap is more
flexible. The trees do not have a prescribed shape and in the extreme case
the heap can have every element in a separate tree.

 This flexibility allows some operations to be executed in a "lazy" manner,
postponing the work for later operations. For example merging heaps is
done simply by concatenating the two lists of trees, and sometimes
operation decrease key cuts a node from its parent and forms a new tree.

Advanced algorithms
23 / 38

Fibonacci Heap – Fibonacci Trees
 Every node has degree (= the number of children) at most O(log n) and the size of a subtree

rooted in a node of degree k is at least F k +2, where F k is the k-th Fibonacci number.

F𝑛 =
0, for 𝑛 = 0;
1, for 𝑛 = 1;

F𝑛−2 + F𝑛−1 otherwise.

 This is achieved by the following two Fibonacci tree rules:

1. We can cut at most one child of each non-root node.

2. When a second child is cut, the node itself needs to be cut from its parent and

becomes the root of a new tree.

 The number of trees is decreased in the operation DeleteMin, where trees are consolidated
together.

Advanced algorithms
24 / 38

Fibonacci Heap – Representation

 Unlike trees within binomial heaps, which are ordered, trees within Fibonacci heaps are rooted but
unordered. Each node x contains a pointer to its parent and a pointer to any one of its children. The
children of x are linked together in a circular, doubly linked list.

 The roots of all the trees in a Fibonacci heap are linked together into a circular, doubly linked list called
the root list of the Fibonacci heap.

MIN

MIN

Advanced algorithms
25 / 38

Fibonacci Heap – Representation

 N is the actual number of elements in the heap.

 MIN is a pointer to the minimum element in the heap. It
must be always a root from the root list of the heap.

 key(x) is a value of the key of the element x.

 mark(x) is a Boolean value which indicates whether node
x has lost a child since the last time x was made the child

of another node. Newly created nodes are unmarked, and
a node x becomes unmarked whenever it is made the child

of another node.

 descendants(x) returns all children of x.

 parent(x) returns parent of a node x. It returns x in case
where x has no parent.

Advanced algorithms
26 / 38

Fibonacci Heap – Merge, Insert

 Merge (H1, H2)
 Connect both doubly cyclic linked lists to one and then update

pointer to MIN.

 O(1)

 AccessMin
 It returns the root of the Fibonacci tree from MIN pointer.

 O(1)

 Insert (x)
1. Create a new heap containing only x element (there is only one

tree of degree 0).

2. mark(x) = false;

3. Merge it with the original heap.

 O(1)

Advanced algorithms
27 / 38

Fibonacci Heap – DeleteMin

 DeleteMin
1. z = MIN;

2. if z≠ null then {

3. for each x ∈ descendants(z) do

4. add x to the root list of the heap;

5. remove z from the root list of the heap;

6. if N = 1 then

7. MIN = null

8. else {

9. MIN = any pointer to a root from the root list of the heap;

10. Consolidate;

11. }

12. N--;

13. }

time complexity: O(N)

amortized: O(log(N))

Advanced algorithms
28 / 38

Fibonacci Heap – Consolidate
 Consolidate

1. for i = 0 to max. possible degree of a tree in Fibonacci heap of size N do A[i] = null;

2. for each w ∈ all trees in the root list of the heap do {

3. x = w; d = a degree of the tree w;

4. while A[d] ≠ null do {

5. y = A[d];

6. if key(x) > key(y) then swap x and y;

7. remove y from the root list of the Heap;

8. make y a child of x, incrementing the degree of x;

9. mark(y) = false; A[d] = null; d++;

10. }

11. A[d] = x;

12. }

13. MIN = null;

14. for i = 0 to max. degree of a tree in the array A do

15. if A[i] ≠ null then {

16. add A[i] to the root list of the heap;

17. If (MIN = null) or (key(A[i]) < key(MIN)) then MIN = A[i];

18. }

time complexity: O(N)

amortized: O(log N)

Advanced algorithms
29 / 38

Fibonacci Heap – DeleteMin Example

MIN

MIN

1. Consider the following

Fibonacci heap.

2. The situation after the

minimum node z is
removed from the root list
and its children are added
to the root list.

Advanced algorithms
30 / 38

3. The array A and the trees

after each of the first three
iterations of the for each
loop of lines 2-12 of the
procedure Consolidate. The
root list is processed by
starting at the node pointed
to by MIN and following
right pointers. Each part
shows the values of w and x
at the end of an iteration.

4.

Fibonacci Heap – DeleteMin Example

Advanced algorithms
31 / 38

5.

6. The Figure shows the

situation after the first time
through the while loop. The
node with key 23 has been
linked to the node with key
7, which is now pointed to
by x.

Fibonacci Heap – DeleteMin Example

Advanced algorithms
32 / 38

7. The node with key 17 has

been linked to the node with
key 7, which is still pointed
to by x.

8. The node with key 24 has

been linked to the node with
key 7. Since no node was
previously pointed to by
A[3], at the end of the for
each loop iteration, A[3] is
set to point to the root of
the resulting tree.

Fibonacci Heap – DeleteMin Example

Advanced algorithms
33 / 38

9. The situations after each of

the next four iterations of the
for each loop.

10.

Fibonacci Heap – DeleteMin Example

Advanced algorithms
34 / 38

11.

12.

Fibonacci Heap – DeleteMin Example

Advanced algorithms
35 / 38

13. The Fibonacci heap after

reconstruction of the root list
from the array A and
determination of the new MIN
pointer.

Fibonacci Heap – DeleteMin Example

MIN

Advanced algorithms
36 / 38

Fibonacci Heap – DecreaseKey, Delete

 DecreaseKey (x,d)
1. key(x) = key(x) – d;

2. y = parent(x);

3. if (x ≠ y) and (key(x) < key(y)) then {

4. Cut(x,y);

5. Cascading-Cut(y);

6. }

7. If key(x) < key(MIN) then MIN = x;

time complexity: O(log N)

amortized: O(1)

 Cascading-Cut (y)
1. z = parent(y);

2. if (y≠ z) then

3. if mark(y) = false then mark(y) = true

4. else {

5. Cut(y,z);

6. Cascading-Cut(z);

7. }

time complexity: O(log N)

amortized: O(1)

 Delete(x)
1. DecreaseKey(x,∞)

2. DeleteMin;

time complexity: O(N)

amortized: O(log N)

 Cut(x,y)
1. remove x from the child list of y,

decrementing the degree of y;

2. add x to the root list of the heap;

3. mark(x) = false;

time complexity: O(1)

Advanced algorithms
37 / 38

Heaps – Comparison of Time Complexity

binary heap d -ary heap binomial
heap

Fibonacci
heap

AccessMin Θ(1) Θ(1) Θ(1) Θ(1)

DeleteMin Θ(log(n)) Θ(log(n)) Θ(log(n))
O(n)
amortized:
O(log(n))

Insert Θ(log(n)) Θ(log(n))
O(log(n))
amortized:
O(1)

Θ(1)

Delete Θ(log(n)) Θ(log(n)) O(log(n))
O(n)
amortized:
O(log(n))

Merge Θ(n) Θ(n) O(log(n)) Θ(1)

DecreaseKey Θ(log(n)) Θ(log(n)) Θ(log(n))
O(log(n))
amortized:
O(1)

Advanced algorithms
38 / 38

References

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT
Press and McGraw-Hill. ISBN 0-262-53196-8.

 Fredman, M. L. ; Tarjan, R. E. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM 34(1987), 596-
615.

