
Combinatorial algorithms

computing graph isomorphism,

computing tree isomorphism

Jiří Vyskočil, Radek Mařík

2012

Advanced algorithms
2 / 23

Computing Graph Isomorphism
 definition:

Two graphs G1=(V1,E1) and G2=(V2,E2) are isomorphic if there is a
bijection f : V1 → V2 such that

∀ x, y ∈ V1 : { f (x), f (y) } ∈ E2 ⇔ { x, y } ∈ E1

The mapping f is said to be an isomorphism between G1 and G2.

 example:

ƒ (a) = 1
f (b) = 6
f (c) = 8
f (d) = 3
f (g) = 5
f (h) = 2
f (i) = 4
f (j) = 7

G1 : G2 : f :

//upload.wikimedia.org/wikipedia/commons/9/9a/Graph_isomorphism_a.svg
//upload.wikimedia.org/wikipedia/commons/8/84/Graph_isomorphism_b.svg

Advanced algorithms
3 / 23

Computing Graph Isomorphism

 definition of invariant:

Let ℱ be a family of graphs. An invariant on ℱ is a function Φ with

domain ℱ such that

∀ G1, G2 ∈ ℱ : Φ(G1) = Φ(G2) ⇐ G1 is isomorphic to G2

 example:
 |V| for graph G=(V, E) is an invariant.

 The following degree sequence [deg(v1), deg(v2), deg(v3), … , deg(vn)]

is not an invariant.

 However, if the degree sequence is sorted in non-decreasing order,

then it is an invariant.

Advanced algorithms
4 / 23

Computing Graph Isomorphism

 definition :

Let ℱ be a family of graphs on vertex set V and let D be a function

with domain (ℱ × V). Then the partition induced by D is

B = [|B[0]|, |B[1]|, … , |B[n – 1]|]

where

B[i] = { vV : D (G,v) = i }

If the function

Φ𝐷(G) = [|B[0]|, |B[1]|, … , |B[n – 1]|]

is an invariant, then we say that D is an invariant inducing function.

Advanced algorithms
5 / 23

Computing Graph Isomorphism - Example

Let

 D1(G,x)=degG(x)

 D2(G,x)=[dj(x) : j = 1,2, … , dn-1]

 where dj(x)=|{y : y is adjacent to x and degG(y) = j }|

Suppose the following graphs G1 and G2:

Advanced algorithms
6 / 23

Computing Graph Isomorphism - Example

Advanced algorithms
7 / 23

Computing Graph Isomorphism - Example

Advanced algorithms
8 / 23

Computing Graph Isomorphism - Example

0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑑 𝑒 𝑔 𝑓 𝑏 𝑐 ℎ 𝑗

0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑑 𝑒 𝑔 𝑓 𝑐 𝑏 ℎ 𝑗

0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑔 𝑒 𝑑 𝑓 𝑏 𝑐 ℎ 𝑗

0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑔 𝑒 𝑑 𝑓 𝑐 𝑏 ℎ 𝑗

0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑑 𝑒 𝑔 𝑓 𝑏 𝑐 ℎ 𝑖

0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑑 𝑒 𝑔 𝑓 𝑐 𝑏 ℎ 𝑖

0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑔 𝑒 𝑑 𝑓 𝑏 𝑐 ℎ 𝑖

0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑔 𝑒 𝑑 𝑓 𝑐 𝑏 ℎ 𝑖

Advanced algorithms
9 / 23

Computing Graph Isomorphism

1) Function FINDISOMORPHISM (set of invariant inducing function𝑠 𝐼; graph 𝐺1, 𝐺2) :
set of

isomorphisms

2) try {

3) (N, X, Y) = GETPARTITIONS (I, 𝐺1, 𝐺2) ;

4) }

5) catch (“𝐺1 and 𝐺2 are not isomorphic! “) { return ∅ ; }

6) for i = 0 to N – 1 do {

7) for each x  X [i] do {

8) W [x] = i ;

9) }

10) }

11) return COLLECTISOMORPHISMS(𝐺1, 𝐺2, 0, Y, W, f)

Advanced algorithms
10 / 23

Computing Graph Isomorphism

1) Function GETPARTITIONS

set of invariant inducing functions 𝐼;
 graph 𝐺1;
graph 𝐺2

 :

number of partitions,
parititions of 𝐺1,
parititions of 𝐺2

2) X [0] = vertices of 𝐺1; Y [0] = vertices of 𝐺2; N = 1 ;

3) for each D  I do {

4) P = N ;

5) for i = 0 to P – 1 do {

6) Partition X [i] into sets X1 [i], X2 [i], X3 [i], … , Xm [i] where x,yXj [i] ⇔ D

(𝐺1,x)=D(𝐺1,y) ;

7) Partition Y [i] into sets Y1 [i], Y2 [i], Y3 [i], … , Yn [i] where x,yYj [i] ⇔ D(𝐺2,x)=D(𝐺2,y) ;

8) if n ≠ m then throw exception “𝐺1 and 𝐺2 are not isomorphic!“ ;

9) Order Y [i] into sets Y1 [i], Y2 [i], Y3 [i], … , Yn [i] so that

10) ∀x  X [i], ∀y  Y [i] : D

(𝐺1,x) = D(𝐺2,y) ⇔ x  Xj [i] and y  Yj [i] ;

11) if ordering is not possible then throw exception “𝐺1 and 𝐺2 are not isomorphic! “ ;

12) N = N + m – 1;

13) }

14) Reorder the partitions so that: |X [i]|=|Y [i]| ≤ |X [i+1]|=|Y [i+1]| for 0 ≤ i < N – 1 ;

15) }

16) return (N, X, Y)

Advanced algorithms
11 / 23

Computing Graph Isomorphism

1)
Function
COLLECTISOMORPHISMS

graph 𝐺1, 𝐺2 ;

starting vertex of 𝐺1 v ;

parititions of 𝐺2 𝑌 ;

partition mapping 𝑊 as

 𝐚𝐫𝐫𝐚𝐲 vertices of 𝐺1 𝐨𝐟

 indices of partitions of 𝐺1

 ;

current isomorphism 𝑓 as

𝐚𝐫𝐫𝐚𝐲 vertices of 𝐺1 𝐨𝐟

vertices of 𝐺2

 : set of
isomorphisms

2) if v = number of vertices of 𝐺1 then return { f } ;

3) R = ∅ ;

4) p = W [v] ;

5) for each y  Y [p] do {

6) OK = true ;

7) for u = 0 to v – 1 do {

8) if
({ u ,v } ∈ edges of 𝐺1 and { f [u], y } ∉ edges of 𝐺2)

or
({ u ,v } ∉ edges of 𝐺1 and { f [u], y } ∈ edges of 𝐺2)

 then OK = false ;

9) }

10) if OK then {

11) f [v] = y ;

12) R = R ∪ COLLECTISOMORPHISMS(𝐺1, 𝐺2, v+1, Y, W, f) ;

13) }

14) }

15) return R

Advanced algorithms
12 / 23

Certificate
 A certificate 𝐶𝑒𝑟𝑡 for family ℱ of graphs is a function such

that

∀ G1, G2 ∈ ℱ : 𝐶𝑒𝑟𝑡(𝐺1) = 𝐶𝑒𝑟𝑡(𝐺2) ⇔ G1 is isomorphic to G2

 Currently, the fastest general graph isomorphism algorithms
use methods based on computing of certificates.

 Computing of certificates works not only for general graphs
but it can be also applied on some classes of graphs like
trees.

Advanced algorithms
13 / 23

Computing Tree Certificate

1) Label all the vertices of 𝐺 with the string 01.

2) While there are more than two vertices of 𝐺 do:

For each non-leaf 𝑥 of 𝐺:

a) Let 𝑌 be the set of labels of the leaves adjacent to 𝑥 and the

label of 𝑥, with the initial 0 and trailing 1 deleted from 𝑥;

b) Replace the label of 𝑥 with concatenation of the labels in

𝑌 sorted in increasing lexicographic order, with 0 prepended

and a 1 appended;

c) Remove all leaves adjacent to 𝑥.

3) If there is only one vertex left, report the label of 𝑥 as certificate.

4) If there are two vertices 𝑥 and 𝑦 left, then report the labels of
𝑥 and 𝑦, concatenated in increasing lexicographic order, as the

certificate.

Advanced algorithms
14 / 23

Computing Tree Certificate - Example

number of vertices: 12

non-leaves vertices:

0 ∶ 𝑌 =
1 ∶ 𝑌 = 01
2 ∶ 𝑌 = 01,01
5 ∶ 𝑌 = 01
7 ∶ 𝑌 = 01
8 ∶ 𝑌 = 01

6 ∶ 01

1 ∶ 01

2 ∶ 01
3 ∶ 01

4 ∶ 01

5 ∶ 01

7 ∶ 01

8 ∶ 01

9 ∶ 01

0 ∶ 01

10 ∶ 01

11 ∶ 01

Advanced algorithms
15 / 23

0 ∶ 01

2 ∶ 001011

Computing Tree Certificate - Example

number of vertices: 6

non-leaves vertices:

0 ∶ 𝑌 =
001011,
0011,
0011

5 ∶ 𝑌 =
0011,
01

1 ∶ 0011

5 ∶ 0011

7 ∶ 0011

8 ∶ 0011

Advanced algorithms
16 / 23

Computing Tree Certificate - Example

number of vertices: 2

5 ∶ 00011011

Certificate=000101100110011100011011

0 ∶ 0001011001100111

Advanced algorithms
17 / 23

Computing Tree Certificate

 properties of certificate:

 the length is 2 ∙ |𝑉|

 the number of 1s and 0s is the same

 furthermore, the number is of 1s and 0s is the

same for every partial subsequence that arise

from any label of vertex (during the whole run

of the algorithm)

Advanced algorithms
18 / 23

Reconstruction of Tree from Certificate - Example

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011

𝑓 0 = 0

𝑓 𝑥 + 1 =
 𝑓 𝑥 + 1, 𝐶𝑒𝑟𝑡 𝐺 𝑥 = 0

 𝑓(𝑥) − 1, 𝐶𝑒𝑟𝑡 𝐺 𝑥 = 1

𝑓:

Advanced algorithms
19 / 23

Reconstruction of Tree from Certificate - Example

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011

𝑓:

Advanced algorithms
20 / 23

Reconstruction of Tree from Certificate - Example

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011

𝑓:

Advanced algorithms
21 / 23

Reconstruction of Tree from Certificate - Example

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011

𝑓:

Advanced algorithms
22 / 23

Reconstruction of Tree from Certificate

1) Function CE R T IF IC A T E TO TR E E certificate as string 𝐶 ∶ tree as 𝐺 = (𝑉, 𝐸)

2) 𝑛 =
𝐶

2
; 𝑣 = 0; 𝑉, 𝐸 = empty graph of order 𝑛; 𝑉 = 0,… , 𝑛 − 1 ;

3) 𝑘 = FINDSUBMOUNTA IN S 1, 𝐶 ;

4) if k = 1 then { 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 0 ; 𝑣 = 𝑣 + 1; }

5) else { 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 0 ; 𝑣 = 𝑣 + 1; 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 1 ; 𝑣 = 𝑣 + 1; 𝐸 = 𝐸 ∪ 0,1 ; }

6) for 𝑖 = 0 to 𝑛 − 1 do {

7) if 𝐿𝑎𝑏𝑒𝑙[𝑖] > 2 then {

8) 𝑘 = FINDSUBMOUNTA IN S 2, 𝐿𝑎𝑏𝑒𝑙[𝑖] ; 𝐿𝑎𝑏𝑒𝑙[𝑖] = "01";

9) for 𝑗 = 0 to 𝑘 − 1 do { 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 𝑗 ; 𝐸 = 𝐸 ∪ 𝑖, 𝑣 ; 𝑣 = 𝑣 + 1; }

10) }

11) return 𝐺 = 𝑉, 𝐸 ;

1) Function FINDSUBMOUNTA IN S integer 𝑙, certificate as string 𝐶 ∶ number of submountines in 𝐶

2) 𝑘 = 0; 𝑀 0 = the empty string; 𝑓 = 0;

3) for 𝑥 = 𝑙 − 1 to 𝐶 − 𝑙 do {

4) if 𝐶 𝑥 = 0 then { 𝑓 = 𝑓 + 1; } else { 𝑓 = 𝑓 − 1; }

5) 𝑀 𝑘 = 𝑀 𝑘 ∙ 𝐶 𝑥 ;

6) if 𝑓 = 0 then { 𝑘 = 𝑘 + 1; 𝑀 𝑘 = the empty string; 𝑓 = 0; }

7) }

8) return 𝑘;

𝜪(𝑪 𝟐)

Advanced algorithms
23 / 23

Reconstruction of Tree from Certificate
1) Function FA S T CE R T IF IC A T E TO TR E E certificate as string 𝐶 ∶ tree as 𝐺 = (𝑉, 𝐸)

2) 𝑉, 𝐸 = empty digraph of order
𝐶

2
; 𝑉 = 0, … ,

𝐶

2
;

3) 𝑛 = 0;

4) 𝑝 = 𝑛;

5) for 𝑥 = 1 to 𝐶 − 2 do {

6) if 𝐶 𝑥 = 0 then {

7) 𝑛 = 𝑛 + 1;

8) 𝐸 = 𝐸 ∪ (𝑝, 𝑛) ;

9) 𝑝 = 𝑛;

10) } else {

11) if 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝 does not exist then {

12) 𝑛 = 𝑛 + 1;

13) 𝐸 = 𝐸 ∪ (𝑝, 𝑛) ;

14) 𝑝 = 𝑛;

15) } else {

16) 𝑝 = 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝 ;

17) }

18) }

19) }

20) return 𝐺 = 𝑉, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐸) ; 𝜪(𝑪)

Advanced algorithms
24 / 23

References

 D.L. Kreher and D.R. Stinson , Combinatorial Algorithms:
Generation, Enumeration and Search , CRC press LTC , Boca
Raton, Florida, 1998.

