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Computing Graph Isomorphism 
 definition: 

Two graphs G1=(V1,E1) and G2=(V2,E2) are isomorphic if there is a 
bijection f : V1 → V2 such that 

∀ x, y ∈ V1    :    { f (x), f (y) } ∈ E2    ⇔    { x, y } ∈ E1  

The mapping f  is said to be an isomorphism between G1 and G2. 

 example: 

ƒ ( a ) = 1  
f ( b ) = 6 
f ( c ) = 8 
f ( d ) = 3 
f ( g ) = 5 
f ( h ) = 2 
f ( i ) = 4 
f ( j ) = 7 

G1 : G2 : f : 

//upload.wikimedia.org/wikipedia/commons/9/9a/Graph_isomorphism_a.svg
//upload.wikimedia.org/wikipedia/commons/8/84/Graph_isomorphism_b.svg
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Computing Graph Isomorphism 

 definition of invariant: 

Let ℱ be a family of graphs. An invariant on ℱ is a function Φ with 

domain ℱ such that 

∀ G1, G2 ∈ ℱ   :    Φ(G1) = Φ(G2)   ⇐   G1 is isomorphic to G2 

 

 example: 
 |V| for graph G=(V, E) is an invariant. 

 The following degree sequence [deg(v1), deg(v2), deg(v3), … , deg(vn)] 

is not an invariant. 

 However, if the degree sequence is sorted in non-decreasing order, 

then it is an invariant. 
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Computing Graph Isomorphism 

 definition : 

Let ℱ be a family of graphs on vertex set V and let D be a function 

with domain ( ℱ ×  V ). Then the partition induced by D is 

B = [ |B[0]|, |B[1]|, … , |B[n – 1]| ] 

where 

B[i] = { vV   :   D (G,v) = i } 

If the function 

Φ𝐷(G) = [ |B[0]|, |B[1]|, … , |B[n – 1]| ] 

is an invariant, then we say that D is an invariant inducing function.  
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Computing Graph Isomorphism - Example 

Let  

 D1(G,x)=degG(x) 

 D2(G,x)=[dj(x) : j = 1,2, … , dn-1]  

 where dj(x)=|{y : y is adjacent to x and degG(y) = j }| 

Suppose the following graphs G1 and G2: 
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Computing Graph Isomorphism - Example 
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Computing Graph Isomorphism - Example 
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Computing Graph Isomorphism - Example 

0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑑 𝑒 𝑔 𝑓 𝑏 𝑐 ℎ 𝑗

 

 
0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑑 𝑒 𝑔 𝑓 𝑐 𝑏 ℎ 𝑗

 

 
0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑔 𝑒 𝑑 𝑓 𝑏 𝑐 ℎ 𝑗

 

 
0 1 2 3 4 5 6 7 8 9
𝑖 𝑎 𝑔 𝑒 𝑑 𝑓 𝑐 𝑏 ℎ 𝑗

 

0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑑 𝑒 𝑔 𝑓 𝑏 𝑐 ℎ 𝑖

 

 
0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑑 𝑒 𝑔 𝑓 𝑐 𝑏 ℎ 𝑖

 

 
0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑔 𝑒 𝑑 𝑓 𝑏 𝑐 ℎ 𝑖

 

 
0 1 2 3 4 5 6 7 8 9
𝑗 𝑎 𝑔 𝑒 𝑑 𝑓 𝑐 𝑏 ℎ 𝑖
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Computing Graph Isomorphism 

 

1) Function FINDISOMORPHISM (set of invariant inducing function𝑠 𝐼; graph 𝐺1, 𝐺2) :  
set of

isomorphisms
 

2) try   { 

3)       ( N, X, Y ) = GETPARTITIONS (I, 𝐺1, 𝐺2) ; 

4) } 

5) catch   (“𝐺1 and 𝐺2 are not isomorphic! “)   {   return   ∅ ;  } 

6) for   i = 0   to   N – 1    do   { 

7)       for   each   x  X [i]   do   { 

8)             W [x] = i ; 

9)       } 

10) } 

11) return  COLLECTISOMORPHISMS(𝐺1, 𝐺2, 0, Y, W, f )  
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Computing Graph Isomorphism 
 

1) Function GETPARTITIONS  

set of invariant inducing functions 𝐼;
 graph 𝐺1;
graph 𝐺2

 : 

number of partitions,
parititions of 𝐺1,
parititions of 𝐺2

 

2) X [0] = vertices of  𝐺1;   Y [0] = vertices of  𝐺2;   N = 1 ; 

3) for   each   D  I   do   { 

4)       P = N ; 

5)       for   i = 0   to   P – 1   do   { 

6)              Partition X [i] into sets X1 [i], X2 [i], X3 [i], … , Xm [i] where x,yXj [i] ⇔ D
 
(𝐺1,x)=D(𝐺1,y) ; 

7)              Partition Y [i] into sets Y1 [i], Y2 [i], Y3 [i], … , Yn [i] where x,yYj [i] ⇔ D(𝐺2,x)=D(𝐺2,y) ; 

8)              if   n ≠ m   then   throw exception  “𝐺1 and 𝐺2 are not isomorphic!“ ; 

9)              Order Y [i] into sets Y1 [i], Y2 [i], Y3 [i], … , Yn [i] so that  

10)                    ∀x  X [i], ∀y  Y [i] : D
 
(𝐺1,x) = D(𝐺2,y) ⇔ x  Xj [i] and y  Yj [i] ; 

11)              if   ordering is not possible   then   throw exception  “𝐺1 and 𝐺2 are not isomorphic! “ ; 

12)              N = N + m – 1; 

13)       } 

14)       Reorder the partitions so that: |X [i]|=|Y [i]|  ≤  |X [i+1]|=|Y [i+1]|   for 0 ≤ i < N – 1 ; 

15) } 

16) return   (N, X, Y) 
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Computing Graph Isomorphism 
 

1)
Function                       
COLLECTISOMORPHISMS

 

graph 𝐺1, 𝐺2 ;

starting vertex of  𝐺1  v ;

parititions of 𝐺2  𝑌 ;

partition mapping 𝑊 as

 𝐚𝐫𝐫𝐚𝐲 vertices of 𝐺1  𝐨𝐟

 indices of partitions of 𝐺1

 ;  

current isomorphism 𝑓 as

𝐚𝐫𝐫𝐚𝐲 vertices of 𝐺1  𝐨𝐟

vertices of 𝐺2

   : set of
isomorphisms

 

2) if   v = number of vertices of  𝐺1   then   return  { f  } ; 

3) R = ∅ ; 

4) p = W [v] ; 

5) for   each   y  Y [p]   do   { 

6)       OK = true ; 

7)       for   u = 0   to   v – 1   do   { 

8)              if   
( { u ,v } ∈ edges of  𝐺1   and    { f [u], y  } ∉ edges of  𝐺2 )

or
( { u ,v } ∉ edges of  𝐺1   and    { f [u], y } ∈ edges of  𝐺2 )

   then   OK = false ; 

9)       } 

10)       if   OK   then  {   

11)              f [v] = y ;    

12)              R = R ∪ COLLECTISOMORPHISMS(𝐺1, 𝐺2, v+1, Y, W, f ) ;   

13)       }  

14) } 

15) return  R 
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Certificate 
 A certificate 𝐶𝑒𝑟𝑡 for family  ℱ of graphs is a function such 

that 

 

∀ G1, G2 ∈ ℱ   :    𝐶𝑒𝑟𝑡(𝐺1) = 𝐶𝑒𝑟𝑡(𝐺2)   ⇔   G1 is isomorphic to G2 

 

 

 Currently, the fastest general graph isomorphism algorithms 
use methods based on computing of certificates. 

 Computing of certificates works not only for general graphs 
but it can be also applied on some classes of graphs like 
trees. 
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Computing Tree Certificate 

1) Label all the vertices of 𝐺 with the string 01. 

2) While there are more than two vertices of 𝐺 do: 

For each non-leaf 𝑥 of 𝐺: 

a) Let 𝑌 be the set of labels of the leaves adjacent to 𝑥 and the 

label of 𝑥, with the initial 0 and trailing 1 deleted from 𝑥; 

b) Replace the label of 𝑥 with concatenation of the labels in 

𝑌 sorted in increasing lexicographic order, with 0 prepended 

and a 1 appended; 

c) Remove all leaves adjacent to 𝑥. 

3) If there is only one vertex left, report the label of 𝑥 as certificate. 

4) If there are two vertices 𝑥 and 𝑦 left, then report the labels of 
𝑥 and 𝑦, concatenated in increasing lexicographic order, as the 

certificate. 
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Computing Tree Certificate - Example 

number of vertices: 12 

 
non-leaves vertices: 

 
0 ∶  𝑌 =  
1 ∶  𝑌 = 01  
2 ∶  𝑌 = 01,01  
5 ∶  𝑌 = 01  
7 ∶  𝑌 = 01  
8 ∶  𝑌 = 01  

 

 

6 ∶  01 

1 ∶  01 

2 ∶  01 
3 ∶  01 

4 ∶  01 

5 ∶  01 

7 ∶  01 

8 ∶  01 

9 ∶  01 

0 ∶  01 

10 ∶  01 

11 ∶  01 
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0 ∶ 01 

2 ∶  001011 

Computing Tree Certificate - Example 

number of vertices: 6 

 
non-leaves vertices: 

 

0 ∶  𝑌 =
001011,
0011,
0011

 

 

5 ∶  𝑌 =
0011,
01

 

 

1 ∶ 0011 

5 ∶ 0011 

7 ∶  0011 

8 ∶  0011 
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Computing Tree Certificate - Example 

number of vertices: 2 

 

 

 

5 ∶ 00011011 

Certificate=000101100110011100011011 

 

 

 

 

 

0 ∶ 0001011001100111 
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Computing Tree Certificate 

 properties of certificate: 

 

 the length is 2 ∙ |𝑉| 

 the number of 1s and 0s is the same  

 furthermore, the number is of 1s and 0s is the 

same for every partial subsequence that arise 

from any label of vertex (during the whole run 

of the algorithm) 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓 0 = 0 

𝑓 𝑥 + 1 =  
 𝑓 𝑥 + 1, 𝐶𝑒𝑟𝑡 𝐺 𝑥 = 0

 𝑓(𝑥) − 1, 𝐶𝑒𝑟𝑡 𝐺 𝑥 = 1
 

𝑓: 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓: 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓: 
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Reconstruction of Tree from Certificate - Example 

𝐶𝑒𝑟𝑡 𝐺 = 000101100110011100011011 

 

 

 

 

 

𝑓: 
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Reconstruction of Tree from Certificate 

 
1) Function  CE R T IF IC A T E TO TR E E  certificate as string 𝐶  ∶  tree as 𝐺 = (𝑉, 𝐸)  

2) 𝑛 =
𝐶

2
;   𝑣 = 0;  𝑉, 𝐸 = empty graph of order 𝑛;    𝑉 = 0,… , 𝑛 − 1 ; 

3) 𝑘 = FINDSUBMOUNTA IN S 1, 𝐶 ;   

4) if   k = 1   then   { 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 0 ;   𝑣 = 𝑣 + 1;   }   

5)      else  {  𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 0 ;   𝑣 = 𝑣 + 1; 𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 1 ;   𝑣 = 𝑣 + 1;   𝐸 = 𝐸 ∪ 0,1 ;   }  

6) for   𝑖 =  0   to   𝑛 − 1   do   { 

7) if    𝐿𝑎𝑏𝑒𝑙[𝑖] > 2   then  {   

8)              𝑘 = FINDSUBMOUNTA IN S 2, 𝐿𝑎𝑏𝑒𝑙[𝑖] ;   𝐿𝑎𝑏𝑒𝑙[𝑖] = "01";   

9)              for   𝑗 =  0   to   𝑘 − 1   do   {  𝐿𝑎𝑏𝑒𝑙 𝑣 = 𝑀 𝑗 ;   𝐸 = 𝐸 ∪ 𝑖, 𝑣 ;   𝑣 = 𝑣 + 1;  } 

10) }  

11) return  𝐺 = 𝑉, 𝐸 ;  

 
1) Function  FINDSUBMOUNTA IN S integer 𝑙, certificate as string 𝐶 ∶ number of submountines in 𝐶  

2) 𝑘 = 0;   𝑀 0 = the empty string;   𝑓 = 0; 

3) for   𝑥 = 𝑙 − 1   to   𝐶 − 𝑙   do   { 

4)             if    𝐶 𝑥 = 0   then  {  𝑓 = 𝑓 + 1;  }  else {  𝑓 = 𝑓 − 1;  } 

5)             𝑀 𝑘 = 𝑀 𝑘 ∙ 𝐶 𝑥 ; 

6)             if    𝑓 = 0   then  {  𝑘 = 𝑘 + 1;    𝑀 𝑘 = the empty string;    𝑓 = 0;  } 

7) }  

8) return  𝑘;  

𝜪( 𝑪 𝟐) 
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Reconstruction of Tree from Certificate  
1) Function  FA S T CE R T IF IC A T E TO TR E E  certificate as string 𝐶  ∶  tree as 𝐺 = (𝑉, 𝐸)  

2) 𝑉, 𝐸 = empty digraph of order 
𝐶

2
;    𝑉 = 0, … ,

𝐶

2
; 

3) 𝑛 = 0; 

4) 𝑝 = 𝑛; 

5) for   𝑥 = 1   to   𝐶 − 2   do   { 

6)             if    𝐶 𝑥 = 0   then  {  

7)                    𝑛 = 𝑛 + 1; 

8)                𝐸 = 𝐸 ∪ (𝑝, 𝑛) ; 

9)                    𝑝 = 𝑛;  

10)             }  else {  

11)                    if   𝑝𝑎𝑟𝑒𝑛𝑡 𝑝  does not exist  then { 

12)                              𝑛 = 𝑛 + 1; 

13)                          𝐸 = 𝐸 ∪ (𝑝, 𝑛) ;  

14)                        𝑝 = 𝑛; 

15)                    } else { 

16)                              𝑝 = 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝 ; 

17)                    } 

18)             } 

19) }  

20) return  𝐺 = 𝑉, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝐸) ;   𝜪( 𝑪 ) 
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