350 11 Image Compression: Iterated Function Systems

. e\ P e\ D
Ce? =C|(— +o-+C [—)
™ T'm

We can simplify Ce=P, leaving us with

1 1

1 T'm

O

Example 11.24 For the Sierpiriski triangle we have that r = 1/2 and m = 3. Thus
the theorem gives us a direct way to calculate its dimension as %E—S ~ 1.58496, the same
value obtained by directly counting covering squares as shown in Example 11.22.

Calculating D(A) when the r; are not all equal and satisfy equation (11.11).
Even if it is not simple to give a completely rigorous proof, an inspection of several
examples convinces us that the condition of equation (11.11) is often satisfied by totally
disconnected iterated function systems. Equation (11.12) cannot be solved exactly, but
we can use numerical methods. To begin with, we know that the dimension lies in the
range [0,2]. The function

fD)=rP+ 421

is strictly decreasing on [0, 2], since
f'(D)=rPInr + - +rPnr, <o0.

Indeed, the condition r; < 1 implies that In7; < 0. Moreover, fO) =m—-1>1and
f@)=ri+-4+r2 —1<0by (11.11). Thus by the intermediate value theorem the
function f(D) must have a unique root in [0,2]. We may graph this function or use any
numerical root-finding procedure (such as Newton’s method) to find the solution to the
desired accuracy.

Example 11.25 Consider a totally disconnected iterated function system {T1, Ty, T3}
with contraction factors rq = 0.5, 7o = 0.4, and r5 = 0.7. Figure 11.8(a) shows the
graph of the function

f(D) =05 +04P +0.7° 1
for D €[0,2]. Figure 11.8(b) shows the same Junction for D € [1.75,1.85], allowing us
to evaluate the root with higher precision. Inspection shows that D(A) ~ 1.81.

11.7 Photographs as Attractors to Iterated Function Systems?

Everything we have seen up until now is elegant from a theoretical point of view, but it
does not really help us compress images. We have seen that iterated function systems

11.7 Photographs as Attractors 351

15 0.02
01
1
1.76 1.78 82 1.84
05
0.D
05 1 15 T 02
(a) (b)

Fig. 11.8. The graph of f(D) for D € [0,2] and D € [1.75,1.85] for Example 11.25.

allow us to store in memory a fractal image with a very short program. However,
to take advantage of this powerful compression we must be able to recognize portions
of an image that exhibit strong self-similarity and write short programs constructing
them. Are all the parts of an image describable in such a fractal manner? Probably
not! Even if a human is able to approximate certain photographs using carefully crafted
iterated function system (there are some nice examples in [1]), this is far from providing
a systematic algorithm that can operate on hundreds of photographs. If we wish to
apply iterated function systems to image compression, we must broaden the ideas we
have developed in this chapter.

The concepts of this chapter will thus be applied slightly differently. The common
point is that we will still be using a specific type of iterated function system (called
partitioned iterated function system) whose attractor will approximate the image we
wish to compress. The following discussion was inspired by [2]. Research is ongoing to
find better-performing alternative methods.

Representing an image as the graph of a function. We discretize a photograph by
considering it as a finite set of squares with varying intensity, called pizels (for picture
elements). We associate each pixel in the photo with a number representing its color.
To simplify our discussion we will limit ourselves to grayscale images. Thus each point
(z,y) of a rectangular photo is associated with a value z that represents its gray tone.
Most digital photographs assign integer values in the range {0, ...,255} corresponding
to black through white, with 0 representing black and 255 representing white. Thus,
a photograph may be viewed as a two-dimensional function. If a photograph contains
h pixels horizontally and v vertically and we denote by Sy the set {0,1,2,..., N — 1},
then a photograph is a function :

[18 x Sy — Soss.
In other words, it is a function that associates a gray tone

z= f(z,y) € {0,...,255}

352 11 Image Compression: Iterated Function Systems

to every pixel (z,y) for 0 <2z <h—1and 0 <y < v — 1. The iterated functions that
we will introduce will transform a photograph f into another photograph f’ whose gray
tones will not always be integers between 0 and 255. Thus it will be easier for us to
work with functions

f:S, xS, —R.

Constructing a partitioned iterated function system. A partitioned iterated
function system acts on the set F = {f : S x S, — R} of all photographs. Here is how
such a system is constructed for an arbitrary photograph. We divide the image into
disjoint neighboring tiles of 4 x 4 pixels. Each such tile C; is called a small tile, and [
is the set of all small tiles. We also consider the set of all possible 8 x 8 tiles, called big
tiles. Each small tile C; is associated with the big tile G; that “resembles” it the most
(see Figure 11.9). (We will precisely define what we mean by “resemble” a little later.)

Fig. 11.9. Choosing a big tile that resembles a small tile.

Each point in the image is represented by its coordinates (z,y,2), where z is the
gray tone of the pixel at (z,y). An affine transformation 7, will be chosen that maps a
big tile G; onto a small tile C;, where 7, has the form

T a; b; 0 T a;
z 0 0 s z gi

Restricting ourselves to the integer coordinates (z,y), this transformation is a simple
affine contraction

ti(z,y) = (aix + by + o, e + diy + ;). (11.16)

11.7 Photographs as Attractors 353

Consider now the gray tone of the tile. The parameter s; serves to modify the spread
of the gray tones used in the tile: if s; < 1 then the small tile C; has less contrast than
the large tile G, while it has more contrast if s; > 1. The parameter g; corresponds
to a translation of the grayscale. If g; < 0 then the large tile is paler than the small
tile and vice versa (remember that 0 is black and 255 is white). In practice, since a
large tile (8 x 8 = 64) contains four times as many pixels as a small tile (4 x 4 = 16),
we start by replacing the color of each 2 x 2 block of G; by a uniform color given by
the average color of the four pixels originally located there. We compose this operation
with the transformation Tj, calling the composition T;. Since the sides of a large tile
are mapped to those of a small tile, the parameters of the linear part (‘;‘ di) of the
transformation T; are greatly limited. In fact, the linear portion of the transformation
will be the composition of the homothety of scale 1/2,

(z,y) = (x/2,y/2),
and one of the eight following transformations:

L. the identity transform with matrix (}9);

2. rotation by 7/2 with matrix (9 3);

3. rotation by 7 with matrix (‘01 _01), also called symmetry with respect to the origin;
4. rotation by —7/2 with matrix (% §);

5. reflection about the horizontal axis with matrix (§ %);

6. reflection about the vertical axis with matrix (. (1)),

7. reflection about the first diagonal axis with matnx & (1])

8. reflection about the second diagonal axis with matrix ()

Note that all of the matrices associated with these linear transformations are orthogonal.
(Exercise: which of the above transformations will be used in mapping the big tile to
the small tile in Figure 11.97)

To decide whether two tiles resemble each other we will define a distance function d.
The partitioned iterated function system we construct will produce iterates approaching
a limit with respect to this same distance as applied to the set F of all photographs. If
[, f' € F, that is, both f and f’ are digitized images of the same size, then the distance
between them is defined as

h—1v-—1

dnxo(f, 1) = ([DD (£ (),

=0 y=0

corresponding to the distance d3 given in (11.8) of Example 11.8. This distance may
seem somewhat intimidating when written out, but it is simply the Euclidean distance
on the vector space R"*¥. To decide whether a small tile C; resembles a large tile G; we
define a similar distance between G; and C;. In fact, we calculate the distance between
fc, (the image function restricted to the small tile C;) and fc = Ti(fa,), that is,
the image by T; of the photograph f restricted to the large tile G;. Recall that the

354 11 Image Compression: Iterated Function Systems

transformation 7'; is the composition of replacing the gray tones in each 2 x 2 block by
their average, and then applying T; to map G; onto C;. Let H; be the set of horizontal
indices of the pixels in the C;, and let Vi be the corresponding set of vertical indices.
Then

difen fe)= | D D (fola,y) = Fe,(z,y). (11.17)

z€H; yeV;

It is by carefully choosing s; and g:; that we obtain a partitioned iterated function
system that converges with respect to this distance. Let C; be a small tile. We discuss
how to choose the best large tile G; and the transform T; between the two. For a given
Cj, we repeat the following steps for each potential large square G; and each of the
possible linear transformations L above:

e apply the smoothing transformation replacing 2 x 2 blocks of G by their average;

e apply the transformation L to the 8 x 8 square, resulting in a 4 x 4 square whose
pixels are functions in the variables s; and g;;

e choose s; and g; to minimize the distance d4 between the original and transformed
tiles;

e calculate the minimized distance for the chosen s; and g;.

We do the above for each G and L and keep track of which Gj, L, s;, and g; resulted
in the smallest distance between C; and the resulting transformed tile. This will be one
of the transformations in the partitioned iterated function system. We then repeat the
above steps for each C;, for each one determining the optimal associated G; and T;. If
the image contains h x v pixels, there are (h x v)/16 small tiles. For each of these, the
number of large tiles that it must be compared against is enormous! In fact, a large tile
is uniquely specified by its upper left corner, for which there are (h—7) x (v — 7) choices.
Since this is too large and would result in too slow an algorithm, we artificially limit
ourselves to nonoverlapping large tiles, of which there are (h x v)/64. It is thus with
this “alphabet” of tiles that we attempt to accurately reconstruct the original image by
associating to each small tile C; a large tile G; and a transform T:. If hx v = 640 x 640
then we will have to inspect (gh X v) x 8 x (f5h x v) ~ 1.3 x 10° potential transforms.
This is still quite a lot! There are other tricks that may be employed to reduce the
search space, but despite these optimizations, this method still has a high compression
cost.

Method of least squares. This is the method that is employed in the second-to-last
step of the above algorithm, which searches for the best values for s; and g¢;. It is likely
that you have already seen this technique in a multivariable calculus, linear algebra, or
statistics course. We wish to minimize

da(foofo) = [D 3 (fewy) - Fo, (z,9)2. (11.18)

z€H; yeV;

11.7 Photographs as Attractors 355

Minimizing d4 is equivalent to minimizing its square d%, which frees us of the square
root. So we must derive the expression of f ¢, as a function of s; and g;. Let us look at

how we get ?Ci:

e we start by replacing each 2 x 2 large square of G; by a uniform square with the
mean color;

o we apply the transformation (11.16), which amounts to sending G; to C; without
any color adjustment;

* we compose with the mapping (z,y,2) — (z,y,s:z + g;), which is just the color
adjustment.

The composition of the first two transformations produces an image on C; that is de-
scribed by a function fe,, and we have

fo, =sifc, + . (11.19)

To minimize d7 in (11.18) we replace ?Ci by its expression in (11.19) and we require
that the partial derivatives with respect to both s; and g; be equal to zero. The vanishing
of the derivative with respect to g; yields

DD fa@y) =5 > > fo.lz,y) +16g;,

Tz€H; yeV; r€H; yeV;

which implies that fo, and ?Ci have the same average gray tone. Requiring that the
partial derivative with respect to s; also vanish implies (after a few simplifications) that

= COV(fCi, sz)
Var(fC-;)

7)

where the covariance, Cov(fc,, fc,), of fo, and f, is defined as follows:

Cov(fci’fci) . % Z Z fcw’(z7y)fci(’l‘7y)

r€H; yeV;
| X T [XX e,
zeH; yeV; zE€H,; yeVv;

and the variance var(fc,) is defined as

var(fe,) = Cov(fe,, fe,)-

The operator W associated with a partitioned iterated function system
{Ti}ier- Given a gray tone image f € F, W(f) is the image obtained by replacing

356 11 Image Compression: Iterated Function Systems

the image fc, of the tile C; by the transformed image 701_ of the associated big tile G;.
This gives us a transformed image f € F defined by

fzy) =Fe(@y) if (2,y) €

The attractor of this iterated function system should hopefully be something very close
to the original image we wished to compress. Thus W : F — F is an operator on the set
of all photographs. This technique replaces the alphabet of geometric objects we used
in our first example with an alphabet of gray tone tiles, more specifically the large 8 x 8
tiles of the photograph to be compressed.

Reconstructing the image. The image can be reconstructed using the following
procedure.

e Choose an arbitrary initial function f° € F. A natural choice is the function
Oz, y) = 128 for all x and Yy, corresponding to a uniformly gray initial image.

* Calculate the iterates f7 = W(fi~1). At step J — 1 the image on each small tile
C; is given by the restriction of F771 toit. At step j here is how we calculate f7
restricted to Cj: we apply T to the image given by f/~! on the associated large
tile G;. In practice, we keep track of the distance between successive iterates by
calculating dj, ., (f7, f7=1). Once this distance is below a given threshold (the image
has largely stabilized), we stop the iteration.

* Replace the real-valued gray tone associated with each pixel by its closest integer
value in the range [0, 255].

As it will be shown in the following example, even the iterates f1 and f? give quite
good approximations to the original photograph. Furthermore, the distance between
successive iterations quickly becomes small, and /% is already an excellent approximation
to the attractor of the system (and, we hope, of the original image).

Remark: When considered as affine transformations on R3, the T; are not always
contractions; in fact, 7} is never a contraction if s; > 1! However, most T} will be
contractions, since it is natural to have more contrast across a large tile than across
a small one. As far as we know, there is no theorem guaranteeing the convergence of
this algorithm for all images. However, in practice we generally see convergence, as if
the system {T;};c; were in fact a contraction. Benoit Mandelbrot introduced fractal
geometry as a way to describe naturally occurring forms, that proved too complicated
to be described with traditional geometry. Besides fern leaves and other plants there
are many self-similar shapes occurring in nature: rocky coastlines, mountains, river
networks, the human capillary system, etc. The technique of compressing images using
iterated function systems is particularly well adapted to images having a strong fractal
nature, that is, having a strong self-similarity across many scales. For such photos we
can generally hope not only for convergence of the resulting system, but for an accurate
reproduction of the original image.

11.7 Photographs as Attractors 357

(a) Original image (b) First iterate f*

(c) Second iterate f2 (d) Sixth iterate f°

Fig. 11.10. Reconstructing a 32 x 32 image (see Example 11.26).

Example 11.26 An example at last! The above comments may lead one to wonder
whether this approach has any chance of accurately reproducing a real photograph. The
following example should answer that question. We will use the same photograph used
in the discussion of the JPEG image compression standard of Chapter 12, that of Figure
12.1. This photograph contains h xv = 640 x 640 pizels. We will produce two partitioned
iterated function systems: the first for reconstructing the 32 x 32 pizel block where two
of the cat’s whiskers cross (see the zoomed portion of Figure 12.1), and another for the

358 11 Image Compression: Iterated Function Systems

entire image. The 32x 32 pizel image is a demanding test of the algorithm. In fact, there
are only 16 large tiles to choose from, restricting our chances of finding a good match.
We will see, however, that despite this limited “alphabet” the resulting reconstruction is
quite accurate!

For the 32 x 32 block there are only 16 nonoverlapping 8 x 8 tiles, each of which may
be transformed by one of the 8 allowed transformations. This creates an “alphabet” of
16 x 8 = 128 tiles. This is quite limited, but at least it allows the best transformations
to be quickly determined. After having found the best tile G; and transformation T; for
each of the 8 x 8 = 64 small tiles C;, we can proceed to the reconstruction. The results
are shown in Figure 11.10. Figure 11.10(a) shows the original image to be displayed.
For the reconstruction we began with the function fO associating a constant gray tone
of value 128 to each of the pizels, halfway between black and white. Figures 11.10(b)
through (d) show the reconstruction after 1, 2, and 6 iterations, respectively. The first
surprise is that the first iteration appears to consist of only 8 x 8 pizels. This is easy
to explain, since each of the large tiles began as a uniform block and was mapped to a
uniform 4 x 4 tile. For the same reason the second iterate appears to consist of only
16 x 16 pizels of width 2 each. However, even after only two iterations, the edge of the
table and the rough form of the whiskers is clearly visible. The iterates f* through f® are
very similar to each other, only the last having been shown here. In fact, > and f° are
so close that the system is very likely convergent and f© is quite close to the attractor!
In the sixth iterate the two whiskers are nearly completely visible, but with some errors:
some pizels are much paler or much darker than in the original image. This is largely
due to the limited alphabet of large tiles that we were restricted to working with.

To obtain the complete partitioned iterated function system of the entire image we
made a few concessions. (Recall that the number of individual transformations to be
explored is over a billion!) In fact, for each small tile, each large tile, and each of the
eight transformations we calculate a pair (s;,g;). Thus, for each small square we must
repeat the calculation eight times the number of large squares. To make this process more
efficient we have decide to abandon the search as soon as a large tile G; and associated
transform T; are found that are within a distance of dy = 10 to the original small tile.
Is this a large distance in the Euclidean space RP*V = R 2 No; in fact, it is quite close!
If the distance is 10, then the square distance is 100. In each small square there are 16
pizels; thus we can expect an average squared error o 11%0 ~ 6.3 per pizel, corresponding
to an expected gray tone error of /6.3 ~ 2.5 per pizel, a relative error of 1% on the
scale from 0 to 255. As we will see, the eye is easily able to overlook such a small error.
The second compromise we have made is to reject all transformations in which |s;| > 1.
We have done this to improve the chances that the resulting system is convergent.

Figure 11.11 presents the first, second, fourth, and sizth iterates of the reconstruc-
tion. Again, you can clearly see the 4 x 4 uniform blocks in the first iterate and the
2 x 2 uniform blocks in the second iterate. As for f* and f9, the two are nearly identical
and distinguished only by small details. The quality of the sizth iterate is quite good
and generally comparable to the original image, the exceptions being areas of fine detail
and high contrast, such as the white whiskers against the shadowed background under

11.7 Photographs as Attractors 359

(a) The first iterate f* (b) The second iterate f?

(c) The fourth iterate f* (d) The sixth iterate f°

Fig. 11.11. Reconstructing the entire image of a cat (see Example 11.26).

the table. It should be noted that a majority of the small tiles were approrimated by
transformations with a distance less than 10 from the original. However, roughly 15%
of the tiles were approzimated by transformations with a larger error, and the worst
offender had a distance of roughly 280.

Compression ratio. As of 2007, consumer-level digital cameras are commonly avail-
able that capture images of up to 8 million pixels (and professional cameras can reach

T

360 11 Image Compression: Iterated Function Systems

up to 50 million!). We consider the compression ratio achieved on a 3000 x 2000
pixel grayscale image with 28 = 255 gray tones. The gray tone of each pixel can
be specified using exactly 8 bits, thus one byte,! and thus the original image requires
3000 x 2000 = 6 x 106 B = 6 MB. Now consider the space required to represent the
partitioned iterated function system.

Each small tile has an associated transformation T; and large tile G;. Consider:

(i) the number of bits necessary to represent a transformation T; of the form in (11.15):

e 3 bits to specify one of the 23 = 8 possible affine transformations L;

e 8 bits to specify s;, the gray tone scaling factor; and

e 9 bits to specify g;, the gray tone shift (we must permit negative values, requiring
another bit).

(ii) the number of bits necessary to identify the associated large tile G;. If we permit
all possible overlapping large tiles, then each of them may be uniquely specified by
indicating the upper left corner of the block. However, since we limited ourselves
to nonoverlapping blocks, there are only 3000/8 x 2000/8 = 93,750 possible choices.
Since 216 = 65,536 < 93,750 < 217 = 131,072, we require 17 bits to specify a large
tile.

(iii) the number of small tiles in the image: 322¢ x % = 375,000.

Thus, we require 3 + 8 + 9 + 17 = 37 bits per small tile, yielding 37 x 375,000 bits
or roughly 1.73 MB, yielding that the compression ratio is roughly 3.46 times. In this
approach we see that it is possible to vary the number of candidate large tiles. Had we
restricted the search of large tiles to the one-fourth of them immediately neighboring
the small tile in question, we could have reduced the number of bits necessary to encode
each small tile by 2 (from 37 to 35). The resulting compression ratio would improve to
a factor of % x 1.73 =~ 3.66.

A more substantial gain is achieved by making small tiles 8 x 8 and large tiles 16 x 16.
A factor of 4 is immediately gained, but at the expense of reconstructed image quality.
Finally, one last improvement is to let the size of both the small and large tiles vary.
In areas with little detail we can increase the tile size, while we could correspondingly
decrease it in areas of fine detail. Thus, the compression ratio may be smoothly varied
according to storage needs or desired quality of reconstruction.

Iterated function systems and JPEG. The method described here is very different
from that employed by the JPEG standard. Which image compression technique is
the best? This depends greatly on the type of images, the desired compression ratio,
and the amount of computational power available. As with the improvements discussed
above, the compression ratio of JPEG may be smoothly varied (at the expense of image
quality) by changing the quantization tables (see Section 12.5). Digital cameras typically
store images in the JPEG format, offering the user two or three resolution settings.
The degree of compression actually obtained for a given resolution depends on the

1One byte equals eight bits and is abbreviated B. One megabyte is 10° bytes and is abbre-
viated MB.

&Q

11.8 Exercises 361

photograph itself (in contrast to the algorithm presented here), but is typically between
6 and 10 times. These are compression ratios that are comparable to those we have
just calculated. Compression using iterated function systems has been studied for quite
some time but is not used in practice. Its weak point is the amount of time required
to compress an image. (Recall that in our earliest discussion of the algorithm the
number of steps was proportional to the square of the number of pixels, (h x v)2. In
comparison, the complexity of the JPEG algorithm grows only linearly with image size,
and is proportional to h x v. For a photographer in the field snapping photos one
after the other, this is a big advantage. For research images being processed on a high-
powered computer, it is less so. Regardless, the domain moves quite fast, and iterated
function systems may not have spoken their last words.

11.8 Exercises
Certain of the following fractals have been constructed based on the figures found in [1].

(a) For the fractals of Figure 11.12, find iterated function systems describing them. In
each case clearly specify the coordinate system you have chosen. Afterward, reconstruct
each of the figures in software.

(b) Given your chosen coordinate system, find two different iterated function systems
describing the fractal (b).

For the fractals of Figure 11.13, find iterated function systems describing them. In each
case clearly specify the coordinate system you have chosen. Afterward, reconstruct each
of the figures in software.

For the fractals of Figure 11.14, find iterated function systems describing them. In each
case clearly specify the coordinate system you have chosen. Afterward, reconstruct each
of the figures in software. Attention: here the triangle in Figure 11.14(b) is equilateral,
in contrast to the Sierpinski triangle in our earlier example.

For the fractals of Figure 11.15, find iterated function systems describing them. In each
case clearly specify the coordinate system you have chosen. Afterward, reconstruct each
of the figures in software.

Amuse yourself by constructing arbitrary iterated function systems and trying to intuit
their attractors. Afterward, confirm or disprove your intuitions by plotting them on a
computer.

Calculate the fractal dimensions of the fractals in Exercises 1 (except (a)), 2, 3, and 4.
(In certain cases you will be required to pursue numeric approaches.)

362 11 Image Compression: Iterated Function Systems

aRE
B, ERUEER 4
Bk G Sas
b i
g?f{a L
g L
: *Sfifgk%‘?’éﬁkﬁﬁ
(d)

Fig. 11.12. Exercise 1.

The Cantor set is a subset of the unit interval [0,1]. Tt is obtained as the attractor
of the iterated function system {T,T,}, where T} and T5 are the affine contractions
defined by 7' (z) = z/3 and Ty(z) = x/3+2/3.

(a) Describe the Cantor set.

(b) Draw the Cantor set. (You may pursue the first few iterations by hand, but it is
easiest to use a computer.)

(c) Show that there exists a bijection between the Cantor set and the set of real
numbers with base-3 expansions of the form

O.alag...an...,

where a; € {0,2}.
(d) Calculate the fractal dimension of the Cantor set.

Show that the fractal dimension of the Cartesian product A1 X Ag is the sum of the
fractal dimensions of Aj and A,:

D(Ay x Ay) = D(Ay) + D(A,).

9.

10.

11.

11.8 Exercises 363

Fig. 11.13. Exercise 2.

Let A be the Cantor set, as described in Exercise 7. This is a subset of R. Find an
iterated function system on R? whose attractor is A x A.

The Koch snowflake (or von Koch snowflake) is constructed as the limiting object of
the following process (see Figure 11.16):

e Begin with the segment [0, 1].

e Replace the initial segment with four segments, as shown in Figure 11.16(b)).

o Iterate the process, at each step replacing each segment by four smaller segments
(see Figure 11.16(c)).

(a) Give an iterated function system that constructs the von Koch snowflake.

(b) Can you give an iterated function system for building the von Koch snowflake that
requires just two affine contractions?

(c) Calculate the fractal dimension of the von Koch snowflake.

Explain how to modify an iterated function system on R?

12.

13.

364 11 Image Compression: Iterated Function Systems
o2
o ¥ 0
000 3 006
L ¢ 2
< . <
L ¢ 4 L 4
o % o . % 0
o o0& e o0
< o < < ° L)
L X 4 L ¢ 2
L2 * <
L ¢ 2
./ . <
000 . 000

000

(a)
T uE xE muom
nEES NN 8% uE BE =6 RW
ouan mm sm us BN ®8 un
s Em mE um EE EE SE E8
L I
BN AR EEE8 uE AR mE uw
NN RE NN NS a8 6 BN eu
2@ s oe e EE Es umE®
HE B® ®S 6B SR R NN A8
REnE EEas BN 08 BE Ex
K BN &N B8 2N B BN o
smEE um N Ey BE EE 8x -
EE ¥R =N X BN NE MO a8
N GE BN Ew usER §waw
NN BE ©S 5% NE 88 S8 aw

—~
e]
~

(d)

Fig. 11.14. Exercise 3.

(a) such that its attractor will be twice as large in both dimensions;
(b) to translate the location of its bottom leftmost point.

Consider an affine transformation T(z,y) = (ax + by + e, cx + dy + f).

(a) Show that T is an affine contraction if and only if the associated linear transfor-
mation U(z,y) = (az + by, cx + dy) is a contraction.

(b) Show that U contracts distances if

a?+c? <1,

b +d? <1,

a2+b2+02+d2—(ad—b0)2 < 1.
Suggestion: it suffices to show that the square of the length of U(z,y) is less than the
square of the length of (z,y) for all nonzero (z,9).

Let Py,..., Py be four noncoplanar points in R3. Let Q, ...
of R3. Show that there exists a unique affine transformation
T(F) = Q..

, Q4 be four other points
T : R® — R? such that

14.

15.

16.

11.8 Exercises 365

Fig. 11.15. Exercise 4.

ﬁLm

(a) The initial seg- (b) The first itera-) The second it- (d) The von Koch
ment tion erdtlon snowflake

Fig. 11.16. Constructing the von Koch snowflake of Exercise 10.

Remark: We can consider systems of iterated functions in R3. As an example, we
could use an iterated function system in this space to describe a fern leaf bent under its
own weight. We could then project this image to the plane in order to display it.

Consider v € R? and A, B, two closed and bounded subsets of R?. Show that d(v, AU
B) <d(v,A) and d(v, AN B) > d(v, A).

Proceeding numerically, find the contraction factors of the individual transforms T for
the fern leaf. Are any of these exact contraction factors?

(a) Let B; and By be two disks in R? with radius r, and whose centers are at a distance
of d from each other. Calculate dy(B1, B2).

(b) Let By and Bs be two concentric disks in the plane with radii 7y and 2, respectively.
Calculate dy (B, B2).

	IFS026
	IFS027
	IFS028
	IFS029
	IFS030
	IFS031
	IFS032
	IFS033
	IFS034
	IFS035
	IFS036
	IFS037
	IFS038
	IFS039
	IFS040
	IFS041

