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Image Compression: Iterated Function Systems

This chapter can be covered in one or two weeks of classes. If only one week is available
then you can briefly cover the introduction (Section 11.1) and then explain in detail the
concept of an attractor of an iterated function system (Section 11.3) by concentrating
on the Sierpuriski triangle (Example 11.5). Demonstrate the theorem that constructs
affine transformations mapping three points on the plane to three points on the plane
and discuss the particular affine transformations that will be used often in iterated
function systems (Section 11.2). Explain Banach’s fized-point theorem stressing the
point that the proof on R can be transposed, nearly word by word, to complete metric
spaces (Section 11.4). Finally, discuss the intuition behind the Hausdorff distance
(beginning of Section 11.5). If you wish to spend a second week, then you can deepen the
discussion of the Hausdorff distance and work through a few of the proofs of its various
properties (Section 11.5). This leaves sufficient time to discuss fractal dimensions
(Section 11.6) and to explain briefly the construction of iterated function systems that
allow for the reconstruction of actual photographs (Section 11.7). Sections 11.5, 11.6,
and 11.7 are almost independent, so it is possible to treat Section 11.6 or 11.7 without
having gone through the more difficult Section 11.5.

Another option for a one-week coverage is to discuss Sections 11.1 to 11.3 and to jump
to 11.7, which explains how to adapt the technique to compression of real photographs.

11.1 Introduction

The easiest way to store an image in computer memory is to store the color of each
individual pixel. However, a high-resolution photograph (many pixels) with accurate
color (many data bits per pixel) would require an enormous of amount of computer
memory. And videos, with many such images per second, would required even more.
With widespread adoption of digital cameras and the Internet, people are storing an
ever larger number of images on their computers. It is thus critical that these images
be stored efficiently so as not to take up an inordinate amount of space. Images on the
web can be of lower resolution than digital photographs or large posters. And we are
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very interested in keeping their sizes small; no doubt you have already experienced slow
loading images while browsing the web, even if the images are compressed.

There exist many image compression techniques. The commonly used JPEG (Joint
Photographic Experts Group) format makes use of discrete Fourier techniques and is
explored in Chapter 12. In this chapter we will concentrate on another technique: image
compression using iterated function systems.

There was a great deal of hope and excitement over the possibilities of this technique
when it was first introduced in the 1980s, spurring considerable research. Unfortunately,
formats based on these techniques have not seen much success because the compression
algorithms and the compression ratios are not good enough. However, these techniques
continue to be researched and might yet see improvements. We have decided to present
these methods for several reasons. First, it is easy to show the underlying mathematics
at work, which rely on Banach’s powerful fixed-point theorem (the fixed point of the
theorem referring to the attractor of an operator). Moreover, the method uses fractals,
which we demonstrate how to construct in a very simple manner as fixed points of
operators. That such complicated structures can be described through such simple
constructions is a striking demonstration of the power and elegance of mathematics;
it shows that if we look at an object from just the right point of view, everything is
simplified, allowing us to understand its structure.

We stated above that the easiest way to store a picture is simply to store the color
associated with each pixel, an approach that is far from efficient. How to do better?
Suppose that we were to draw a profile of a city (Figure 11.1). Instead of storing
the actual pixels, we could store the underlying geometric constructs, allowing us to
reconstruct it:

e all line segments,
e all circular arcs,
e etc.

We have represented the image as a union of known geometric objects.

O

Fig. 11.1. A line drawing of a city.

To store a line segment it is more economical to store only its extremities and to
create a program that can draw the line given these two points. Similarly, the arc of
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a circle may be specified by its center, radius, and starting and stopping angles. The
underlying geometric objects form the alphabet with which we can describe an image.

How can we store a more complicated image, for instance, a photograph of a land-
scape or a forest? It may seem that the previous method cannot work, because our
alphabet of geometric objects is too poor. We will discover that we can use the same
technique, but with a larger and more advanced alphabet:

e we approximate our image with a finite number of fractal images. For example,
consider the fern leaf in Figure 11.2;

* to store the image we create a program that draws the image using the underlying
fractals. The fern leaf of Figure 11.2 can be drawn by a program of fewer than 15
lines! (A Mathematica program for drawing the fern can be found at the end of
Section 11.3.)

In this process the resulting image is the “attractor” of an operator W (defined below)
that maps a subset of the plane to a subset of the plane. Beginning from any initial
subset By we recursively construct the sequence By = W (By), By = W(B1), ..., Bpt1 =
W(B,), .... For sufficiently large n (in fact, n = 10 suffices if By was carefully chosen),
B,, will start to look like the fern leaf.

The technique may sound a little naive: can we really program a computer to ap-
proximate any photo using fractals? Indeed, some adaptation of the initial idea will
be needed, but we will keep the fundamental idea that the reconstructed image is the
attractor of some operator. Since constructing an arbitrary photo is quite advanced, we
leave the discussion until the end of the chapter (Section 11.7). To start, we focus on
constructing programs that can draw fractals.

11.2 Affine Transformations in the Plane

We start by explaining why we need affine transformations. Consider the fern leaf in
Figure 11.2. It is the union of (see Figure 11.2)

o the stalk,
¢ and three smaller fern leaves: the bottom left branch, the bottom right branch, and
the leaf minus the two lowest branches.

Each of these four pieces is the image of the entire fern leaf under an affine transforma-
tion. Knowing the four associated transformations allows us to reconstruct the entire
image:

o the transformation 737, which maps the entire leaf to the leaf minus the two lowest
branches,

e the transformation T, which maps the entire leaf to the bottom left branch (marked
L in Figure 11.2),

e the transformation T3, which maps the entire leaf to the bottom right branch
(marked R in Figure 11.2), and
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Fig. 11.2. A fern leaf.

e the transformation 7y, which maps the entire leaf to the bottom part of the stalk.

Definition 11.1 An affine transformation T : R? — R2 is the composition of a trans-
lation with a linear transformation. It can be written as

T(z,y) = (ax + by + e, cx + dy + f). (11.1)
This is the composition of the linear transformation
Si(z,y) = (az + by, cx + dy)

and the translation
S2(x7y) - (x+e,y+f)

Linear transformations are often represented in matrix notation as

s(3)=(2i)(2)
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We can also use this notation to represent affine transformations:

T a b T e
T = - .
() 5 (¢ianh by Joolopd
We see that the affine transformation is specified by the six parameters a, b, ¢, d,e, f.

Thus, in order to uniquely determine a given affine transformation we require six linear
equations.

Theorem 11.2 There exists a unique affine transformation that maps three distinct
noncollinear points Py, Py, and Pj to three points Q1, Q2, and Q3.

PROOF: Let (z;,y;) be the coordinates of P; and let (X;, Y;) be the coordinates of Q;.
The desired transformation is in the form of (11.1), and we must solve for a, b, c,de, f,
knowing that T'(z;,y;) = (X;,Y;), i = 1,2,3. This gives us six linear equations in six
unknowns a, b, ¢, d, e, f:

ar; +byy +e = X,
cxy+dy+f = Y,
ary +bys +e = Xo,
cx2 +dys + f = Yo,
ars +bys+e = Xg,
CI3+dy3+f = Y3.

The parameters a, b, e are solutions of the system

a1 +byy +e = Xy,
ars +bys +e = X, (11.2)
azz +bys +e = Xj,

while ¢, d, f are solutions of the system

cry + dy1 +f = Y,
cro +dys +f = Y, (11.3)
C.’L'3+dy3+f = Y;.

Both of these are systems over the same matrix A, whose determinant is

z1 y1 1
det A = T2 Y2
z3 ys 1

Note that this determinant is nonzero precisely when the points P, P,, and P; are
distinct and noncollinear. In fact, the three points are collinear if and only if the

vectors P1 Py = (zg — z1,y2 — y1) and P1P3 = (z3 — x1,y3 — y1) are collinear, which is
the case if and only if the following determinant is zero:
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T2 —T1 Y2 — WY

= (g — —y1) — (3 — — ).
o - st (w2 —21)(y3 —y1) — (w3 — 1) (Y2 — 11)

The determinant of a matrix does not change when we add to a row a multiple of
another. Subtracting the first row from the second and the third yields

T Y1 1
detA = | 20—z yo—y1 O
r3 — I 1 s ) 0

= (v2—z1)(y3 —y1) — (3 — 21)(y2 — %1)-

We see that det A = 0 precisely when the three points are aligned. On the other hand,
if det A # 0, then each of the systems (11.2) and (11.3) has a unique solution. ad

Remark: We must use the technique of Theorem 11.2 to find the four transformations
describing the fern leaf. For that we need to specify coordinate axes and measure the
coordinates of the points P; and @;. However, in many examples we can guess the
affine transformations without having to measure the coordinates of the points P; and
Q; and solving the associated systems. In these cases we use compositions of simple
affine transformations. :

Some simple affine transformations.

Homothety with ratio r: T'(z,y) = (rz,ry).
Reflection about the x axis: T'(z,y) = (z, —y).

Reflection about the y axis: T'(z,y) = (—x,y).

Reflection through the origin: T'(z,y) = (—x, —y).

Rotation through angle 6: T(z,y) = (zcosf — ysinf,zsinf + ycosd). To find
this formula we use the fact that a rotation is a linear transformation. The columns
of its matrix are the coordinates of the images of the base vectors e; = (1,0) and
ez = (0,1) (Figure 11.3). The transformation matrix is therefore

cosf) —sinf
sinf)  cosf )

Projection onto the z axis: T'(x,y) = (z,0).
e Projection onto the y axis: T'(z,y) = (0,y).
Translation by a vector (e, f): T(xz,y) = (z + e,y + f).

11.3 Iterated Function Systems

Fractals that can be constructed using the technique described above will be attractors
of iterated function systems. We define these terms more clearly.
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(~sin 6, cos ) ©.1

(cos 0, sin 0)

(1,0)

Fig. 11.3. The images of base vectors under a rotation of angle 6.

Definition 11.3 1. An affine transformation is an affine contraction if the image of
any segment is a shorter line segment.

2. An iterated function system is a set of affine contractions {T, ..., T}

3. The attractor of an iterated function system {T1,..., Ty} will be the unique geo-
metric object A such that

A=Ti(A)U-- UTn(A).

Example 11.4 A fern leaf. We consider the fern leaf from Figure 11.2. It is easy to
see that each of the branches of the leaf resembles the entire leaf itself. Thus, the leaf is
the union of the stalk and infinitely many smaller copies of the leaf. We want to avoid
working with an infinite number of sets of transformations, so a little care is required.
Call A the subset of the plane consisting of all points of the fern leaf. We introduce a
coordinate system. Let T1 be the transformation mapping P; to Q;, as labeled in Figure
11.4. The image Ty (A) is a subset of A. Now consider A\ Ty (A). It consists of the
bottom portion of the stalk and the bottommost branches on either side, as outlined in
Figure 11.2. We can choose points Q}, Q%, and Q% to construct a transformation Ty
that maps the entire leaf to the bottommost left branch. (Ezxercise!) Similarly, we can
choose points Q7, Q4, and Qf describing a transformation T that maps to the bottom.-
most right branch. Thus A\ (T1(A) UTs(A) UTs(A)) is simply the bottommost portion
of the stalk. We wish to find another transformation Ty that maps the entire leaf to
this portion of the stalk. Such a transformation is simply a projection onto the y axis
composed with a contraction (homothety with ratio r < 1) and a translation.
We have constructed four affine transformations such that
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» Bi=Q

Fig. 11.4. The points P; and @); describing the transformation Ti.

We claim and will prove later that no other set than the fern satisfies (11.4). The fern
leaf will be the attractor of the iterated function system {T1,T5,T5,Ty}.

This example is relatively complicated. Thus, we present another easier example to
help develop some intuition.

Example 11.5 The Sierpinski triangle. To simplify the calculations we will con-
sider a Sierpiriski triangle with a base and height of 1 (see Figure 11.5).

Here the triangle A is the union of three smaller copies of itself A = T (A)UT5(A)U
T5(A). In this case we can easily write the explicit equations of the affine contractions.
In fact, if we suppose that the origin is situated at the bottom left corner of the triangle,
then Ty is the homothety with ratio 1/2:

Ti(z,y) = (2/2,y/2),

and Ty and T3 are simply compositions of T with translations. Since the base and height
of the triangle are both 1, then Ty is Th composed with a translation by (1/2,0), while
T5 is Th composed with a translation by (1/4,1/2):

To(z,y) = (2/2+1/2,y/2),
Ts3(z,y) = (x/2+1/4,y/2+1/2).
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Fig. 11.5. The Sierpinski triangle.

The triangle lies within the square Cy = [0,1] x [0,1]. We are interested in the sets

Ci = Ti(Cy) UTL(Ch) UTs(Co),
CQ = Tl(Cl) UTQ(Cl) UTg(Cl),

Cn = Tl(Cn—l)UTQ(Cn-l)UTB(Cn~1)7

the first few of which are shown in Figure 11.6. Observe that for sufficiently large n
(even at n = 10), the set C,, already begins to resemble A. The set

Cn - Tl (Cn—l) U TQ(Cnfl) U TB(Cn—l)
is called the nth iteration of the initial set Cy under the operator
C — W(C) = T{(C) UT5(C) UT5(C),

which maps a subset C' to another subset W (C).

It is for this reason we say that A is an attractor. The remarkable thing is, had we
started with any subset of the plane other than Cy, the limit of the process would still
be the Sierpiriski triangle (see Figure 11.7).

The general principle. The Sierpinski triangle example allowed us to see the general
process at work. Given an iterated function system {T1,...,T,,} of affine contractions,
we construct an operator W that acts on subsets of the plane. A subset C' is mapped
to the subset W (C) as follows:

W(C) = Ti(C) UTa(C) U - - U T, (C). (11.5)
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(d) Cs

Fig. 11.6. Cp and the first five iterations C1—C'.

The fractal A that we wish to construct is a subset of the plane satisfying W (A) = A.
We say that A is a fized point of the operator W.

In the next section we will see that for all iterated function systems there exists a
unique subset A of the plane that is a fixed point of the operator W. Moreover, we will
show that for all nonempty subsets Cy C R?, the subset A is the limit of the sequence
{C}.} defined by the recurrence

Cii — WO

The subset A is called the attractor of the iterated function system. Thus, if we know
of a set B satisfying B = W (B), then we know that B will be the limit of the sequence
{Cn}.

In our Sierpiriski triangle example we used the unit square [0, 1] x [0, 1] as our initial
set Cp, and we constructed the sequence {C}, },,>0 using the recurrence Cp, 1 = W(Cy,).
The experimental results of Figure 11.6 convinced us that the sequence {C), }n>0 “con-
verges” to the set A, the Sierpiniski triangle. We could have performed this experiment
with any initial set By, for example By = [1/4,3/4] x[1/4, 3/4]. We would have obtained
that the sequence {B,},>0, where B,+1 = W(B,), again converges to A (Figure 11.7).

We can convince ourselves that we could have taken an initial set By consisting only
of a single point of the square Cy. In this case, the set B, consists of 3" points. If
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Fig. 11.7. By and the first five iterations B1-Bs.

for each point in B,, we darken the corresponding pixel in a digitized image, then for
sufficiently large n the image would resemble the Sierpiriski triangle A.

In fact, traditional programs for drawing fractals function in a slightly different
way, since it is simpler to draw a single point at each step than subsets of the plane
consisting of 3" points. We start by choosing a point P, in the rectangle R. At each step
we randomly choose one of the transformations 7; and we calculate P =15 (Ph),
where T}, is the randomly chosen transformation at step n. If the point B, is already in
the set A, then drawing the entire set of points from the sequence {Pn}n>0 will quickly
begin to resemble A. If we are unsure whether P, is in A, then we discard the first M
generated points Fy, ..., Py_1, and draw the points {P,}n>n. The following section
will show that there always exists a value for M that will ensure that we achieve a good
approximation to A. In practice, M is often taken as small as 10, since convergence to
the attractor usually occurs quite rapidly.

When drawing the Sierpinski triangle of Figure 11.5, at each step we randomly chose
one of the transformations {7}, 75, T3}. Thus, at step n we randomly chose a number
in € {1,2,3} and applied the transformation T;,. Each time we generated 1 we applied
Ty. If we generated 2 we applied Ty, and if we generated 3 we applied 73. For the
fern leaf this approach is not very efficient: we would spend too much time drawing
points on the stalk and the bottom leaves and not enough time in the rest of the leaf.
Let Ty (respectively Ty, T, Ty) be the affine contraction that maps the leaf onto the
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upper portion (respectively the left bottom branch, the right bottom branch, and the
stalk) of the leaf. We will arrange it so that our random-number generator yields 1 with
probability 85%, 2 and 3 with probabilities 7% each, and 4 with probability 1%. To
accomplish this we actually generate random-numbers a,, in the range 1 to 100, choosing
Ty when a, € {1,...,85}, T> when a,, € {86,...,92}, T5 when a, € {93,...,99}, and
T, when a,, € {100}.

Mathematica program to draw the fern leaf of Figure 11.2 (The coefficients for
the transforms T; are taken from [1].)

chooseT := (r = RandomInteger[{1, 1003}];
If[r <= 85, 1,
If[r <= 92, 2,
If[r <= 99, 3, 4111)

t = { (* { linear transformation, translation } *)
{{{0.85, 0.04}, {-0.04, 0.85}}, {0., 1.6}},
{{{0.2, -0.26}, {0.23, 0.22}}, {0., 1.6}},
{{{-0.15, 0.28}, {0.26, 0.24}}, {0., 0.44}},
{{{o0., 0.}, {0., 0.16}}, {0., 0.}}

};

transfoAff[t_, pt_] := t[[1]1].pt + t[[2]]

nlteration = 20000; A = {{0., 0.}};
Do[AppendTo[A, transfoAff[t[[chooseT]], Last[A]]], {nIteration}]

ListPlot[A, AspectRatio -> Automatic, Axes -> Falsel

11.4 Tterated Contractions and Fixed Points

A full reading of this section requires some familiarity with analysis, but the basic
concepts can be understood without it.

We noted previously that for all iterated function systems {71,...,T,,} there exists
a unique subset A of the plane that is a fixed point of the operator W defined by

W (B) =Ti(B)U- - UTn(B). (11.6)

This set, satisfying W (A) = A, is called the attractor of the iterated function system.
We will now justify this claim.
The following theorem from real analysis provides the key.

Theorem 11.6 Let f : R — R be a contraction. In other words, there exists some
0 < r <1 such that for all z,z' € R we have that
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|[f(x) = f(2')] < rlz— 2.
Then f has a unique fized point a € R such that f(a) = a.

We will prove this theorem in order to understand exactly how it works. While
working through the proof, note that we can replace R by any closed interval [, 8] and
more generally by any complete metric space (an intuitive definition of this follows).
However, we are unable to replace R by Q, nor by any open interval (o, 8). When
generalizing this theorem we will replace the notion of a point in R with that of a closed
and bounded subset of R?, and the function f by the operator W defined in (11.6). We
will require the notion of a distance between two subsets (the equivalent of |z — 2/| in
the above formulation) and we will need to show that W is a contraction with respect
to this distance. We would like to be able to use the same argument as will be used
in the proof of Theorem 11.6 in order to prove the existence of a unique attractor A, a
closed and bounded subset of R? that is the fixed point of W.

PROOF OF THEOREM 11.6: We start by showing that if f has a fixed point, then it must
be unique. Suppose that a; # as are two fixed points of f. Then flaz)—f(a1) = az—ay
because they are both fixed points. However, since f is a contraction, we have that
|f(az2) = f(a1)| < rlag — a1], where 0 < 7 < 1, a contradiction.

We must now prove the existence of a. To obtain a we will start with a point zo € R
and construct the sequence of its iterates z1 = f(20), z2 = f(21), ..., Tns1 = f(@n),. ...
If z; = xq, then ¢ is a fixed point and we are done. Consider the case z; # xg. Then

Tna1 = nl = |f(2n) = f@n-1)] < 7lan — zpq].

By iterating we obtain
|J)n+1 - $n| S T‘n|.’131 - .’L‘()|.

We wish to show that the sequence {z,,} converges to a point @ € R and that the limit
a is a fixed point of f. A very powerful tool exists that permits us to show that a
sequence of real numbers converges without having to guess a candidate for the limit: it
suffices to show that it is a Cauchy sequence. (Recall that a sequence {z} is a Cauchy
sequence if Ve > 0 IN € N such that if n,m > N then |z, — x,,| < ¢.) Suppose that
n > m. Then

I(l'n el zn—l) + (l'nfl - xn—?) + e+ (xm+1 - xm),
|Zn — Tn—1| + |Tn-1 = Tn_2| + - + [Tms1 — Tin|
(,rn—l 8 7,.n—2 R ’I"m);l'l o £Uo|

et 4 1) 2 — 2o

fi|$1 — zo|.

lxn - ‘Tm|

ININININA

For |z, — 2,,| to be smaller than e it suffices to take m sufficiently large, such that

"™z — o)

< €
1—r ’
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e(l1—r)
[z1—zo]"
that % < e Since 7™ < rV for N > m we have shown that the sequence {z.}
is a Cauchy sequence.

Since every Cauchy sequence of real numbers converges to a real number, this yields
that the sequence {z,} converges to some number a € R. We must now show that
is a fixed point of f. To do this we need to show that f is continuous. In fact, f is
actually uniformly continuous on R. Consider € > 0 and take § = ¢. Then if |z —2'| <§
we have that

or in other words, r™ < Since 0 < r < 1, we then take N large enough such

|f(z) — f@)| <rlz—2|<rd=re<e.

Since f is continuous, the image of the convergent sequence {z,} with limit a is
itself a convergent sequence with limit f(a). Thus

f(a) = lim f(z,)= lim 2,7 = lim 2, = a.
n—oo n—oo n—00
g

We can generalize the statement of the previous theorem while maintaining the same
proof. We can replace R by a general space K sharing certain properties with R. In
fact, we require only that K be a complete metric space. In order to keep the letters x
and y for the Cartesian coordinates of a point we will denote points of K by the letters
v,w,.... Before we can elaborate on such spaces we must precisely define the notion
of a distance d(v,w) between two elements v, w of a space K. We will construct our
definition of a distance so that it mirrors the properties of |z — /| in R.

Definition 11.7 1. A distance function d(-,-) on a set K is a functiond: K x K —
Rt U {0} that satisfies:
(i) d(v,w) > 0;
(1) d(v,w) = d(w,v);
(tii) d(v,w) = 0 if and only if v = w;
(iv) Triangle inequality: for all v,w, z,

d(v,w) < d(v, z) + d(z,w).

2. A set K equipped with a distance function d is called a metric space.

3. A sequence {vn} of elements in K is a Cauchy sequence if Ye > 0, AN € N such
that for all m,n > N, we have that d(vy,vy) < €.

4. A sequence {v,} of elements of K converges to an element w € K ifVe > 0,3IN € N
such that for all n > N, we have that d(v,,w) < e. The element w is called the
limit of the sequence {v,}.

5. A metric space K is complete if any Cauchy sequence of elements from K converges
to a limit also in K.

Example 11.8 1. R™ with the Euclidean distance is a complete metric space.
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2. Let K be the set of all closed and bounded subsets of R2: we call them compact
subsets of R?. The distance we will use over this set of subsets is the Hausdorff
distance, which will be defined and discussed in Section 11.5. Equipped with this
distance, K will be a complete metric space (the proof of this fact can be found in
[1)).

3. When moving from theory to practice in Section 11.7, we will consider a black and
white photo on a rectangle R as a function f : R — S, where S denotes the set
of gray tones. We can then define a distance between two such functions f and f’
through the use of the following definitions:

di(f, f') = e lf(z,y) = f'(2,y)]

and
1/2
0.9 = ([[ 00 - rwp? dzdy) (11.7)
R
Equipped with these distances, the set of functions [+ R — S is a complete metric
space. We can replace the set R = [a,b] x [e,d] by a discrete set of pivels over

the rectangle R by adapting slightly the above definitions. For example, the double
integral in the distance function will be replaced by a discrete sum over the individual
pizels. If x and y take the values {0,...,h—1} and {0,...,v—1}) respectively, then
the distance (11.7) becomes

h—1v—1

_ 1/2
DD (fay) - F(a, y))2> . (11.8)

=0 y=0

d3(f,f/):<

We require that the operator W defined in (11.5) be a contraction with respect to
the distance function over the space K. This leads us to the famous Banach fixed-point
theorem: since we will apply it with the elements of K being compact subsets of R2,
we will use capital letters for the elements of K.

Theorem 11.9 (Banach fixed-point Theorem) Let K be a complete metric space
and W : K — K a contraction. In other words, let W be a function such that for all
Bi,By € K,

with 0 <r < 1. Then there exists a unique Jized point A € K of W such that W(A) = A.

We will not give a proof of the Banach fixed-point theorem, since it is exactly the
same as that of Theorem 11.6. We only need to replace |z — 2’| by d(B, B').

The Banach fixed-point theorem is one of the most important theorems in mathe-
matics. It has applications in many diverse areas.
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Example 11.10 We discuss a few applications of the Banach fized-point theorem:

1. A first classical application of this theorem allows us to prove the existence and
uniqueness of solutions to ordinary differential equations satisfying a Lipschitz con-
dition. In this example the elements of K are functions. The fized point is the
unique function that is a solution to the differential equation. We will not go fur-
ther into this example. However, we wish to point out that simple ideas often have
important applications in seemingly unrelated fields.

2. The second application is of immediate interest. Let K be the set of all closed and
bounded subsets of the plane, together with the Hausdorff distance. Equipped with
this distance, K will be a complete metric space. Consider a set of affine contractions
Th,..., Ty forming an iterated function system. We define the operator of (11.6),
and we will show that it is a contraction, satisfying (11.9) for some 0 < r < 1.
Theorem 11.9 immediately proves both the existence and uniqueness of the attractor
A of such an iterated function system.

Remark: The Banach theorem states that the fixed point A of a contraction W must
be unique. Thus, if we are already aware of a set A satisfying this property (for example,
the fern leaf), then we are sure that it is indeed the fixed point of the iterated function
system we have constructed.

11.5 The Hausdorff Distance

The definition of this distance function is somewhat difficult. Thus, we will start by
discussing the intuitive foundations on which it was built. The proof of the Banach
fixed-point theorem uses the distance function only as a tool for discussing convergence
and for discussing the closeness of two elements of K. When we talk of the convergence
of a sequence of sets B,, in K to some set A, intuitively we wish to show that for
sufficiently large n, the sets B, strongly resemble A.

Thus, we wish to quantify the notion of closeness between two sets B; and By, such
that we can say precisely when two sets are within some distance € of each other. One
way of doing this is to consider “inflating” the set B; by an amount e. That is, we
consider the set of all points within a distance e of some point in B;. If the distance
between B; and Bs is less than e, then By should be entirely contained in the inflated
version of B;. The e-inflated set B is given by

Bi(€e) = {v € R*|3w € B; such that d(v,w) < €},

where d(v,w) is the usual Euclidean distance between v and w, both points of R2. We
require that By C Bi(e). However, this is not sufficient. The set By could have a very
different form and be much smaller than B;. Thus, we also consider inflating Bo,

Bs(€) = {v € R?*|3w € By such that d(v,w) < €},




	IFS001
	IFS002
	IFS003
	IFS004
	IFS005
	IFS006
	IFS007
	IFS008
	IFS009
	IFS010
	IFS011
	IFS012
	IFS013
	IFS014
	IFS015
	IFS016

