
Data structures and algorithms

Part 9

Petr Felkel

10.12. 2007

Searching and Search Trees II

DSA 2

Topics
Red-Black tree

– Insert
– Delete

B-Tree
– Motivation
– Search
– Insert
– Delete

Based on:
[Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990]
[Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996]
[Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998]

DSA 3

Red-Black tree
Approximately balanced BST

hRB ≤ 2x hBST (height ≤ 2x height of balanced tree)

Additional bit for COLOR = {red | black}
nil (non-existent child) = pointer to nodenil

nilnil

1 1

leaf inner node

DSA 4

Red-Black tree
A binary search tree is a red-black tree if:

1. Every node is either red or black
2. Every leaf (nil) is black
3. If a node is red, then both its children are black
4. Every simple path from a node to a descendant leaf

contains the same number of black nodes
5. Root is black

Black-height bh(x) of a node x is the number of black
nodes on any path from x to a leaf, not counting x

black

black

blackred

red
black

black

blackred

Black-height bh(x)

DSA 5

Red-Black tree
4

2 7

6 9

5

1

2

1

1

2

black height
bh(x)

nil

0

1

nil nil

nil

nil nil

nil

black height bh(T) = 2

DSA 6

nilnil nilnil nilnil nilnilnilnil nilnilnilnil nilnil

Binary Search Tree -> RB Tree
8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

black height bh(T) = 4
h(T) = 4

4

3

2

1

DSA 7

nilnil nilnil nilnil nilnilnilnil nilnilnilnil nilnil

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Binary Search Tree -> RB Tree
8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

3

2

2

1

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

black height bh(T) = 3
h(T) = 4

DSA 8

nilnil nilnil nilnil nilnilnilnil nilnilnilnil nilnil

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Binary Search Tree -> RB Tree
3

3

2

1

black height bh(T) = 3
h(T) = 4

DSA 9

nilnil nilnil nilnil nilnilnilnil nilnilnilnil nilnil

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Binary Search Tree -> RB Tree
2

2

1

1

black height bh(T) = 2
h(T) = 4

DSA 10

Red-Black tree
of a node x

• is the number of black nodes on any path from x to a leaf, not
counting x

• is equal for all paths from x to a leaf
• For given h is bh(x) in the range from h/2 to h

– if ½ of nodes red => bh(x) ½ h(x), h(x) 2 lg(n+1)
– if all nodes black => bh(x) = h(x) = lg(n+1) - 1

Black-height bh(x)

Height h(x) of a RB-tree rooted in node x

• is at maximum twice of the optimal height of a balanced tree
• h ≤ 2lg(n+1) …. h (lg(n))

DSA 11

RB-tree height proof
A red-black tree with n internal nodes has height h at most 2lg(n+1)

Proof 1. Show that subtree starting at x contains at least 2bh(x)-1 internal nodes.
By induction on height of x:

I. If x is a leaf, then bh(x) = 0, 2bh(x)-1 = 0 internal nodes //… nil node
II. Consider x with height h and two children (with height h -1)
– x's children black-height is either bh(x) -1 or bh(x) // black or red
– Ind. hypothesis: x's children subtree has at least 2bh(x)-1 -1 internal nodes
– So subtree starting at x contains at least

(2bh(x)-1 -1) + (2bh(x)-1 -1) + 1 = 2bh(x) - 1 internal nodes => proved
Proof 2. Let h = height of the tree rooted at x

– min ½ nodes are black on any path to leaf => bh(x) ≥ h / 2
– Thus, n ≥ 2h/2 - 1 <=> n + 1 ≥ 2h/2 <=> lg(n+1) ≥ h / 2
– h ≤ 2lg(n+1)

[Cormen, p.264]

DSA 12

RB-tree Search

Search is performed as in simple BST, node colors do not
influence the search.

Search in R-B tree with N nodes takes
1. In general -- at most 2*lg(N+1) key comparisons.
2. In best case when keys are generated randomly and uniformly

-- cca 1.002*lg(N) key comparisons,
very close to the theoretical minimum.

DSA 13

Inserting in Red-Black Tree
Color new node Red
Insert it as in the standard BST

If parent is Black, stop. Tree is a Red-Black tree.
If parent is Red (3+3 cases)…

resp.
While x is not root and parent is Red

if x’s uncle is Red then case 1 // propagate red up
else if x is Right child then case 2 // double rotation

case 3 // single rotation
Color root Black

xx
!

xxx

xx

DSA 14

Inserting in Red-Black Tree
4

2 11

8 16

6

1

2

1

1

2

nil

1

1

nil

nil

nil nil

nil

nil0 1

nil nil0

If parent is Black, stop. Tree is a Red-Black tree.

x’s parent is Blackx’s parent is Black

Insert 1

DSA 15

!?

Inserting in Red-Black Tree

Case 1a

1

y

x

C

DB

A

C

DB

2

3 4 5 4 5

!

bh(x)
increased by onex is node of interest

1

A

2

3

x's uncle is Red

new x

x’s parent is Red
x's uncle y is Red
x is a Left child Loop: x = x.p.p

Recolor

DSA 16

!?

Inserting in Red-Black Tree

Case 1b

2

y

x

C

DA

B

C

DA

B

3

1 4 5

2 3

1 4 5

new x

!

x's uncle is Redx is node of interest
bh(x)

increased by one

Loop: x = x.p.p

x’s parent is Red
x's uncle y is Red
x is a Right child

Recolor

DSA 17

Inserting in Red-Black Tree

Case 2

2

y

x

C

DA

B

C

D

A

B

3

1 4 5

2

3

1

4 5

x

!

x's uncle is Blackx is a Right child

!

transform to Case 3

Lrot(x.p)

x’s parent is Red
x's uncle y is Black
x is a Right child

DSA 18

Inserting in Red-Black Tree

Case 3

x's uncle is Blackx is a Left child

C

D

A

B

2

3

1

4 5

x

!

Terminal case, tree
is a Red-Black tree

B

CA

2
D

54

31

xRrot(x.p.p)

x’s parent is Red
x's uncle y is Black
x is a Left child

Recolor +

x

y

1 2

3 4 5

4 5

DSA 19

Inserting in Red-Black Tree

1

y

x

B

A C

D

2

34

!

1

y

x

C

DB

A

2

3 4

!

Cases Right from the grandparent
are symmetric

55

DSA 20

[Cormen90]

p[x] = parent of x
left[x] = left son of x

y = uncle of x

[Cormen90]

Red uncle y ->recolor up

DSA 21

Inserting in Red-Black Tree
Insertion in O(log(n)) time
Requires at most two rotations

DSA 22

Deleting in Red-Black Tree
Find node to delete
Delete node as in a regular BST
Node y to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop
Assume we delete a black node

Let x be the child of deleted (black) node
If x is red, color it black and stop

while(x is not root) AND (x is black)
move x with virtual black mark through the tree
(If x is black, mark it virtually double black) A

DSA 23

Deleting in Red-Black Tree
while(x is not root) AND (x is black) {

// move x with virtual black mark through the tree
// just recolor or rotate other subtree up (decrease bh in R subtree)
if(red sibling)

-> Case 1: Rotate right subtree up, color sibling black, and
continue in left subtree with new sibling

if(black sibling with both black children)
-> Case 2: Color sibling red and go up

else // black sibling with one or two red children
if(red left child) -> Case 3: rotate to surface
Case 4: Rotate right subtree up

}

A

DSA 24

Deleting in R-B Tree - Case 1
x is the child of the physically deleted black node => double black
x’s sibling w (sourozenec) is red
(x’s parent MUST be black)

2

new w
x

31 4

5 6

D

EB

CA

Lrot(x.p)

x stays at the same black height
[Possibly transforms to case 2a and terminates – depends on 3,4]

2

x

3

1

4 5 6

B

DA

EC

w

Recolor(x.p, w) +

Case 1

A

D

DSA 25

Deleting in R-B Tree - Case 2a

x’s sibling w is black
x’s parent is red
x’s sibling left child is black
x’s sibling right child is black

2

x

3

1

4 5 6

B

DA

EC

Terminal case, tree is Red-Black tree

2

3

1

4 5 6

DA

EC

w black up

Case 2a

stop

new x
B

DSA 26

Deleting in R-B Tree - Case 2b
x’s sibling w is black
x’s parent is black
x’s sibling left child is black
x’s sibling right child is black

2

x

3

1

4 5 6

B

DA

EC

Decreases x black height by one

2

3

1

4 5 6

B

DA

EC

new x

w black up

Case 2b

DSA 27

Deleting in R-B Tree - Case 3
x’s sibling w is black
x’s parent is either
x’s sibling left child is red // blocks coloring w red
x’s sibling right child is black

2

x

3

1

4 5 6

DA

E

Transform to case 4
x stays at same black height

2 31

4

5 6

C

D

E

w
A

B B
x w Rrot(w)

Case 3

C

DSA 28

Deleting in R-B Tree - Case 4
x’s sibling w is black
x’s parent is either
x’s sibling left child is either
x’s sibling right child is red // blocks coloring w red

2

3

1

4 5 6

DA

Terminal case, tree is Red-Black tree

x w

2 31 4

5 6

EB

A

B

C C

D
Lrot(x.p)

Case 4

stop

E

DSA 29

Deleting in Red-Black Tree

[Cormen90]

Notation similar to AVL
z = logically removed
y = physically removed
x = y’s only son

DSA 30
[Cormen90]

x = son of removed node
p[x] = parent of x
w = sibling (brother) of x

R subtree up
Check L

Recolor
Black up
Go up

inner R-
subtree up

R subtree up
stop

DSA 31

Deleting in R-B Tree

Delete time is O(log(n))
At most three rotations are done

DSA 32

Which BS tree is the best? [Pfaff 2004]

It is data dependent
• For random sequences

=> use unsorted tree, no waste time for rebalancing
• For mostly random ordering with occasional runs of sorted order

=> use red-black trees
• For insertions often in a sorted order and

– later accesses tend to be random => AVL trees
– later accesses are sequential or clustered => splay trees

• self adjusting trees,
• update each search by moving searched element to the root

DSA 33

B-tree

B-tree as BST on disk

DSA 34

B-tree

Based on [Cormen] and [Maire]

Order 5 (5-ary tree)
Min degree t = 3

DSA 35

B-tree
1. Motivation
2. Multiway search tree
3. B-tree
4. Search
5. Insert
6. Delete

DSA 36

B-tree

• Large data do not fit into operational memory -> disk
• Time for disk access is limited by HW

(Disk access = Disk-Read, Disk-Write)

• Disk access is MUCH slower compared to instruction
– 1 disk access ~ 13 000 000 instructions!!!!
– Number of disk accesses dominates the

computational time

Motivation

DISK : 16 ms
Seek 8ms + rotational
delay 7200rpm 8ms

Instruction:
800 MHz 1,25ns

DSA 37

B-tree

Disk access = Disk-Read, Disk-Write
– Disk divided into blocks

(512, 2048, 4096, 8192 bytes)
– Whole block transferred

– Design a multiway search tree
– Each node fits to one disk block

Motivation

DSA 38

B-tree

= a generalization of Binary search tree (m=2)

Each node has at most m children (m>2)
Internal node with n keys has n+1 successors, n < m

(except root)
Leaf nodes with no successors
Tree is ordered
Keys in nodes separates the ranges in subtrees

Multiway search tree

DSA 39

B-tree
Multiway search tree – internal node

© Frederic Maire, QUT

k1<k2 < … < k5

Pointers to subtrees

Keys in internal node separate the ranges of keys in subtrees

DSA 40

B-tree
Multiway search tree – leaf node

© Frederic Maire, QUTk1<k2 < … < k5

Leaves have no pointers to subtrees

Leaves have no subtrees and do not use pointers

DSA 41

B-tree

= of order m is an m-way search tree, such that

• All leaves have the same height (B-tree is balanced)
• All internal nodes are constrained to have

– at least m/2 non-empty children and (precisely later)
– at most m non-empty children

• The root can have 0 or between 2 to m children
• 0 - leaf
• m - a full node

B-tree

DSA 42

B-tree

Different authors use different names
• Order m B-tree

– Maximal number of children
– Maximal number of keys (No. of children - 1)
– Minimal number of keys

• Minimum degree t
– Minimal number of children [Cormen]

B-tree – problems with notation

Order m B-tree

Minimum degree t

DSA 43

B-tree

Relation between minimal and maximal number of
children also differs

For minimal number t of children
Maximal number m of children is
• m = 2t – 1 simple B-tree,

multiphase update strategy
• m = 2t optimized B-tree,

singlephase update strategy

B-tree – problems with notation

DSA 44

B-tree

999 keys

999 999999

999 999999

1000 successors

1000 successors

1 node
999 keys

1000 nodes
999 000 keys

1 000 000 nodes
999 000 000 keys

B-tree of order m=1000 of height 2 contains
1 001 001 nodes (1+1000 + 1 000 000)
999 999 999 keys ~ one billion keys (1 miliarda klíčů)

B-tree example

DSA 45

B-tree

n … number of keys ki stored in the node n < m.
Node with n = m-1 is a full-node

ki … n keys, stored in non-decreasing order
k1 ≤ k2 ≤ … ≤ kn

leaf … boolean value, true for leaf, false for internal node
ci … n+1=m pointers to successors (undefined for leaves)

Keys ki separate the keys in subtree:
For keysi in the subtree with root ki holds

keys1 ≤ k1 ≤ keys2 ≤ k2 ≤ … ≤ kn ≤ keysn+1

B-tree node fields

DSA 46

B-tree

• Search
• Insert
• Delete

B-tree algorithms

DSA 47

B-tree search
Similar to BST tree search
Keys in nodes sequentially or binary search

Input: pointer to tree root and a key k
Output: an ordered pair (y, i), node y and index i

such that y.k[i] = k
or NIL, if k not found

DSA 48

n=1, i=1,2

n=3, i=1,2,3

B-tree search
17Search 17 Search 18

17 not found => return NIL 18 found => return (x, 3)

18

321 4

x

DSA 49

B-tree search
B-treeSearch(x,k)
i 1
while i ≤ x.n and k > x.k[i] //sequential search

do i i+1
if i ≤ x.n and k = x.k[i]

return (x, i) // pair: node & index
if x.leaf

then return NIL
else

Disk-Read(x.c[i]) // tree traversal
return B-treeSearch(x.c[i],k)

DSA 50

B-tree search

Number of disk pages read is
O(h) = O(logm n)

Where h is tree height and
m is the tree order
n is number of tree nodes

Since num. of keys x.n < m, the while loop takes O(m)
and

total time is O(m logm n)

B-treeSearch complexity Using tree order m

DSA 51

B-tree search

Number of disk pages read is
O(h) = O(logt n)

Where h is tree height and
t is the minimum degree of B-tree
n is number of tree nodes

Since num. of keys x.n < 2t, the while loop takes O(t)
and

total time is O(t logt n)

B-treeSearch complexity Using minimum degree t

DSA 52

Two principal strategies

B-tree update strategies

1. Multiphase strategy
“solve the problem, when appears” m=2t-1 children

2. Single phase strategy [Cormen]

“avoid the future problems” m =2t children

Actions:
Split full nodes
Merge nodes with less than minimum entries

DSA 53

B-tree insert - 1.Multiphase strategy

Insert 17 17

n=1, i=1,2

n=3, i=1,2,3

Insert to a non-full node

DSA 54

B-tree insert - 1.Multiphase strategy
Insert to a full node

25

Insert 25

median

17

Node split

Propagate
median up

1.Multiphase strategy
“solve the problem, when appears”

DSA 55

B-tree insert - 1.Multiphase strategy
Insert (x, T) - pseudocode

Find the leaf for x
If not full, insert x and stop
while (current_node full) (node overflow)

find median (in keys in the node after insertion of x)
split node into two
promote median up as new x
current_node = parent of current_node or new root

Insert x and stop

Top down phase

Bottom-up phase

x…key, T…tree

DSA 56

B-tree insert - 2.Singlephase strategy
Principle: “avoid the future problems”

• Split the full node with 2t-1 keys when enter
• It creates space for future medians from the children
• No need to go bottom-up

• Splitting of
– Root => tree grows by one
– Inner node or leaf => parent gets median key

Top down phase only

DSA 57

Insert B

A C D E J K N O R S T U V Y Z

G M P X

A B C D E J K N O R S T U V Y Z

G M P X

B-tree insert - 2.Singlephase strategy
Insert to a non-full node m = 2t = 6 children

m-1 keys = odd max number

DSA 58

Insert Q
Splitting a passed full node and insert to a not full node

A B C D E J K N O R S T U V Y Z

G M P X

A B C D E J K N O Q R S U V Y Z

G M P T X

B-tree insert - 2.Singlephase strategy

A B C D E J K N O R S U V Y Z

G M P T X

Split RSTUV

Insert Q to RS

1 new node

DSA 59

Insert L

A B C D E J K N O Q R S U V Y Z

G M P T X

A B C D E J K L N O Q R S U V Y Z

G M T X

P

B-tree insert - 2.Singlephase strategy

A B C D E J K N O Q R S U V Y Z

G M T X

P

Splitting a passed full root and insert to a not full node
Split GMPTX

Tree grows by 1

Insert L to JK

2 new nodes

DSA 60

Insert F

A B D E F J K L N O Q R S U V Y Z

C G M T X

P

A B C D E J K L N O Q R S U V Y Z

G M T X

P

B-tree insert - 2.Singlephase strategy

A B D E J K L N O Q R S U V Y Z

C G M T X

P

Split ABCDE

Insert F to DE

DSA 61

B-tree insert - 2.Singlephase strategy
Insert (x, T) - pseudocode

While searching the leaf x
if (node full)

find median (in keys in the full node only)
split node into two
insert median to parent (there is space)

Insert x and stop

Top down phase only

x …key, T… tree

DSA 62

B-tree delete

• Search for value to delete
• Entry is in leaf

is simple to delete. Do it. Corrections of number of elements later...
• Entry is in inner node

– It serves as separator for two subtrees
– swap it with predecessor(x) or successor(x)
– and delete in leaf

if leaf had more than minimum number of entries
delete x from the leaf and STOP

else
redistribute the values to correct and delete x in leaf
(may move the problem up to the parent,
problem stops by root, as it has no minimum number of entries)

Delete (x, btree) - principles Multipass strategy only

leaf

Inner node

Leaf in detail

DSA 63

B-tree delete
Node has less than minimum entries
• Look to siblings left and right
• If one of them has more than minimum entries

– Take some values from it
– Find new median in the sequence:

(sibling values – separator- node values)
– Make new median a separator (store in parent)

• Both siblings are on minimum
– Collapse node – separator – sibling to one node
– Remove separator from parent
– Go up to parent and correct

J K L N O

G M

J K M N

G L

JKLMN

J K N O

G M

J K M N

G

DSA 64

B-tree delete

if(x to be removed is not in a leaf)
swap it with successor(x)

currentNode = leaf
while(currentNode underflow)

try to redistribute entries from an immediate
sibling into currentNode via its parent

if(impossible) then merge currentNode with a
sibling and one entry from the parent

currentNode = parrent of CurrentNode

Delete (x, btree) - pseudocode Multipass strategy only

DSA 65

Maximum height of B-tree
h ≤ log ((n+1)/2)

Gives the upper bound to number of disk accesses
See [Cormen] for details

m / 2
half node used for k,

half of children

DSA 66

References
[Cormen] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and

19, McGraw Hill, 1990
Red Black Tree
[Whitney]: CS660 Combinatorial Algorithms, San Diego State University, 1996],

RedBlack, B-trees
http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html#RT
FToC5

[Wiki] B-tree. Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/wiki/B-tree

[Jones] Jeremy Jones: B-Tree animation - java applet
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm

Splay tree
[Wiki] Splay tree. Wikipedia, http://en.wikipedia.org/wiki/Splay_tree.
Tree comparison
[Pfaff 2004] Ben Pfaff. Performance Analysis of BSTs in System Software,

extended abstract : SIGMETRICS/Performance 2004.
http://www.stanford.edu/~blp/papers/libavl.pdf

