Data structures and algorithms

Part 9

Petr Felkel

10.12. 2007

Topics

Red-Black tree
— Insert
— Delete
B-Tree
— Motivation
— Search
— Insert
— Delete

Based on:

[Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990]
[Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996]

[Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998]

DSA

Red-Black tree

Approximately balanced BST
hrg < 2X hggt (height < 2x height of balanced tree)

Additional bit for COLOR = {red | black}
nil (non-existent child) = pointer to @ node

&
leaf — inner node

DSA 3

Red-Black tree

A binary search tree is a [=e)-[JEdiree if:

1. Every node is either or

2. Every leaf (nil) is
3. If a node is [Z¢) then both its children are

4. Every simple path from a node to a descendant leaf
contains the same number of e @nodes

(5. Root is black)

Black-height bh(X) | of a node x is the number of
nodes on any path from X to a leaf, not counting x

DSA

Red-Black tree

2 black height bh(T) = 2

1 21 7

1 (5
black height / J
bh(x) ;

DSA S)

Binary Search Tree -> RB Tree

4 M black height bh(T) = 4
h(T) =4

12

3 5 7 9 11 13 15

nil @ nil § nil @ nil § nil @ nil § nil @ nil @ nil B nil § nil ¥ nil § nil B nil B nil B nil

DSA 6

Binary Search Tree -> RB Tree

3
4

black height bh(T)
h(T)

A geds f{g

DSA

Binary Search Tree -> RB Tree

DSA 8

Binary Search Tree -> RB Tree

2 @ black height bh(T) = 2
h(T) =4

1

nil @ nil g nil @ nil § nil @ nil § nil B nil B nil ® nil § nil ® nil § nil ® nil B nil B nil

DSA 9

Red-Black tree

Black-height bh(x) of a node x

 Is the number of black nodes on any path from x to a leaf, not
counting X

 Is equal for all paths from X to a leaf

* For given his bh(Xx) in the range from h/2 to h
— iIf 2 of nodes red => bh(x) = ¥2 h(x), h(x) = 2 Ig(n+1)
— if all nodes black => bh(x) = h(x) = Ig(n+1)

Height h(x) of a RB-tree rooted in node x
 is at maximum twice of the optimal height of a balanced tree
 h<2lg(nt1) h € B©(Ig(n))

DSA

10

RB-tree height proof comen, p.264
A red-black tree with n internal nodes has height h at most 2Ig(n+1)

Proof: 1. Show that subtree starting at x contains at least 2°"®)-1 internal nodes.
By induction on height of x:

l. If x is a leaf, then bh(x) = 0, 26h*)-1 = 0 internal nodes //... nil node
ll. Consider x with height h and two children (with height h -1)
— X's children black-height is either bh(x) -1 or bh(x) // black or red

— Ind. hypothesis: x's children subtree has at least 2bh)-1 -1 internal nodes

— So subtree starting at x contains at least
(26h()-1 1) + (20h)-1 -1) + 1 = 26h(¥) - 1 internal nodes => proved

2. Let h = height of the tree rooted at x
— min %2 nodes are black on any path to leaf =>Dbh(x)=h/2
— Thus, n22"2-1<=>n+122"2<=>|g(n+1)=h/2
— h <2lg(n+1)

DSA 11

Inserting in Red-Black Tree

Color new node Red
Insert it as in the standard BST ‘¥

—
If parent is Black, stop. Tree is a Red-Black tree. ./X.\ ‘xg\

If parent is Red (3+3 cases)...
p () A -~ A

resp. VAN

While x is not root and parent is Red

If X’s uncle is Red then case 1 // propagate red up
else if x is Right child then case 2 // double rotation
case 3 // single rotation
Color root Black

DSA

12

Inserting in Red-Black Tree

X's parent is Black

Insert 1

D (2

AN

If parent is Black, stop. Tree is a Red-Black tree.

DSA

13

Inserting in Red-Black Tree

X's parent is Red
X's uncle y is Red
X is a Left child

Loop: X = X.p.p

Case la

Recolor

1 2 1 2 bh(x)
i i . Increased by one
X is node of interest %'s uncle is Red y

DSA 14

Inserting in Red-Black Tree

X's parent is Red
X's uncle y is Red
X is a Right child

Loop: X = X.p.p

Case 1b

Recolor

2 3 2 3 bh(x)
x is node of interest .. |0 is Red increased by one

DSA 15

Inserting in Red-Black Tree

X's parent is Red
X's uncle y is Black
X 1S a Right child

Case 2
A y Lrot(x.p) B
\\\"—\/! % > I/ \
1/fﬁ B % A

/\:‘4;' 5 /\ 3 4 5
2 3} .’ 1

2 transform to Case 3

xisaRightchild .o ol is Black
DSA :

Inserting in Red-Black Tree

X's parent is Red
X's uncle y is Black
X is a Left child

Terminal case, tree
IS a Red-Black tree

Case 3

Recolor + /e\

Y Rrot(x.p.p) X

i‘ ; €‘) A C
1
A X |
1
" .: 1 2 3

~ 1

\\]

N 1

\\ 1

. I

\\ 1

N]

N 1

1

X Is a Left child x's uncle is Black
DSA :

Inserting in Red-Black Tree

Cases Right from the grandparent
are symmetric

3 4)

DSA 18

RB-INSERT(7, X)

1 TREE-INSERT(T, x) p[x] = parent of x

2 color{x] — RED left[x] = left son of x

3 while x # root[T] and color[p[x]] = RED y = uncle of x

4 do if p[x] = lefi[p[p[x]]]

5 then y — right[p[p[x]]] Red uncle y ->recolor up

6 " if color[y] = RED I

7 then color[p[x]] — BLACK > Case 1

8 color[y] < BLACK > Case 1

9 color[p[p[x]]] — RED > Case 1
10 _ x — p[p[x]] > Case 1 /
11 [else if x = right[p[x]])
12 then x — p[x] > Case 2
13 N [LEFT-ROTATE(T, x) > Case 2)
14 (color[p[x]] «— BLACK > Case 3)
1s color[p[p[x]] — RED > Case 3
16 N RIGHT-ROTATE(T, p[p[x]]) > Case 3)
17 else (same as then clause

with “right” and “left” exchanged)

18 color[root[T]] — BLACK [Cormeng0]

DSA 19

Inserting in Red-Black Tree

Insertion in O(log(n)) time
Requires at most two rotations

DEMO: nhttp://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html

(Intuitive, good for understanding)
http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.html
(little different order of re-coloring and rotations)

DSA

20

Deleting in Red-Black Tree

Find node to delete
Delete node as in a regular BST
Node v to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop
Assume we delete a black node

Let X be the child of deleted (black) node
If X is red, color it black and stop

while(Xx is not root) AND (X is black)
move X with virtual black mark through the tree
(If x is black, mark it virtually double black Q)

DSA 21

Deleting in Red-Black Tree

while(x is not root) AND (x is black) {
// move x with virtual black mark chrough the tree
/I just recolor or rotate other subtree up (decrease bh in R subtree)
if(red sibling)
-> Case 1: Rotate right subtree up, color sibling black, and
continue in left subtree with new sibling
if(black sibling with both black children)
-> Case 2: Color sibling red and go up
else // black sibling with one or two red children
if(red left child) -> Case 3: rotate to surface
Case 4: Rotate right subtree up

DSA 22

Deleting in R-B Tree - Case 1

X is the child of the physically deleted black node => double black

X’s sibling w (sourozenec) is red

(x’s parent MUST be black)
/,//Case 1

"/ Recolor(x.p, w) +

W Lrot(x.p)>

3 4 5 6 1 2 3 4

X stays at the same black height
[Possibly transforms to case 2a and terminates — depends on 3,4]

DSA 23

Deleting in R-B Tree - Case 2a

X’s sibling w is black ..

X's parent is red :
X’s sibling left child is black
X’s sibling right child is black

» Case 2a

PN]
U Ve,

-ll.
we® .

Terminal case, tree is Red-Black tree

DSA 24

Deleting in R-B Tree - Case 2b

X’s sibling w is black

X's parent is black

X's sibling left child is black
X's sibling right child is black

Case 2b

nnnnnn

black up>

Decreases X black height by one

DSA 25

Deleting in R-B Tree - Case 3

X’s sibling w is black

X's parent is either

X’s sibling left child is red // blocks coloring w red
X’s sibling right child is black

Case 3

Rrot(w) g X

Transform to case 4
X stays at same black height

DSA 26

Deleting in R-B Tree - Case 4

X’s sibling w is black

X’s parent is either

x's sibling left child is &ither

X’s sibling right child isired /I blocks coloring w red

Case 4

Lrot(x.p) g

Terminal case, tree is Red-Black tree

DSA 57

DSA

Deleting in Red-Black Tree

Notation similar to AVL
- Z = logically removed
y = physically removed
X =y’s only son

RB-DELETE(7, z)

(1 if left[z] = nil[T] or right[z] = nil[T]
then y «— z
else y — TREE-SUCCESSOR(z)
if left[y] # nil[T]
then x — left[y]
else x — right[y]
plx] < ply]
if p[v] = nil[T]
then root[T] — x
else if y = left[p[y]]
then left[p[y]] — x
else right[p[y]] — x

Y
AN

2 an'a
O ol J Oy b KW D

AN

Yk e
—_ O

C—-—t
9

AN

(13 ify #z

14 then key[z] — key[y]

(15 > If y has other fields, copy them, too.
(16 if color[y] = BLACK

17 then RB-DELETE-FIXUP(7, x) J
18 return y [Cormen90]

28

RB-DEeELETE-Fixupr(7, x)

1

OCooJdJAAwnphWDN

10
11
12
13
14
15
16
17
18
19
20
21
22

23
DSA

while x # rootf[T] and color[x] = BLACK
do if x = left[p[x]]
then w — right[p[x]]

X -

p[X] =
w

son of removed node
parent of x

= sibling (brother) of x

-

/" if color[w] = RED R subtree up
then color[w] «— BLACK > Case 1 Check L
color[p[x]] — RED > Case 1
LErFT-ROTATE(T, p[x]) > Case 1
_ w — right[p[x]] > Case 1 J
((if color[leftfw]] = BLACK and color[right[w]] = BLACK)) Recolor
then color[w] «— RED > Case 2 Black up
L x «— p[x] > Case 2 | | Goup
(else(if color[right[w]] = BLACK N | innerR-
then color[left{w]] «— BLACK > Case 3 subtree up
color[w] «— RED > Case 3
RIGHT-ROTATE(7, w) > Case 3
L w — right[p[x]] > Case 3
(color[w] «— color[p[x]] > Case 4 | Rsubtreeup
color[p[x]] «<— BLACK > Case 4 stop
color[right[w]] «— BLACK > Case 4
LErFT-ROTATE(T, p[x]) > Case 4
L X «— root[T] > Case 4))
else (same as then clause
with “right” and “left” exchanged)
[Cormen90]

color[x] «— BLACK

29

Deleting in R-B Tree

Delete time is O(log(n))
At most three rotations are done

DSA

30

Which BS tree is the best? [praff 2004

It is data dependent
 For random sequences
=> use unsorted tree, no waste time for rebalancing
* For mostly random ordering with occasional runs of sorted order
=> use red-black trees
* For insertions often in a sorted order and
— later accesses tend to be random => AVL trees

— later accesses are sequential or clustered => splay trees

« self adjusting trees,
« update each search by moving searched element to the root

DSA 31

B-tree as BST on disk

DSA 32

B-tree

Order 5 (5-ary tree)
Min degree t =3

54

24 (44 63|78

[1i2]23] | [33]34[35 45[48 5660 75(77 [s5]97

Based on [Cormen] and [Maire]

DSA 33

SRl i\ e

Motivation

Multiway search tree
B-tree

Search

Insert

Delete

DSA

B-tree

34

B-tree

Motivation

« Large data do not fit into operational memory -> disk
« Time for disk access is limited by HW oS toms
(Disk access = Disk-Read, Disk-Write)

delay 7200rpm 8ms

Instruction:
800 MHz 1,25ns

* Disk access is MUCH slower compared to instruction
— 1 disk access ~ 13 000 000 instructions!!!!

— Number of disk accesses dominates the
computational time

DSA 35

B-tree

Motivation

Disk access = Disk-Read, Disk-Write

— Disk divided into blocks
(512, 2048, 4096, 8192 bytes)

— Whole block transferred

— Design a multiway search tree
— Each node fits to one disk block

DSA

36

B-tree

Multiway search tree
= a generalization of Binary search tree A (m=2)

Each node has at most m children /l/l/l l\l\ (m>2)

Internal node with n keys has n+1 successors, n <m
(except root)

Leaf nodes with no successors

Tree is ordered %

Keys in nodes separates the ranges in subtrees %

DSA 37

B-tree

Multiway search tree — internal node

Keys in internal node separate the ranges of keys in subtrees

Jt’ 1{1 [k2 ? 1{3 ¢ k-d ® kS \
/ s l “ “ Pomters to subtrees
¥ ¥y oy
keys <k; |= === |ky<keys <ks| — -~ [ks<keys
© Frederic Maire, QUT
K<k, < ... <K

DSA 38

B-tree

Multiway search tree — leaf node

Leaves have no subtrees and do not use pointers

Fkl’k2?k3qk-4qk5‘

v F, | 1 1 by

Leaves have no pointers to subtrees

k1 <k2 < .. < k5 © Frederic Maire, QUT

DSA 39

B-tree

B-tree
= of order m is an m-way search tree, such that

 All leaves have the same height (B-tree is balanced)
 All internal nodes are constrained to have
— at least m/2 non-empty children and (precisely later)
—at most m non-empty children

* The root can have 0 or between 2 to m children
0] - leaf
m -afull node

DSA 40

B-tree

B-tree — problems with notation

Different authors use different names

* Order m B-tree
— Maximal number of children
— Maximal number of keys (No. of children - 1)

— Minimal number of keys

* Minimum degree t
— Minimal number of children [Cormen]

DSA

41

B-tree

B-tree — problems with notation
Relation between minimal and maximal number of
children also differs
For minimal number t of children
Maximal number m of children is
« m=2t—-1 simple B-tree,
multiphase update strategy
e m=2t optimized B-tree,
singlephase update strategy

DSA

42

B-tree

B-tree example 1 node
999 keys 999 keys
/ 1000 suc%
999 IR 1000 nodes
999 000 keys

}V 1000 successors \l\\%

U R 1 000 000 nodes
999 999 999 000 000 keys

B-tree of order m=1000 of height 2 contains
1 001 001 nodes (1+1000 + 1 000 000)
999 999 999 keys ~ one billion keys (1 miliarda klicu)

DSA 43

B-tree

B-tree node fields

n ... number of keys k; stored in the node n <m.
Node with n = m-1 is a full-node
. n keys, stored in non-decreasing order
ki<k,=<...<Kk,
leaf ... boolean value, true for leaf, false for internal node
C. ... n+1=m pointers to successors (undefined for leaves)
Keys k; separate the keys in subtree:

For keys; in the subtree with root k; holds
keys, £ k, <keys, <k, < ... £k <keys, .,

DSA 44

B-tree algorithms
« Search
* |nsert
* Delete

DSA

B-tree

45

B-tree search

Similar to BST tree search
Keys in nodes sequentially or binary search

Input: pointer to tree root and a key k
Output: an ordered pair (y, 1), node y and index |
such that y.k[i] = k
or NIL, if k not found

DSA

46

B-tree search
Search 17 @) Search 18

> Ty y
13 n 13

I A

5 |12 14116 (18 n 9112 14116 (18
1 2 3 4

17 not found => return NIL 18 found => return (x, 3)

DSA

B-tree search

B-treeSearch(x, k)

1 « 1

while 1 <x.n and k> x.K]i] //sequential search
do 1 <« 1+l

1T 1 sx.nand k= x.Kli]

return (X, 1) // pair: node & Index
i1f x.leaf

then return NIL

else

Disk-Read(x.c[1]) // tree traversal
return B-treeSearch(x.c[1],k)

DSA 48

B-tree search

B-treeSearch complexity Using tree order m

Number of disk pages read is
O(h) = O(log,, n)
Where h is tree height and
m is the tree order
n is number of tree nodes
Since num. of keys x.n < m, the while loop takes O(m)

and
total time is O(m log,, n)

DSA

49

B-tree search

B-treeSearch complexity Using minimum degree t

Number of disk pages read is
O(h) = O(log; n)
Where h is tree height and
t is the minimum degree of B-tree
n is number of tree nodes
Since num. of keys x.n < 2t, the while loop takes O(t)

and
total time is O(t log, n)

DSA

50

B-tree update strategies

Two principal strategies

1. Multiphase strategy
“solve the problem, when appears”

2. Single phase strategy (cormen]
“avoid the future problems”

Actions:
Split full nodes
Merge nodes with less than minimum entries

DSA

o1

B-tree insert - 1.Multiphase strategy

Insert to a non-full node
Insert 17 (17)

> o v
13 13

NN

DSA

B-tree insert - 1.Multiphase strategy

Insert to a full node

13
J' Propagate
median u
Insert 25 13 Node split \ . P
‘ 9|12 |14 16 |18 25
Q112
: 13117
median |
1.Multiphase strategy
“solve the problem, when appears” 9112 14116 13 25'

DSA

53

B-tree insert - 1.Multiphase strategy

Insert (X, T) - pseudocode X...key, T...tree
Find the leaf for x Top down phase
If not full, insert X and stop
while (current_node full) (node overflow)

find median (in keys in the node after insertion of x)
split node into two Bottom-up phase

promote median up as new X
current_node = parent of current _node or new root
Insert x and stop

DSA 54

B-tree insert - 2.Singlephase strategy

Principle: “avoid the future problems”

oSp

Top down phase only
lit the full node with 2t-1 keys when enter

* |t creates space for future medians from the children
* No need to go bottom-up

oSp

DSA

itting of
Root => tree grows by one

nner node or leaf => parent gets median key

55

B-tree insert - 2.Singlephase strategy

m = 2t = 6 children
m-1 keys = odd max number

Insert to a non-full node

Insert B
GIM|P | X

A|ICID E J K N[O RISITIU|VI| |Y|Z
G|IM|P | X

AIBICIDI|E| |J|K N[O RISITIU|VI| |Y|Z

DSA 56

B-tree insert - 2.Singlephase strategy

1 new node
Splitting a passed full node and insert to a not full node
Insert Q G[MP[x
AlBICID|E]| [J|K N[O R[S|TU|V]| |Y|Z Split RSTUV
G|M[P [T X
A|BICID|E| |J|K N|O R|S ulv Y|Z Insert Q to RS
G|MP|T| X
AlBICID|E]| [J|K N|O QIR[S ulv Y|z

DSA 57

B-tree insert - 2.Singlephase strategy

2 new nodes

Splitting a passed full root and insert to a not full node

Insert L /BMPT

\

plit GMPTX
Tree grows by 1

A|B|C|D|E| |J|K N|O Q[R|S U
)
Insert L to JK
G|M
ABICD|E]| |J|K N| O S Y|Z
P
G|M
AIBICD|E| |J|K[L N|O S Y|Z

DSA

58

B-tree insert - 2.Singlephase strategy

Insert F P Split ABCDE
G|M T(X
IABCDE J|K|[L N|O QRIS uv Y| Z
P Insert F to DE
CIGM T(X
A|B DE J|K|L N|O QR[S uv Y| Z
P
C|GM T(X
A|B D EFE J|K|L N|O QR[S uv Y| Z

DSA 59

B-tree insert - 2.Singlephase strategy

Insert (X, T) - pseudocode Top down phase only
While searching the leaf x x ...key, T... tree
if (node full)

find median (in keys in the full node only)

split node into two

insert median to parent (there is space)
Insert x and stop

DSA 60

B-tree delete

Delete (x, btree) - principles Multipass strategy only

 Search for value to delete
« Entryisin leaf

is simple to delete. Do it. Corrections of number of elements later...

 Entryisin Inner node
— It serves as separator for two subtrees
— swap it with predecessor(x) or successor(x)
— and delete in leaf
Leaf in detail
if leaf had more than minimum number of entries
delete x from the leaf and STOP
else
redistribute the values to correct and delete x in leaf
(may move the problem up to the parent,
problem stops by root, as it has no minimum number of entries)

DSA

61

B-tree delete

Node has less than minimum entries GIM JKLMN
* Look to siblings left and right ST N S
* |f one of them has more than minimum entries G|L

— Take some values from it

J K M|N

— Find new median in the sequence:
(sibling values — separator- node values)

— Make new median a separator (store in parent)

* Both siblings are on minimum
— Collapse node — separator — sibbling to one node
— Remove separator from parent

— Go up to parent and correct G|M G

DSA J K N J |[KIM|N 62

B-tree delete

Delete (x, btree) - pseudocode Multipass strategy only

1T(x to be removed 1s not In a leaf)
swap 1t with successor(x)

currentNode = leaf

while(currentNode underflow)

try to redistribute entries from an immediate
sibling Into currentNode via 1ts parent

1f(impossible) then merge currentNode with a
sibling and one entry from the parent

currentNode = parrent of CurrentNode

DSA 63

Maximum height of B-tree

half of children

h<lo n+1)/2 half node used for k,
Y2 (72

Gives the upper bound to number of disk accesses
See [Maire] or [Cormen] for details

DSA

64

References

[Cormen] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and
19, McGraw Hill, 1990

Red Black Tree

[Whitney]: CS660 Combinatorial Algorithms, San Diego State University, 1996],
RedBlack, B-trees
http:(/:/www.eli.sdsu.edu/courses/falI96/Cs660/notes/redBIack/redBIack.htmI#RT
FToC5

[RB tree] John Franco - java applet
http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html

[RB tree] Robert Lafore. Applets accompanying the book "Data Structures and
Algorithms in Java,” Second Edition. Robert Lafore, 2002
(applet, v némz si lze vyzkousSet vkladani a mazani u Red-Black Tree)
http://cs.brynmawr.edu/cs206/WorkshopApplets/Chap09/RBTree/RBTree.html

B-tree

[Maire] Frederic Maire: An Introduction to Btrees, Queensland University of
Technology,1998]
http://sky.fit.qut.edu.au/~maire/baobab/lecture/

DSA 65

References

[Wiki] B-tree. Wikipedia, The Free Encyclopedia. (2006, November 24). Retrieved
December 12, 2006, from
http://en.wikipedia.org/w/index.php?title=B-tree&oldid=89805120

[Jones] Jeremy Jones: B-Tree animation - java applet
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm

Splay tree

[Wiki] Splay tree. Wikipedia, The Free Encyclopedia. (2007, Oct 29) Retrieved
November 27, 2007 from
<http://en.wikipedia.org/w/index.php?title=Splay tree&oldid=167855497>.

Tree comparison

[Pfaff 2004] Ben Pfaff. Performance Analysis of BSTs in System Software,
extended abstract of this paper appeared in the proceedings of
SIGMETRICS/Performance 2004.
http://www.stanford.edu/~blp/papers/libavl.pdf

DSA 66

