
1

State-space and Plan-space Planning Algorithms

based on Dana S. Nau, University of Maryland,

revised and presented by Michal Pechoucek, CTU in Prague

2

Motivation

Nearly all planning procedures are search procedures

Different planning procedures have different search spaces

» Two examples:

State-space planning

» Each node represents a state of the world

• A plan is a path through the space

Plan-space planning

» Each node is a set of partially-instantiated operators, plus some constraints

• Impose more and more constraints, until we get a plan

3

Outline

State-space planning

» Forward search

» Backward search

» Lifting

» STRIPS

» Block-stacking

4

Forward Search

take c3

move r1

take c2 …

…

5

Forward Search

6

Forward Search

7

Forward Search

8

Forward Search

9

Forward Search

10

Forward Search

11

Properties

Forward-search is sound

» for any plan returned by any of its nondeterministic traces, this plan is
guaranteed to be a solution

Forward-search also is complete

» if a solution exists then at least one of Forward-search’s nondeterministic
traces will return a solution.

12

Some deterministic implementations
of forward search:

» breadth-first search

» depth-first search

» best-first search (e.g., A*)

» greedy search

Breadth-first and best-first search are sound and complete

» But they usually aren’t practical because they require too much memory

» Memory requirement is exponential in the length of the solution

In practice, more likely to use depth-first search or greedy search

» Worst-case memory requirement is linear in the length of the solution

» In general, sound but not complete

• But classical planning has only finitely many states

• Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

Deterministic Implementations

13

Branching Factor of Forward Search

Forward search can have a very large branching factor

» E.g., many applicable actions that don’t progress toward goal

Why this is bad:

» Deterministic implementations can waste time trying lots of irrelevant actions

Need a good heuristic function and/or pruning procedure

» See Section 4.5 (Domain-Specific State-Space Planning)
and Part III (Heuristics and Control Strategies)

a3

a1

a2

…a1 a2 a50a3

initial state goal

14

Backward Search

For forward search, we started at the initial state and computed state transitions

» new state = (s,a)

For backward search, we start at the goal and compute inverse state transitions

» new set of subgoals = –1(g,a)

To define -1(g,a), must first define relevance:

» An action a is relevant for a goal g if

• a makes at least one of g’s literals true

– g effects(a) ≠

• a does not make any of g’s literals false

– g+ effects–(a) = and g– effects+(a) =

15

Inverse State Transitions

If a is relevant for g, then

» –1(g,a) = (g – effects(a)) precond(a)

Otherwise –1(g,a) is undefined

Example: suppose that

» g = {on(b1,b2), on(b2,b3)}

» a = stack(b1,b2)

What is –1(g,a)?

16

17

Efficiency of Backward Search

Backward search can also have a very large branching factor

» E.g., an operator o that is relevant for g may have many ground instances a1,
a2, …, an such that each ai’s input state might be unreachable from the initial
state

As before, deterministic implementations can waste lots of time trying all of
them

Backward-search is sound and complete

a1

…a1 a2 a50a3

initial state goal

18

Pruning the Search Space

» Lifting

» STRIPS

» Block stacking

19

Lifted Backward Search

We can reduce the branching factor if we partially instantiate the operators

» this is called lifting

More complicated than Backward-search (keeps track of what substitutions
were performed), but it has a much smaller branching factor

20

STRIPS Planner

π the empty plan

do a modified backward search from g

» instead of -1(s,a), each new set of subgoals is just precond(a)

» choose one of them to achieve

» If it is not already achieved

• choose an action that makes the goal true

• achieve the preconditions of the action

• carry out the action

» achieve the rest of the goals.

The STRIPS algorithm, as presented, is unsound.

Achieving one subgoal may undo already achieved subgoals.

21

Example – Sussman Anomaly

22

Example – Sussman Anomaly

23

Example – Sussman Anomaly

24

Example – Sussman Anomaly

25

How to Handle Problems like These?

How to make STRIPS sound?

» Protect subgoals so that, once achieved, until they are needed, they cannot
be undone.

• Protecting subgoals makes STRIPS incomplete.

» Reachieve subgoals that have been undone.

• Reachieving subgoals finds longer plans than necessary.

» Use domain-specific knowledge to prune the search space

• Can solve both problems quite easily this way

• Example: block stacking using forward search

» Use methods for causal links thread resolution

26

Additional Domain-Specific Knowledge

A block x needs to be moved if any of the following is true:

» s contains ontable(x) and g contains on(x,y) - see a below

» s contains on(x,y) and g contains ontable(x) - see d below

» s contains on(x,y) and g contains on(x,z) for some y≠z

• see c below

» s contains on(x,y) and y needs to be moved - see e below

initial state goal

e

d

d

ba

c c

a

b

27

loop
if there is a clear block x such that

x needs to be moved and
x can be moved to a place where it won’t need to be moved

then move x to that place
else if there is a clear block x such that

x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

e

d

d

ba

c c

a

b

Domain-Specific Block Stacking Algorithm

28

loop
if there is a clear block x such that

x needs to be moved and
x can be moved to a place where it won’t need to be moved

then move x to that place
else if there is a clear block x such that

x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

ba

c

c

a

b

Easily Solves the Sussman Anomaly

29

Properties

The block-stacking algorithm:

» Sound, complete, guaranteed to terminate

» Runs in time O(n3)

• Can be modified to run in time O(n)

» Often finds optimal (shortest) solutions

» But sometimes only near-optimal (Exercise 4.22 in the book)

• Recall that PLAN LENGTH for the blocks world is NP-complete

30

Backward search from the goal

Each node of the search space is a partial plan

• A set of partially-instantiated actions

• A set of constraints

» Make more and more refinements,
until we have a solution

Types of constraints:

» precedence constraint:
a must precede b

» binding constraints:

• inequality constraints, e.g., v1 ≠ v2 or v ≠ c

• equality constraints (e.g., v1 = v2 or v = c) or substitutions

» causal link:

• use action a to establish the precondition p needed by action b

How to tell we have a solution: no more flaws in the plan

» Will discuss flaws and how to resolve them

foo(x)

Precond: …

Effects: pq(x)

bar(y)

Precond: pq(y)

Effects: …

baz(x)

Precond: pq(x)

Effects: …

pq(x)

x ≠ y

Plan Space Planning (PSP)

31

Open goal:

» An action a has a precondition p that we haven’t
decided how to establish

Resolving the flaw:

» Find an action b

– (either already in the plan, or insert it)

» that can be used to establish p

– can precede a and produce p

» Instantiate variables

» Create a causal link

Flaws: 1. Open Goals

foo(x)

Precond: …

Effects: pq(x)

baz(x)

Precond: pq(x)

Effects: …

pq(x)

foo(x)

Precond: …

Effects: pq(x)

baz(x)

Precond: pq(x)

Effects: …

pq(x)

32

Flaws: 2. Causal Link Threats

Causal Link Formally: due to the properties of the ordering relation:

we introduce causal link as satisfiability relation among operators

to be read as 1 achieves x for 2 the fact x is that true allows carrying out 2
provided that 1 has been already achieved

Causal link threat:

negative thread of causal link: and are consistent
in a plan and there is an effect so that

positive causal thread is defined similarly

Causal link threat resolution:
additional ordering – demotion or promotion or constrain
variable binding preventing the threat

33

The PSP Procedure

PSP is both sound and complete

34

Similar (but not identical) to an example in Russell and Norvig’s Artificial
Intelligence: A Modern Approach (1st edition)

Operators:

» Start

Precond: none

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk),

Sells(SM,Banana)

» Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

» Go(l,m)

Precond: At(l)

Effects: At(m), At(l)

» Buy(p,s)

Precond: At(s), Sells(s,p)

Effects: Have(p)

Example

35

Initial plan

Sells(SM,Milk), Sells(SM,Bananas)At(Home), Sells(HWS,Drill),

Have(Drill) Have(Milk) Have(Bananas)

Start

Finish

At(Home)

Example (continued)

36

The only possible ways to establish the Have preconditions

At(s1) At(s2) At(s3)

Buy(Drill, s1) Buy(Milk, s2) Buy(Bananas, s2)

Have(Drill)

Start

Buy(Drill, s1)

Finish

Have(Milk) Have(Bananas)

Sells(s1, Drill) Sells(s2,Milk) Sells(s3,Bananas)

At(Home)

Example (continued)

37

The only possible ways to establish the Sells preconditions

At(HWS) At(SM) At(SM)

Buy(Drill, s1) Buy(Milk, SM) Buy(Bananas, SM)

Have(Drill)

Start

Buy(Drill, HWS)

Finish

Have(Milk) Have(Bananas)

Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(Home)

Example (continued)

38

At(l2)

The only ways to establish At(HWS) and At(SM)

» Note the threats

At(HWS) At(SM) At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Go(l2, SM)

At(Home)

At(l1)

Go(l1,HWS)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Example (continued)

39

To resolve the threat to At(s1), make Buy(Drill) precede Go(SM)

» This resolves all three threats

Example (continued)

At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(SM,Milk) Sells(SM,Bananas)

Go(l2, SM)

At(Home)

At(l2)

At(l1)

Go(l1,HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Example (continued)

40

Establish At(l1) with l1=Home

At(Home)

At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(SM,Milk) Sells(SM,Bananas)

Go(l2, SM)

Go(Home,HWS)

At(Home)

At(l2)

At(HWS) At(SM)Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Example (continued)

41

Establish At(l2) with l2= HWS

At(Home)

At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(Home)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Example (continued)

42

Establish At(Home) for Finish

» This creates a bunch of threats

Go(l3, Home)

At(Home)

At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(Home)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Example (continued)

43

Constrain Go(l3,Home) to remove threats to At(SM)

» This also removes the other threats

Go(l3, Home)

At(Home)

At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(Home)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Example (continued)

44

Establish At(l3) with l3=SM

Go(SM, Home)

At(Home)

At(SM)

Buy(Drill, s1)

Have(Drill)

Start

Finish

Have(Milk) Have(Bananas)

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(Home)

At(HWS)

At(HWS) At(SM)Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)Buy(Drill, HWS)

Final Plan

45

Comments

PSP doesn’t commit to orderings and instantiations until necessary

Problem: how to prune infinitely long paths?

» Loop detection is based on recognizing states we’ve seen before

» In a partially ordered plan, we don’t know the states

Can we prune if we see the same action more than once?

No. Sometimes we might need the same action several times in different states of
the world.

go(b,a) go(a,b) go(b,a) at(a)• • •

46

TOPLAN – known nonlinear planner

47

POPLAN – known nonlinear planner

