State-space and Plan-space Planning Algorithms

based on Dana S. Nau, University of Maryland, revised and presented by Michal Pechoucek, CTU in Prague

Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
 - » Two examples:
- State-space planning
 - » Each node represents a state of the world
 - A plan is a path through the space
- Plan-space planning
 - » Each node is a set of partially-instantiated operators, plus some constraints
 - Impose more and more constraints, until we get a plan

Outline

- State-space planning
 - » Forward search
 - » Backward search
 - » Lifting
 - » STRIPS
 - » Block-stacking


```
Forward-search(O, s_0, g)
    s \leftarrow s_0
    \pi \leftarrow \text{the empty plan}
    loop
        if s satisfies g then return \pi
        E \leftarrow \{a | a \text{ is a ground instance an operator in } O,
                    and precond(a) is true in s}
        if E = \emptyset then return failure
        nondeterministically choose an action a \in E
        s \leftarrow \gamma(s, a)
        \pi \leftarrow \pi.a
```


Properties

- Forward-search is sound
 - » for any plan returned by any of its nondeterministic traces, this plan is guaranteed to be a solution
- Forward-search also is complete
 - » if a solution exists then at least one of Forward-search's nondeterministic traces will return a solution.

Deterministic Implementations

- Some deterministic implementations of forward search:
 - » breadth-first search
 - » depth-first search
 - » best-first search (e.g., A*)
 - » greedy search
- Breadth-first and best-first search are sound and complete
 - » But they usually aren't practical because they require too much memory
 - » Memory requirement is exponential in the length of the solution
- In practice, more likely to use depth-first search or greedy search
 - » Worst-case memory requirement is linear in the length of the solution
 - » In general, sound but not complete
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking

Branching Factor of Forward Search

- Forward search can have a very large branching factor
 - » E.g., many applicable actions that don't progress toward goal
- Why this is bad:
 - » Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure
 - » See Section 4.5 (Domain-Specific State-Space Planning) and Part III (Heuristics and Control Strategies)

Backward Search

- For forward search, we started at the initial state and computed state transitions
 - » new state = $\gamma(s, a)$
- For backward search, we start at the goal and compute inverse state transitions
 - » new set of subgoals = $\gamma^{-1}(g, a)$
- To define $\gamma^{-1}(g,a)$, must first define *relevance*:
 - » An action *a* is relevant for a goal *g* if
 - *a* makes at least one of *g*'s literals true

 $-g \cap \text{effects}(a) ≠ ∅$

- *a* does not make any of *g*'s literals false
 - $-g^{+} \cap \text{effects}^{-}(a) = \emptyset$ and $g^{-} \cap \text{effects}^{+}(a) = \emptyset$

Inverse State Transitions

- If a is relevant for g, then
 - » $\gamma^{-1}(g,a) = (g \text{effects}(a)) \cup \text{precond}(a)$
- Otherwise $\gamma^{-1}(g,a)$ is undefined
- Example: suppose that
 - » $g = \{on(b1,b2), on(b2,b3)\}$
 - » a = stack(b1,b2)
- What is $\gamma^{-1}(g,a)$?

Backward Search

```
Backward-search(O, s_0, g)

\pi \leftarrow the empty plan

loop

if s_0 satisfies g then return \pi

A \leftarrow \{a | a \text{ is a ground instance of an operator in } O

and \gamma^{-1}(g, a) is defined}

if A = \emptyset then return failure

nondeterministically choose an action a \in A

\pi \leftarrow a.\pi

g \leftarrow \gamma^{-1}(g, a)
```

Efficiency of Backward Search

- Backward search can *also* have a very large branching factor
 - » E.g., an operator *o* that is relevant for *g* may have many ground instances a_1 , a_2 , ..., a_n such that each a'_i 's input state might be unreachable from the initial state
- As before, deterministic implementations can waste lots of time trying all of them
- Backward-search is sound and complete

Pruning the Search Space

- » Lifting
- » STRIPS
- » Block stacking

- We can reduce the branching factor if we partially instantiate the operators
 - » this is called *lifting*
- More complicated than Backward-search (keeps track of what substitutions were performed), but it has a much smaller branching factor

```
Lifted-backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        A \leftarrow \{(o, \theta) | o \text{ is a standardization of an operator in } O,
                     \theta is an mgu for an atom of g and an atom of effects<sup>+</sup>(o),
                     and \gamma^{-1}(\theta(g), \theta(o)) is defined}
        if A = \emptyset then return failure
        nondeterministically choose a pair (o, \theta) \in A
        \pi \leftarrow the concatenation of \theta(o) and \theta(\pi)
        g \leftarrow \gamma^{-1}(\theta(g), \theta(o))
```

STRIPS Planner

- $-\pi \leftarrow$ the empty plan
- do a modified backward search from g
 - » instead of $\gamma^{-1}(s,a)$, each new set of subgoals is just precond(a)
 - » choose one of them to achieve
 - » If it is not already achieved
 - choose an action that makes the goal true
 - achieve the preconditions of the action
 - carry out the action
 - » achieve the rest of the goals.
- The STRIPS algorithm, as presented, is unsound.
- Achieving one subgoal may undo already achieved subgoals.

How to Handle Problems like These?

- How to make STRIPS sound?
 - » *Protect subgoals* so that, once achieved, until they are needed, they cannot be undone.
 - Protecting subgoals makes STRIPS incomplete.
 - » Reachieve subgoals that have been undone.
 - Reachieving subgoals finds longer plans than necessary.
 - » Use *domain-specific* knowledge to prune the search space
 - Can solve both problems quite easily this way
 - Example: block stacking using forward search
 - » Use methods for *causal links thread resolution*

Additional Domain-Specific Knowledge

- A block *x* needs to be moved if any of the following is true:
 - » s contains ontable(x) and g contains On(x,y) see a below
 - » s contains On(x,y) and g contains Ontable(x) see d below
 - » s contains On(x,y) and g contains On(x,z) for some $y \neq z$
 - see C below
 - » s contains On(x, y) and y needs to be moved see e below

Domain-Specific Block Stacking Algorithm

loop

repeat

loop

if there is a clear block x such that x needs to be moved and x can be moved to a place where it won't need to be moved then move x to that place else if there is a clear block x such that x needs to be moved then move x to the table else if the goal is satisfied then return the plan else return failure

repeat

Properties

- The block-stacking algorithm:
 - » Sound, complete, guaranteed to terminate
 - » Runs in time $O(n^3)$
 - Can be modified to run in time O(n)
 - » Often finds optimal (shortest) solutions
 - » But sometimes only near-optimal (Exercise 4.22 in the book)
 - Recall that PLAN LENGTH for the blocks world is NP-complete

Plan Space Planning (PSP)

- Backward search from the goal
- Each node of the search space is a *partial plan*
 - A set of partially-instantiated actions
 - A set of constraints
 - » Make more and more refinements, until we have a solution foo(x)
- Types of constraints:
 - » precedence constraint: a must precede b
 - » binding constraints:
 - inequality constraints, e.g., $v_1 \neq v_2$ or $v \neq c$
 - equality constraints (e.g., $v_1 = v_2$ or v = c) or substitutions
 - » causal link:
 - use action *a* to establish the precondition *p* needed by action *b*

Precond: ...

Effects: pq(x)

- How to tell we have a solution: no more *flaws* in the plan
 - » Will discuss flaws and how to resolve them

bar(y)

pq(x)

 $x \neq y$

Precond: $\neg pq(y)$

Precond: pq(x)

Effects: ...

Effects: ...

baz(x)

Flaws: 1. Open Goals

- Open goal:
 - » An action a has a precondition p that we haven't decided how to establish
- Resolving the flaw:
 - » Find an action b
 - (either already in the plan, or insert it)
 - » that can be used to establish p
 - can precede a and produce p
 - » Instantiate variables
 - » Create a causal link

foo(x) Precond: ... Effects: pq(x) - **Causal Link Formally:** due to the properties of the ordering relation:

 $\forall \alpha_1, \alpha_2 \in \pi : \exists x : x \in \mathsf{pre}(\alpha_2) \land x \in \mathsf{eff}(\alpha_1) \Leftrightarrow \alpha_1 \prec \alpha_2$

we introduce causal link as satisfiability relation among operators

 $\alpha_1 \overrightarrow{x} \alpha_2$, where $x \in eff(\alpha_1) \land x \in pre(\alpha_2) \land \alpha_1 \prec \alpha_2$

to be read as 1 achieves x for 2 the fact x is that true allows carrying out 2 provided that 1 has been already achieved

Causal link threat:

negative thread of causal link: $\alpha_1 \prec \alpha_2, \alpha_2 \prec \alpha_3$ and $\alpha_1 \overrightarrow{q} \alpha_3$ are consistent in a plan and there is an effect $q \in (\texttt{eff} \alpha_2)$ so that $\neg q \in (\texttt{pre} \alpha_3)$ positive causal thread is defined similarly

Causal link threat resolution:

additional ordering – *demotion* $\alpha_3 \prec \alpha_2$ or *promotion* $\alpha_2 \prec \alpha_1$ or constrain variable binding preventing the threat

The PSP Procedure

```
\begin{aligned} \mathsf{PSP}(\pi) \\ & flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi) \\ & \text{if } flaws = \emptyset \text{ then } \mathsf{return}(\pi) \\ & \text{select any } \mathsf{flaw} \ \phi \in flaws \\ & resolvers \leftarrow \mathsf{Resolve}(\phi, \pi) \\ & \text{if } resolvers = \emptyset \text{ then } \mathsf{return}(\mathsf{failure}) \\ & \text{nondeterministically choose a } \mathsf{resolver} \ \rho \in resolvers \\ & \pi' \leftarrow \mathsf{Refine}(\rho, \pi) \\ & \mathsf{return}(\mathsf{PSP}(\pi')) \end{aligned}
```

- PSP is both sound and complete

Example

- Similar (but not identical) to an example in Russell and Norvig's Artificial Intelligence: A Modern Approach (1st edition)
- Operators:
 - » Start

Precond: none

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk), Sells(SM,Banana)

» Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

» Go(*l,m*)

Precond: At(1)

Effects: At(*m*), ¬At(*I*)

» Buy(*p*,*s*)

Precond: At(*s*), Sells(*s*,*p*) Effects: Have(*p*)

The only possible ways to establish the Have preconditions

- The only possible ways to establish the Sells preconditions

- The only ways to establish At(HWS) and At(SM)
 - » Note the threats

- To resolve the threat to $At(s_1)$, make Buy(Drill) precede Go(SM)
 - » This resolves all three threats

- Establish $At(I_1)$ with I_1 =Home

- Establish $At(I_2)$ with $I_2 = HWS$

- Establish At(Home) for Finish
 - » This creates a bunch of threats

- Constrain $Go(I_3, Home)$ to remove threats to At(SM)
 - » This also removes the other threats

Final Plan

- Establish At(I_3) with I_3 =SM

Comments

- PSP doesn't commit to orderings and instantiations until necessary
- Problem: how to prune infinitely long paths?
 - » Loop detection is based on recognizing states we've seen before
 - » In a partially ordered plan, we don't know the states
- Can we prune if we see the same *action* more than once?

 \dots — go(b,a) — go(a,b) – go(b,a) — at(a)

 No. Sometimes we might need the same action several times in different states of the world.

TOPLAN – known nonlinear planner

initialize: $\Pi \leftarrow \{\{s_{\texttt{goal}}\}\}, \mathbf{S} \leftarrow \{s_{\texttt{goal}}\}$

 $toplan(s_0, \Pi, S)$:

if $\exists s_n \in \mathbf{S}, \pi_n \in \mathbf{\Pi} : s_{\texttt{goal}} = s_n \text{ then } \texttt{return}(\pi_n)$

if $S = \{\}$ return failure

else <u>remove</u> s_i from **S** and <u>remove</u> π_i from Π $A \leftarrow \{\alpha|_{eff(\alpha) \in s_i}\}$ $S \leftarrow \{s|_{\forall \alpha \in A: \ successor(\alpha, s) = s_i}\}$ $\Pi \leftarrow \{\pi|_{\forall \alpha \in A: \ \pi = \alpha \cup \pi_i}\}$

 $return(toplan(s_0, append(\Pi, \Pi), append(S, S)))$

POPLAN – known nonlinear planner

```
initialize: \Pi \leftarrow \{ \texttt{actions}, \{ s_0 \prec s_{\texttt{goal}} \}, \{ \}, \{ \texttt{pre}(s_{\texttt{goal}}) \} \}
poplan(\Pi):
```

```
if complete(\Pi) then return(\Pi)

if \exists p of action \beta \in \text{open_goals}(\Pi) and \exists \alpha that achieves p

than append(\Pi, \{\{\alpha \not p \beta\}, \{\alpha \prec \beta\}\}\) and remove(\beta, \text{open_goals}(\Pi))

else return(fail)

if there is a causal link \alpha_1 \not a_2 threatened by \alpha_3

then do either

<u>Promotion:</u> return poplan(\Pi \uplus \{\alpha_3 \prec \alpha_1\}) or
```

<u>Demotion:</u> return poplan($\Pi \uplus \{\alpha_2 \prec \alpha_3\}$) or else return poplan(Π)