
PLÁNOVÁNÍ A HRY - CV 3

kopriva@agents.felk.cvut.cz

mailto:kopriva@agents.felk.cvut.cz

State – space Planning

 Forward Search

 Backward Search

 Lifting

 STRIPS

Forward Search

take c3

take c2
…

Forward Search Properties

 Forward-search is sound

 for any plan returned by any of its nondeterministic

traces, this plan is guaranteed to be a solution

 Forward-search also is complete

 if a solution exists then at least one of Forward-search’s

nondeterministic traces will return a solution.

Task 1: DWR, find 1 finite and 1infinite

trace

 s0:

 g: {at(r1, loc1), loaded(r1, c3)}

Task 2: Interchanging variables

 Objective: Interchange the values of variables v1

and v2.

 s0= {value(v1,3), value(v2,5), value(v3,0)}

 g = {value(v1,5), value(v2,3)}

 assign(v, w, x, y)

 precond: value(v,x), value(w,y)

 effects: value(v,x), value(v,y)

Branching Factor of Forward Search

 Forward search can have a very large branching factor

 E.g., many applicable actions that don’t progress toward goal

 Why this is bad:

 Deterministic implementations can waste time trying lots of
irrelevant actions

 Need a good heuristic function and/or pruning procedure

 How to do pruning?

a3

a1

a2

…a1 a2 a50a3

initial state goal

Backward Search

 For forward search, we started at the initial state and
computed state transitions

 new state = (s,a)

 For backward search, we start at the goal and compute
inverse state transitions

 new set of subgoals = –1(g,a)

 To define -1(g,a), must first define relevance:

 An action a is relevant for a goal g if
 a makes at least one of g’s literals true

 g  effects(a) ≠ 

 a does not make any of g’s literals false
 g+  effects–(a) =  and g–  effects+(a) = 

Inverse State Transitions

 If a is relevant for g, then

 –1(g,a) = (g – effects(a))  precond(a)

 Otherwise –1(g,a) is undefined

 Example: suppose that

 g = {on(b1,b2), on(b2,b3)}

 a = stack(b1,b2)

 What is –1(g,a)?

Backward Search

Lifting

 Can reduce the branching factor of backward

search if we partially instantiate the operators

 this is called lifting

q(a1)

foo(x,y)

precond: p(x,y)

effects: q(x)

foo(a1,a1)

foo(a1,a2)

foo(a1,a3). . .

p(a1,a2)

p(a1,a3)

p(a1,a50)
foo(a1,a50)

q(a1)
foo(a1,y)

p(a1,y)

Lifted Backward Search

 More complicated than Backward-search

 Have to keep track of what substitutions were performed

 But it has a much smaller branching factor

STRIPS

 π  the empty plan

 do a modified backward search from g

 instead of -1(s,a), each new set of subgoals is just precond(a)

 whenever you find an action that’s executable in the current state,
then go forward on the current search path as far as possible,
executing actions and appending them to π

 repeat until all goals are satisfied

g

g1

g2

g3

a1

a2

a3

g4

g5

g3

a4

a5

a6

π = a6, a4

s = ((s0,a6),a4)

g6

a3

satisfied in s0

STRIPS

function groundStrips(O,s,g)
plan  〈〉
loop

if s.satisfies(g) then return plan
applicables

{ground instances from O relevant for g-s}
if applicables.isEmpty() then return failure
action  applicables.chooseOne()
subplan groundStrips(O,s,action.preconditions())
if subplan = failure then return failure
s γ(s, subplan ∙ 〈action〉)
plan plan ∙ subplan ∙ 〈action〉

Blocks World ?
unstack(x,y)

Precond: on(x,y), clear(x), handempty

Effects: on(x,y), clear(x), handempty,

holding(x), clear(y)

stack(x,y)

Precond: holding(x), clear(y)

Effects: holding(x), clear(y),

on(x,y), clear(x), handempty

pickup(x)

Precond: ontable(x), clear(x), handempty

Effects: ontable(x), clear(x),

handempty, holding(x)

putdown(x)

Precond: holding(x)

Effects: holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

Sussman Anomaly

 Initial State Goal

 Sub goals:

 1) Put A on B

 2) Put B on C

c

a b c

a

b

Interchanging Variables Repeated

 Objective: Interchange the values of variables v1

and v2.

 s0= {value(v1,3), value(v2,5), value(v3,0)}

 g = {value(v1,5), value(v2,3)}

 assign(v, w, x, y)

 precond: value(v,x), value(w,y)

 effects: value(v,x), value(v,y)

How to Handle Problems like These?

 Several ways:

 Do something other than state-space search

 Use forward or backward state-space search, with

domain-specific knowledge to prune the search space

 Can solve both problems quite easily this way

 Example: block stacking using forward search

Domain-specific knowledge

 A blocks-world planning problem P = (O,s0,g) is
solvable
if s0 and g satisfy some simple consistency conditions

 g should not mention any blocks not mentioned in s0

 a block cannot be on two other blocks at once

 If P is solvable, can easily construct a solution of length
O(2m), where m is the number of blocks

 Move all blocks to the table, then build up stacks from the
bottom
 Can do this in time O(n)

 With additional domain-specific knowledge can do
even better …

Additional Domain-Specific Knowledge

 A block x needs to be moved if any of the following is
true:

 s contains ontable(x) and g contains on(x,y) - see a below

 s contains on(x,y) and g contains ontable(x) - see d below

 s contains on(x,y) and g contains on(x,z) for some y≠z, see
c below

 s contains on(x,y) and y needs to be moved - see e below

initial state goal

e

d

d

ba

c c

a

b

Domain – specific Algorithm

loop
if there is a clear block x such that

x needs to be moved and
x can be moved to a place where it won’t need

to be moved
then move x to that place

else if there is a clear block x such that
x needs to be moved

then move x to the table
else if the goal is satisfied

then return the plan
else return failure

repeat

STRIPS Planning Task

Monkey and Banana

