PLANOVANI A HRY - CV 3

mailto:kopriva@agents.felk.cvut.cz

State — space Planning
S
o Forward Search
- Backward Search
o Lifting
-1 STRIPS

Forward Search

]
Forward-search(O, sg. g)

S 8]

m «— the empty plan

loop
if s satisfies g then return =
E «— {ala is a ground instance an operator in O,

and precond(a) is true in s}

if E = () then return failure
nondeterministically choose an action a € £
s «— v(s,a)
Tema il cranel

! take ¢3 ﬂﬁ :

Wl e ‘ loct loc2

. take cZ

locl loc2

Forward Search Properties

Forward-search is sound

for any plan returned by any of its nondeterministic
traces, this plan is guaranteed to be a solution

Forward-search dlso is complete

if a solution exists then at least one of Forward-search’s
nondeterministic traces will return a solution.

Task 1: DWR, find 1 finite and Tinfinite

frace
I

0 S

c3 cranel

c2 /
p2

cl = ri

i o i 4

locl loc2

o g: {at(r1, loc1), loaded(r1, c3)}

Task 2: Interchanging variables

Obijective: Interchange the values of variables v1
and v2.

so= {value(v1,3), value(v2,5), value(v3,0)}
g = {value(v1,5), value(v2,3)}
assign(v, w, X, y)

precond: value(v,x), value(w,y)

effects: —value(v,x), value(v,y)

Branching Factor of Forward Search

- a,

| |[@y] [83| --- |80 93

initial s’rcl’r?1 _goal
Forward search can have a very large branching factor

E.g., many applicable actions that don’t progress toward goal

Why this is bad:

Deterministic implementations can waste time trying lots of
irrelevant actions

Need a good heuristic function and/or pruning procedure
How to do pruning?

Backward Search

For forward search, we started at the initial state and
computed state transitions

new state = y(s,a)
For backward search, we start at the goal and compute
inverse state transitions

new set of subgoals = y7(g,q)
To define y''(g,a), must first define relevance:

An action a is relevant for a goal g if

a makes at least one of g’s literals true
g N effects(a) # O
a does not make any of g’s literals false
gt N effects(a) = D and g~ M effects*(a) = I

Inverse State Transitions

If ais relevant for g, then

v~ 1(g,a) = (g — effects(a)) U precond(a)
Otherwise y~'(g,a) is undefined
Example: suppose that

g = {on(b1,b2), on(b2,b3)}

a = stack(bl1,b2)

What is y7'(g,a)?

Backward Search
N

Backward-search(O, sy, g)

m + the empty plan

loop
if sy satisfies ¢ then return w
A «— {ala is a ground instance of an operator in O

and 77 1(g, a) is defined}

if A = () then return failure
nondeterministically choose an action a € A
T a.T

g — '(g,a)

Lifting

p(a;,a,)
foo(x,y)

precond: p(x,y)

effects: q(x) P(a;,8)

q(a,)

p(al,as) < 100(A1s0)

Can reduce the branching factor of backward
search if we partially instantiate the operators

this is called lifting foo(a,,y)
11

p(a.y)

q(a,)

Lifted Backward Search
=

-1 More complicated than Backward-search
Have to keep track of what substitutions were performed

o But it has a much smaller branching factor

Lifted-backward-search(Q, sg, g)
m «— the empty plan

loop
if sg satisfies g then return 7

A «— {(o,#)|o is a standardization of an operator in O,
@ is an mgu for an atom of g and an atom of effects™ (o),
and v 1(6(g),0(0)) is defined}

if A = () then return failure

nondeterministically choose a pair (0,0) € A

m «— the concatenation of #(0) and #(m)

g — ' (0(g),0(0))

STRIPS

T <— the empty plan

do a modified backward search from g
instead of y"'(s,a), each new set of subgoals is just precond(a)

whenever you find an action that’s executable in the current state,
then go forward on the current search path as far as possible,
executing actions and appending them to

repeat until all goals are satisfied

n = (ag, a,) g satisfied in s, 01 ~_q,
S = Y(y(S:2),24) X6 Oy = f ~
4

STRIPS

function groundStrips(O,s,9)
plan € ()

loop
if s.satisfies(g) then return plan

applicables <
{ground instances from O relevant for g-s}

if applicables.isEmpty() then return failure

action € applicables.chooseOne()

subplan € groundStrips(O,s,action.preconditions())
if subplan = failure then return failure

s € Vs, subplan * {action))

plan € plan * subplan ® {action)

Blocks World ¢

W unstack(X,y)

Precond: on(X,y), clear(X), handempty
Effects: —on(X,y), —clear(X), —handempty,
holding(X), clear(y)

stack(X,y)
Precond: holding(X), clear(y)
Effects: —holding(X), —clear(y),
on(X,y), clear(X), handempty

abl__l
Il

pickup(X)
Precond: ontable(X), clear(X), handempty
Effects: —ontable(X), —clear(X),

—handempty, holding(X)

putdown(X)
Precond: holding(X)

Effects: —holding(X), ontable(X),
clear(X), handempty

Sussman Anomaly

[3
C b
a ‘b‘ C
o Initial State Godal
1 Sub goals:

71 1) Put AonB
1 2) Put Bon C

Interchanging Variables Repeated

Obijective: Interchange the values of variables v1
and v2.

so= {value(v1,3), value(v2,5), value(v3,0)}
g = {value(v1,5), value(v2,3)}
assign(v, w, X, y)

precond: value(v,x), value(w,y)

effects: —value(v,x), value(v,y)

How to Handle Problems like These?¢

Several ways:

Do something other than state-space search

Use forward or backward state-space search, with
domain-specific knowledge to prune the search space
Can solve both problems quite easily this way

Example: block stacking using forward search

Domain-specific knowledge

A blocks-world planning problem P = (O,s,,9) is
solvable
if s, and g satisfy some simple consistency conditions
g should not mention any blocks not mentioned in s,
a block cannot be on two other blocks at once

If P is solvable, can easily construct a solution of length
O(2m), where m is the number of blocks
Move all blocks to the table, then build up stacks from the
bottom
Can do this in time O(n)

With additional domain-specific knowledge can do
even better ...

Additional Domain-Specific Knowledge

A block x needs to be moved if any of the following is
frue:

s contains ontable(x) and g contains ON(x,y) - see a below
s contains ON(x,y) and g contains ontable(x) - see d below

s contains ON(x,y) and g contains ON(x,z) for some y#z, see
C below

s contains ON(x,y) and y needs to be moved - see € below

[a
d b
e C ’
a b d
| I —
initial state goal

Domain — specific Algorithm

loop
if there is a clear block x such that
x needs to be moved and
x can be moved to a place where it won't need
to be moved
then move x to that place
else if there is a clear block x such that
x needs to be moved
then move x to the table
else if the goal is satisfied
then return the plan
else return failure
repeat

STRIPS Planning Task

S
o1 Monkey and Banana

