
ORM and JPA 2.0
Petr Křemen

petr.kremen@fel.cvut.cz

 KBSS 2010

What is Object-relational mapping ?

● a typical information system architecture:

Presentation Layer Business Logic Data storage

● How to avoid data format transformations
when interchanging data from the (OO-based)
presentation layer to the data storage
(RDBMS) and back ?
● How to ensure persistence in the (OO-based)
business logic ?

 KBSS 2010

Example – object model

● When would You stick to one of these options ?

 KBSS 2010

Example – database

● … and how to model it in SQL ?

 KBSS 2010

Object-relational mapping

● Mapping between the database (declarative)
schema and the data structures in the object-
oriented language.

● Let's take a look at JPA 2.0

 KBSS 2010

JPA 2.0

● Java Persistence API 2.0 (JSR-317)
● Although part of Java EE 6 specifications, JPA

2.0 can be used both in EE and SE
applications.

● Main topics covered:
● Basic scenarios
● Controller logic – EntityManager interface

● ORM strategies
● JPQL + Criteria API

 KBSS 2010

JPA 2.0 – Entity Example

● Minimal example (configuration by exception):
@Entity

public class Person {

 @Id

 @GeneratedValue

 private Integer id;

 private String name;

 // setters + getters

}

 KBSS 2010

JPA 2.0 - Basics

● Let's have a set of „suitably annotated“ POJOs,
called entities, describing your domain model.

● A set of entities is logically grouped into a
persistence unit.

● JPA 2.0 providers :
– generate persistence unit from existing database,
– generate database schema from existing persistence

unit.

● What is the benefit of the keeping Your domain
model in the persistence unit entities (OO)
instead of the database schema (SQL)

 KBSS 2010

JPA 2.0 – Persistence Context

● In runtime, the application accesses the object
counterpart (represented by entity instances)
of the database data. These (managed) entities
comprise a persistence context (PC).
● PC is synchronized with the database on demand

(refresh, flush) or at transaction commit.
● PC is accessed by an EntityManager instance

and can be shared by several EntityManager
instances.

 KBSS 2010

JPA 2.0 – EntityManager
● EntityManager (EM) instance is in fact a

generic DAO, while entities can be understand
as DPO (managed) or DTO (detached).

● Selected operations on EM (CRUD) :
– Create : em.persist(Object o)
– Read : em.find(Object id), em.refresh(Object o)
– Update : em.merge(Object o)
– Delete : em.remove(Object o)
– native/JPQL queries: createNativeQuery, createQuery, etc.
– Resource-local transactions: getTransaction().

[begin(),commit(),rollback()]

 KBSS 2010

ORM - Basics
● Simple View

– Object classes = entities = SQL tables
– Object properties (fields/accessor methods) = entity

properties = SQL columns

● The ORM is realized by means of Java
annotations/XML.

● Physical Schema annotations
● @Table, @Column, @JoinColumn, @JoinTable, etc.

● Logical Schema annotations
● @Entity, @OneToMany, @ManyToMany, etc.

● Each property can be fetched lazily/eagerly.

 KBSS 2010

ORM – Basic data types
● Primitive Java types: String → varchar/text, Integer →

int, Date → TimeStamp/Time/Date, etc.

● Wrapper classes, basic type arrays, Strings, temporal
types

● @Column – physical schema properties of the
particular column (insertable, updatable, precise data
type, defaults, etc.)

● @Lob – large objects

● Default EAGER fetching (except Lobs)

@Column(name=“id“)
private String getName();

 KBSS 2010

ORM – Enums, dates
● @Enumerated(value=EnumType.String)

private EnumPersonType type;
● Stored either in text column, or in int column

● @Temporal(TemporalType.Date)

private java.util.Date datum;
● Stored in respective column type according to the

TemporalType.

 KBSS 2010

ORM – Identifiers
● Single-attribute: @Id,
● Multiple-attribute – an identifier class must exist

● Id. class: @IdClass, entity ids: @Id
● Id. class: @Embeddable, entity id: @EmbeddedId

● How to write hashCode, equals for entities ?
● @Id

@GeneratedValue(strategy=GenerationType.SEQUENCE)

private int id;

 KBSS 2010

ORM – Relationships
● Unidirectional vs. Bidirectional

● @OneToMany

● Forgotten mappedBy

● @ManyToOne

● @ManyToMany

● Two ManyToMany relationships from two different entities

● @OneToOne

● @JoinColumn, @JoinTable – in the owning entity (holding the
foreign key)

● Cascading

 KBSS 2010

ORM – advanced topics
● Embeddables, embedded objects

● Collections of basic data types and embeddables

● Lists, Sets,

● Maps

 KBSS 2010

ORM – RelationShips
● Unidirectional vs. Bidirectional

● @OneToMany

● Forgotten mappedBy

● @ManyToOne

● @ManyToMany

● Two ManyToMany relationships from two different entities

● @OneToOne

● @JoinColumn, @JoinTable – in the owning entity (holding the
foreign key)

● Cascading

 KBSS 2010

Inheritance

● How to map inheritance into RDBMS ?

 KBSS 2010

Strategies for inheritance mapping

● Single table

● Joined

 KBSS 2010

Strategies for inheritance mapping

● Table-per-concrete-class

 KBSS 2010

Strategies for inheritance mapping

● If Person is not an @Entity, but a
@MappedSuperClass

● If Person is not an @Entity, neither
@MappedSuperClass, the deploy fails as the
@Id is in the Person (non-entity) class.

 KBSS 2010

Criteria API, Metamodel API

● Criteria API – for building queries represented
as Java Objects (not strings)

● Metamodel API – to represent metamodel of
the persistence unit.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

