
Talk Outline

� comparing patch pixels

� normalized cross-correlation, ssd . . .

� KLT - gradient based optimization

� good features to track

Patch tracking based on comparing its pixels1

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz
Czech Technical University in Prague, Center for Machine Perception
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1Please note that the lecture will be accompanied be several sketches and derivations on the blackboard
and few live-interactive demos in Matlab
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What is the problem?

video: CTU campus, door of G building
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Tracking of dense sequences — camera motion

T - Template I - Image

Scene static, camera moves.
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Tracking of dense sequences — object motion

T - Template I - Image

Camera static, object moves.
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Alignment of an image (patch)

Goal is to align a template image T (x) to an input image I(x). x column
vector containing image coordinates [x, y]>. The I(x) could be also a small
subwindow within an image.
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How to measure the alignment?

� What is the best criterial function?

� How to find the best match, in other words, how to find extremum of
the criterial function?



6/38
How to measure the alignment?

� What is the best criterial function?

� How to find the best match, in other words, how to find extremum of
the criterial function?

Criterial function

What are the desired properties (on a certain domain)?
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How to measure the alignment?

� What is the best criterial function?

� How to find the best match, in other words, how to find extremum of
the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

� convex (remember the optimization course?)

� discriminative

� . . .

7/38
Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

where σ means standard deviation.
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Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

where σ means standard deviation.

Having template T (k, l) and image I(x, y),

r(x, y) =

∑
k

∑
l

(
T (k, l)− T

) (
I(x+ k, y + l)− I(x, y)

)

√∑
k

∑
l

(
T (k, l)− T

)2
√
∑

k

∑
l

(
I(x+ k, y + l)− I(x, y)

)2
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Normalized cross-correlation – in picture
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Normalized cross-correlation – in picture
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� well, definitely not convex

� but the discriminability looks promising

� very efficient in computation, see [3]2.

2check also normxcorr2 in Matlab
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Sum of squared differences

ssd(x, y) =
∑

k

∑

l

(T (k, l)− I(x+ k, y + l))
2
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Sum of absolute differences

sad(x, y) =
∑

k

∑

l

|T (k, l)− I(x+ k, y + l)|
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SAD for the door part
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SAD for the door part – truncated
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Differences greater than 20 intensity levels are counted as 20.
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Normalized cross-correlation: how it works

live demo for various patches

14/38
Normalized cross-correlation: tracking

video
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Normalized cross-correlation: tracking

video

� What went wrong?

� Why did it failed?

Suggestions for improvement?

15/38
Tracking as an optimization problem

� finding extrema of a criterial function . . .
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Tracking as an optimization problem

� finding extrema of a criterial function . . .

� . . . sounds like an optimization problem

Kanade–Lucas–Tomasi (KLT) tracker

� Iteratively minimizes sum of square differences.

� It is a Gauss-Newton gradient algorithm.
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Importance in Computer Vision

� Firstly published in 1981 as an image registration method [4].

� Improved many times, most importantly by Carlo Tomasi [5, 6]

� Free implementation(s) available3. Also part of the OpenCV library4.

� After more than two decades, a project5 at CMU dedicated to this
single algorithm and results published in a premium journal [1].

� Part of plethora computer vision algorithms.

Our explanation follows mainly the paper [1]. It is a good reading for those
who are also interested in alternative solutions.

3http://www.ces.clemson.edu/~stb/klt/
4http://opencv.willowgarage.com/wiki/
5http://www.ri.cmu.edu/projects/project_515.html
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Original Lucas-Kanade algorithm I

Goal is to align a template image T (x) to an input image I(x). x column
vector containing image coordinates [x, y]>. The I(x) could be also a small
subwindow withing an image.

Set of allowable warps W(x;p), where p is a vector of parameters. For
translations

W(x;p) =

[
x+ p1
y + p2

]

W(x;p) can be arbitrarily complex

The best alignment, p∗, minimizes image dissimilarity
∑

x

[I(W(x;p))− T (x)]2
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Original Lucas-Kanade algorithm II

∑

x

[I(W(x;p))− T (x)]2

I(W(x;p) is nonlinear! The warp W(x;p) may be linear but the pixels
value are, in general, non-linear. In fact, they are essentially unrelated to x.

Linearization of the image: It is assumed that some p is known and best
increment ∆p is sought. The modified problem

∑

x

[I(W(x;p + ∆p))− T (x)]2

is solved with respect to ∆p. When found then p gets updated

p← p + ∆p

. . .
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Original Lucas-Kanade algorithm III

∑

x

[I(W(x;p + ∆p))− T (x)]2

linearization by performing first order Taylor expansion6

∑

x

[I(W(x;p)) +∇I ∂W
∂p

∆p− T (x)]2

∇I = [∂I
∂x,

∂I
∂y] is the gradient image7 computed at W(x;p). The term ∂W

∂p is
the Jacobian of the warp.

6Detailed explanation on the blackboard.
7As a vector it should have been a column wise oriented. However, for sake of clarity of equations row

vector is exceptionally considered here.
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Original Lucas-Kanade algorithm IV

Derive
∑

x [I(W(x;p)) +∇I ∂W
∂p ∆p− T (x)]2 with respect to ∆p
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Original Lucas-Kanade algorithm IV

Derive
∑

x [I(W(x;p)) +∇I ∂W
∂p ∆p− T (x)]2 with respect to ∆p

2
∑

x

[
∇I ∂W

∂p

]> [
I(W(x;p)) +∇I ∂W

∂p
∆p− T (x)

]

setting equality to zero yields
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Original Lucas-Kanade algorithm IV

Derive
∑

x [I(W(x;p)) +∇I ∂W
∂p ∆p− T (x)]2 with respect to ∆p

2
∑

x

[
∇I ∂W

∂p

]> [
I(W(x;p)) +∇I ∂W

∂p
∆p− T (x)

]

setting equality to zero yields

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

where H is (Gauss-Newton) approximation of Hessian matrix.

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]
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The Lucas-Kanade algorithm—Summary

Iterate:

1. Warp I with W(x;p)

2. Warp the gradient ∇I with W(x;p)

3. Evaluate the Jacobian ∂W
∂p at (x;p) and compute the steepest descent

image ∇I ∂W
∂p

4. Compute the H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

5. Compute ∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

6. Update the parameters p← p + ∆p

until ‖∆p‖ ≤ ε
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Example of convergence

video
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Example of convergence

Convergence video: Initial state is within the basin of attraction

24/38
Example of divergence

Divergence video: Initial state is outside the basin of attraction
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Example – on-line demo

Let play and see . . .
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What are good features (windows) to track?
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What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]
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What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

where H is the matrix

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]
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What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

where H is the matrix

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

The stability of the iteration is mainly influenced by the inverse of Hessian.
We can study its eigenvalues. Consequently, the criterion of a good feature
window is min(λ1, λ2) > λmin (texturedness).

28/38
What are good features for translations?

Consider translation W(x;p) =

[
x+ p1
y + p2

]
. The Jacobian is then

∂W
∂p =

[
1 0

0 1

]

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

=
∑

x

[
1 0

0 1

] [ ∂I
∂x
∂I
∂y

]
[∂I
∂x,

∂I
∂x]

[
1 0

0 1

]

=
∑

x



(

∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2




The image windows with varying derivatives in both directions.
Homeogeneous areas are clearly not suitable. Texture oriented mostly in one
direction only would cause instability for this translation.


