Patch tracking based on comparing its pixels ${ }^{1}$

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz
Czech Technical University in Prague, Center for Machine Perception

> http://cmp.felk.cvut.cz

Last update: April 2, 2014

Talk Outline

- comparing patch pixels
- normalized cross-correlation, ssd . . .
- KLT - gradient based optimization
\qquad
good features to track
${ }^{1}$ Please note that the lecture will be accompanied be several sketches and derivations on the blackboard and few live-interactive demos in Matlab

What is the problem?

Tracking of dense sequences - camera motion

Scene static, camera moves.

Camera static, object moves.

Goal is to align a template image $T(\mathbf{x})$ to an input image $I(\mathbf{x})$. \mathbf{x} column vector containing image coordinates $[x, y]^{\top}$. The $I(\mathrm{x})$ could be also a small subwindow within an image.

How to measure the alignment?

- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?
-What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

How to measure the alignment?

What is the best criterial function?

- How to find the best match, in other words, how to find extremum of the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

- convex (remember the optimization course?)
- discriminative
- . .

Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

where σ means standard deviation.

Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}
$$

where σ means standard deviation.
Having template $T(k, l)$ and image $I(x, y)$,

$$
r(x, y)=\frac{\sum_{k} \sum_{l}(T(k, l)-\bar{T})(I(x+k, y+l)-\overline{I(x, y)})}{\sqrt{\sum_{k} \sum_{l}(T(k, l)-\bar{T})^{2}} \sqrt{\sum_{k} \sum_{l}(I(x+k, y+l)-\overline{I(x, y)})^{2}}}
$$

Normalized cross-correlation - in picture

- well, definitely not convex
- but the discriminability looks promising
- very efficient in computation, see $[3]^{2}$.
$\operatorname{ssd}(x, y)=\sum_{k} \sum_{l}(T(k, l)-I(x+k, y+l))^{2}$

Sum of absolute differences

$$
\operatorname{sad}(x, y)=\sum_{k} \sum_{l}|T(k, l)-I(x+k, y+l)|
$$

SAD for the door part
11/38

Differences greater than 20 intensity levels are counted as 20

Normalized cross-correlation: how it works
 live demo for various patches

Normalized cross-correlation: tracking

- What went wrong?
- Why did it failed?

Suggestions for improvement?

Tracking as an optimization problem

- finding extrema of a criterial function .

Tracking as an optimization problem

- finding extrema of a criterial function . .
- . . . sounds like an optimization problem

Kanade-Lucas-Tomasi (KLT) tracker

- Iteratively minimizes sum of square differences.
- It is a Gauss-Newton gradient algorithm.
- Firstly published in 1981 as an image registration method [4].
- Improved many times, most importantly by Carlo Tomasi $[5,6]$
- Free implementation(s) available ${ }^{3}$. Also part of the OpenCV library ${ }^{4}$.
- After more than two decades, a project ${ }^{5}$ at CMU dedicated to this single algorithm and results published in a premium journal [1].
- Part of plethora computer vision algorithms.

Our explanation follows mainly the paper [1]. It is a good reading for those who are also interested in alternative solutions.
${ }^{3}$ http://www.ces.clemson.edu/~stb/klt/
${ }^{4}$ http://opencv.willowgarage.com/wiki/
${ }^{5}$ http://www.ri.cmu.edu/projects/project_515.html

Original Lucas-Kanade algorithm I

Goal is to align a template image $T(\mathbf{x})$ to an input image $I(\mathbf{x})$. x column vector containing image coordinates $[x, y]^{\top}$. The $I(\mathbf{x})$ could be also a small subwindow withing an image.

Set of allowable warps $\mathbf{W}(\mathbf{x} ; \mathbf{p})$, where \mathbf{p} is a vector of parameters. For translations

$$
\mathbf{W}(\mathbf{x} ; \mathbf{p})=\left[\begin{array}{l}
x+p_{1} \\
y+p_{2}
\end{array}\right]
$$

$\mathbf{W}(\mathbf{x} ; \mathbf{p})$ can be arbitrarily complex
The best alignment, \mathbf{p}^{*}, minimizes image dissimilarity

$$
\sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x})]^{2}
$$

Original Lucas-Kanade algorithm II

$$
\sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))-T(\mathbf{x})]^{2}
$$

$I(\mathbf{W}(\mathbf{x} ; \mathbf{p})$ is nonlinear! The warp $\mathbf{W}(\mathbf{x} ; \mathbf{p})$ may be linear but the pixels value are, in general, non-linear. In fact, they are essentially unrelated to x .

Linearization of the image: It is assumed that some p is known and best increment $\Delta \mathrm{p}$ is sought. The modified problem

$$
\sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x})]^{2}
$$

is solved with respect to $\Delta \mathrm{p}$. When found then p gets updated

$$
\mathrm{p} \leftarrow \mathbf{p}+\Delta \mathbf{p}
$$

$$
\sum_{\mathbf{x}}[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x})]^{2}
$$

linearization by performing first order Taylor expansion ${ }^{6}$

$$
\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}
$$

$\nabla I=\left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$ is the gradient image 7 computed at $\mathbf{W}(\mathbf{x} ; \mathbf{p})$. The term $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ is the Jacobian of the warp.
${ }^{6}$ Detailed explanation on the blackboard.
${ }^{7}$ As a vector it should have been a column wise oriented. However, for sake of clarity of equations row vector is exceptionally considered here.

Original Lucas-Kanade algorithm IV

Derive $\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathrm{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}$ with respect to $\Delta \mathbf{p}$

Original Lucas-Kanade algorithm IV
Derive $\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}$ with respect to $\Delta \mathbf{p}$

$$
2 \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]
$$

setting equality to zero yields

Derive $\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathrm{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2}$ with respect to $\Delta \mathbf{p}$

$$
2 \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))+\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]
$$

setting equality to zero yields

$$
\Delta \mathbf{p}=\mathrm{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]
$$

where H is (Gauss-Newton) approximation of Hessian matrix.

$$
\mathrm{H}=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]
$$

The Lucas-Kanade algorithm—Summary

Iterate:

1. Warp I with $\mathbf{W}(\mathbf{x} ; \mathbf{p})$
2. Warp the gradient ∇I with $\mathbf{W}(\mathbf{x} ; \mathbf{p})$
3. Evaluate the Jacobian $\frac{\partial \mathrm{W}}{\partial \mathrm{p}}$ at $(\mathbf{x} ; \mathbf{p})$ and compute the steepest descent image $\nabla I \frac{\partial \mathrm{~W}}{\partial \mathrm{p}}$
4. Compute the $\mathrm{H}=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]$
5. Compute $\Delta \mathbf{p}=\mathrm{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]$
6. Update the parameters $\mathrm{p} \leftarrow \mathrm{p}+\Delta \mathrm{p}$
until $\|\Delta \mathrm{p}\| \leq \epsilon$

Example of convergence

Example of divergence

Example - on-line demo
25/38

What are good features (windows) to track?

How to select good templates $T(\mathbf{x})$ for image registration, object tracking.

$$
\Delta \mathbf{p}=\mathrm{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]
$$

What are good features (windows) to track?

How to select good templates $T(\mathrm{x})$ for image registration, object tracking.

$$
\Delta \mathbf{p}=\mathrm{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]
$$

where H is the matrix

$$
\mathrm{H}=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]
$$

How to select good templates $T(\mathrm{x})$ for image registration, object tracking.

$$
\Delta \mathbf{p}=\mathrm{H}^{-1} \sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}[T(\mathbf{x})-I(\mathbf{W}(\mathbf{x} ; \mathbf{p}))]
$$

where H is the matrix

$$
\mathrm{H}=\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]
$$

The stability of the iteration is mainly influenced by the inverse of Hessian. We can study its eigenvalues. Consequently, the criterion of a good feature window is $\min \left(\lambda_{1}, \lambda_{2}\right)>\lambda_{\min }$ (texturedness).

What are good features for translations?

Consider translation $\mathbf{W}(\mathbf{x} ; \mathbf{p})=\left[\begin{array}{l}x+p_{1} \\ y+p_{2}\end{array}\right]$. The Jacobian is then
$\frac{\partial \mathrm{W}}{\partial \mathrm{p}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
\mathrm{H} & =\sum_{\mathbf{x}}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right]^{\top}\left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}}\right] \\
& =\sum_{\mathbf{x}}\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{\partial I}{\partial x} \\
\frac{\partial I}{\partial y}
\end{array}\right]\left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial x}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\sum_{\mathbf{x}}\left[\begin{array}{ll}
\left(\frac{\partial I}{\partial x}\right)^{2} & \frac{\partial I}{\partial \partial \partial I} \\
\frac{\partial I}{\partial x} \frac{\partial I}{\partial y} & \left(\frac{\partial I}{\partial y}\right)^{2}
\end{array}\right]
\end{aligned}
$$

The image windows with varying derivatives in both directions.
Homeogeneous areas are clearly not suitable. Texture oriented mostly in one direction only would cause instability for this translation.

