Patch tracking based on comparing its pixels¹

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz

Last update: April 2, 2014

Talk Outline

- comparing patch pixels
- normalized cross-correlation, ssd . . .
- KLT gradient based optimization

good features to track

Please note that the lecture will be accompanied be several sketches and derivations on the blackboard and few live-interactive demos in Matlab

What is the problem?

Tracking of dense sequences — camera motion

 ${\cal I}$ - ${\sf Image}$

Scene static, camera moves.

Tracking of dense sequences — object motion

 ${\cal T}$ - Template

I - Image

Camera static, object moves.

Alignment of an image (patch)

Goal is to align a template image $T(\mathbf{x})$ to an input image $I(\mathbf{x})$. \mathbf{x} column vector containing image coordinates $[x,y]^{\top}$. The $I(\mathbf{x})$ could be also a small subwindow within an image.

How to measure the alignment?

- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

How to measure the alignment?

- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

How to measure the alignment?

- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

- convex (remember the optimization course?)
- discriminative
- **•** . . .

Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

where σ means standard deviation.

Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

where σ means standard deviation.

Having template T(k, l) and image I(x, y),

$$r(x,y) = \frac{\sum_{k} \sum_{l} \left(T(k,l) - \overline{T} \right) \left(I(x+k,y+l) - \overline{I(x,y)} \right)}{\sqrt{\sum_{k} \sum_{l} \left(T(k,l) - \overline{T} \right)^{2}} \sqrt{\sum_{k} \sum_{l} \left(I(x+k,y+l) - \overline{I(x,y)} \right)^{2}}}$$

Normalized cross-correlation - in picture

Normalized cross-correlation – in picture

- well, definitely not convex
- but the discriminability looks promising
- very efficient in computation, see [3]².

²check also normxcorr2 in Matlab

Sum of squared differences

$$ssd(x,y) = \sum_{k} \sum_{l} (T(k,l) - I(x+k,y+l))^{2}$$

Sum of absolute differences

$$sad(x,y) = \sum_{k} \sum_{l} |T(k,l) - I(x+k,y+l)|$$

SAD for the door part

SAD for the door part – truncated

Differences greater than 20 intensity levels are counted as 20.

Normalized cross-correlation: how it works

live demo for various patches

Normalized cross-correlation: tracking

Normalized cross-correlation: tracking

- What went wrong?
- ♦ Why did it failed?

Suggestions for improvement?

Tracking as an optimization problem

finding extrema of a criterial function . . .

Tracking as an optimization problem

- finding extrema of a criterial function . . .
- . . . sounds like an optimization problem

Kanade-Lucas-Tomasi (KLT) tracker

- Iteratively minimizes sum of square differences.
- It is a Gauss-Newton gradient algorithm.

Importance in Computer Vision

- ♦ Firstly published in 1981 as an image registration method [4].
- ◆ Improved many times, most importantly by Carlo Tomasi [5, 6]
- Free implementation(s) available³. Also part of the OpenCV library⁴.
- ◆ After more than two decades, a project⁵ at CMU dedicated to this single algorithm and results published in a premium journal [1].
- Part of plethora computer vision algorithms.

Our explanation follows mainly the paper [1]. It is a good reading for those who are also interested in alternative solutions.

Original Lucas-Kanade algorithm I

Goal is to align a template image $T(\mathbf{x})$ to an input image $I(\mathbf{x})$. \mathbf{x} column vector containing image coordinates $[x,y]^{\mathsf{T}}$. The $I(\mathbf{x})$ could be also a small subwindow withing an image.

Set of allowable warps $\mathbf{W}(\mathbf{x};\mathbf{p}),$ where \mathbf{p} is a vector of parameters. For translations

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \left[\begin{array}{c} x + p_1 \\ y + p_2 \end{array} \right]$$

W(x; p) can be arbitrarily complex

The best alignment, p*, minimizes image dissimilarity

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

Original Lucas-Kanade algorithm II

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

 $I(\mathbf{W}(\mathbf{x}; \mathbf{p})$ is nonlinear! The warp $\mathbf{W}(\mathbf{x}; \mathbf{p})$ may be linear but the pixels value are, in general, non-linear. In fact, they are essentially unrelated to \mathbf{x} .

Linearization of the image: It is assumed that some p is known and best increment Δp is sought. The modified problem

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

is solved with respect to Δp . When found then p gets updated

$$\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$$

. . .

³http://www.ces.clemson.edu/~stb/klt/

⁴http://opencv.willowgarage.com/wiki/

⁵http://www.ri.cmu.edu/projects/project_515.html

Original Lucas-Kanade algorithm III

$$\sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

linearization by performing first order Taylor expansion⁶

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^{2}$$

 $\nabla I = [\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}]$ is the gradient image⁷ computed at $\mathbf{W}(\mathbf{x}; \mathbf{p})$. The term $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ is the Jacobian of the warp.

Original Lucas-Kanade algorithm IV

Derive $\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^2$ with respect to $\Delta \mathbf{p}$

Original Lucas-Kanade algorithm IV

Derive $\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^2$ with respect to $\Delta \mathbf{p}$

$$2\sum_{\mathbf{x}}\left[\nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\right]^{\top}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\Delta\mathbf{p} - T(\mathbf{x})\right]$$

setting equality to zero yields

⁶Detailed explanation on the blackboard

⁷As a vector it should have been a column wise oriented. However, for sake of clarity of equations row vector is exceptionally considered here.

Original Lucas-Kanade algorithm IV

Derive $\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^2$ with respect to $\Delta \mathbf{p}$

$$2\sum_{\mathbf{x}}\left[\nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\right]^{\top}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\Delta\mathbf{p} - T(\mathbf{x})\right]$$

setting equality to zero yields

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

where H is (Gauss-Newton) approximation of Hessian matrix.

$$\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

The Lucas-Kanade algorithm—Summary

Iterate:

- 1. Warp I with $\mathbf{W}(\mathbf{x}; \mathbf{p})$
- 2. Warp the gradient ∇I with $\mathbf{W}(\mathbf{x}; \mathbf{p})$
- 3. Evaluate the Jacobian $\frac{\partial W}{\partial p}$ at (x;p) and compute the steepest descent image $\nabla I \frac{\partial W}{\partial p}$
- 4. Compute the $\mathtt{H} = \sum_{\mathbf{x}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\mathsf{T}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$
- 5. Compute $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \; \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 6. Update the parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

until $\|\Delta \mathbf{p}\| \leq \epsilon$

Example of convergence

Example of convergence

Example of divergence

Example – on-line demo

Let play and see . . .

What are good features (windows) to track?

What are good features (windows) to track?

How to select good templates $T(\mathbf{x})$ for image registration, object tracking.

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \; \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

What are good features (windows) to track?

How to select good templates $T(\mathbf{x})$ for image registration, object tracking.

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

where H is the matrix

$$\mathbf{H} = \sum_{\mathbf{v}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

What are good features (windows) to track?

How to select good templates $T(\mathbf{x})$ for image registration, object tracking.

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \; \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

where H is the matrix

$$\mathbf{H} = \sum_{\mathbf{v}} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[\nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

The stability of the iteration is mainly influenced by the inverse of Hessian. We can study its eigenvalues. Consequently, the criterion of a good feature window is $\min(\lambda_1,\lambda_2)>\lambda_{min}$ (texturedness).

What are good features for translations?

Consider translation $\mathbf{W}(\mathbf{x};\mathbf{p}) = \left[egin{array}{c} x+p_1 \\ y+p_2 \end{array}
ight]$. The Jacobian is then

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{split} \mathbf{H} &= \sum_{\mathbf{x}} \left[\nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[\nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right] \\ &= \sum_{\mathbf{x}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial I}{\partial x}, \frac{\partial I}{\partial x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \sum_{\mathbf{x}} \begin{bmatrix} \left(\frac{\partial I}{\partial x} \right)^2 & \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \\ \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} & \left(\frac{\partial I}{\partial y} \right)^2 \end{bmatrix} \end{split}$$

The image windows with varying derivatives in both directions. Homeogeneous areas are clearly not suitable. Texture oriented mostly in one direction only would cause instability for this translation.