
Talk Outline

� comparing patch pixels

� normalized cross-correlation, ssd . . .

� KLT - gradient based optimization

� good features to track

Patch tracking based on comparing its pixels1

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz
Czech Technical University in Prague, Center for Machine Perception

http://cmp.felk.cvut.cz
Last update: April 2, 2014

1Please note that the lecture will be accompanied be several sketches and derivations on the blackboard
and few live-interactive demos in Matlab

2/38
What is the problem?

video: CTU campus, door of G building

3/38
Tracking of dense sequences — camera motion

T - Template I - Image

Scene static, camera moves.

4/38
Tracking of dense sequences — object motion

T - Template I - Image

Camera static, object moves.

5/38
Alignment of an image (patch)

Goal is to align a template image T (x) to an input image I(x). x column
vector containing image coordinates [x, y]>. The I(x) could be also a small
subwindow within an image.

6/38
How to measure the alignment?

� What is the best criterial function?

� How to find the best match, in other words, how to find extremum of
the criterial function?

6/38
How to measure the alignment?

� What is the best criterial function?

� How to find the best match, in other words, how to find extremum of
the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

6/38
How to measure the alignment?

� What is the best criterial function?

� How to find the best match, in other words, how to find extremum of
the criterial function?

Criterial function

What are the desired properties (on a certain domain)?

� convex (remember the optimization course?)

� discriminative

� . . .

7/38
Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

ρX,Y =
cov(X,Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY

where σ means standard deviation.

7/38
Normalized cross-correlation

You may know it as correlation coefficient (from statistics)

ρX,Y =
cov(X,Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY

where σ means standard deviation.

Having template T (k, l) and image I(x, y),

r(x, y) =

∑
k

∑
l

(
T (k, l)− T

) (
I(x+ k, y + l)− I(x, y)

)

√∑
k

∑
l

(
T (k, l)− T

)2
√
∑

k

∑
l

(
I(x+ k, y + l)− I(x, y)

)2

8/38
Normalized cross-correlation – in picture

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

criterial function ncc

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

8/38
Normalized cross-correlation – in picture

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

criterial function ncc

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

� well, definitely not convex

� but the discriminability looks promising

� very efficient in computation, see [3]2.

2check also normxcorr2 in Matlab

9/38
Sum of squared differences

ssd(x, y) =
∑

k

∑

l

(T (k, l)− I(x+ k, y + l))
2

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

criterial function ssd

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

10/38
Sum of absolute differences

sad(x, y) =
∑

k

∑

l

|T (k, l)− I(x+ k, y + l)|

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

criterial function sad

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

11/38
SAD for the door part

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

criterial function sad

200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400 1

2

3

4

5

6

7

8

9

10

x 10
4

12/38
SAD for the door part – truncated

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

criterial function sad_truncated

200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

0

1000

2000

3000

4000

5000

6000

7000

8000

Differences greater than 20 intensity levels are counted as 20.

13/38
Normalized cross-correlation: how it works

live demo for various patches

14/38
Normalized cross-correlation: tracking

video

14/38
Normalized cross-correlation: tracking

video

� What went wrong?

� Why did it failed?

Suggestions for improvement?

15/38
Tracking as an optimization problem

� finding extrema of a criterial function . . .

15/38
Tracking as an optimization problem

� finding extrema of a criterial function . . .

� . . . sounds like an optimization problem

Kanade–Lucas–Tomasi (KLT) tracker

� Iteratively minimizes sum of square differences.

� It is a Gauss-Newton gradient algorithm.

16/38
Importance in Computer Vision

� Firstly published in 1981 as an image registration method [4].

� Improved many times, most importantly by Carlo Tomasi [5, 6]

� Free implementation(s) available3. Also part of the OpenCV library4.

� After more than two decades, a project5 at CMU dedicated to this
single algorithm and results published in a premium journal [1].

� Part of plethora computer vision algorithms.

Our explanation follows mainly the paper [1]. It is a good reading for those
who are also interested in alternative solutions.

3http://www.ces.clemson.edu/~stb/klt/
4http://opencv.willowgarage.com/wiki/
5http://www.ri.cmu.edu/projects/project_515.html

17/38
Original Lucas-Kanade algorithm I

Goal is to align a template image T (x) to an input image I(x). x column
vector containing image coordinates [x, y]>. The I(x) could be also a small
subwindow withing an image.

Set of allowable warps W(x;p), where p is a vector of parameters. For
translations

W(x;p) =

[
x+ p1
y + p2

]

W(x;p) can be arbitrarily complex

The best alignment, p∗, minimizes image dissimilarity
∑

x

[I(W(x;p))− T (x)]2

18/38
Original Lucas-Kanade algorithm II

∑

x

[I(W(x;p))− T (x)]2

I(W(x;p) is nonlinear! The warp W(x;p) may be linear but the pixels
value are, in general, non-linear. In fact, they are essentially unrelated to x.

Linearization of the image: It is assumed that some p is known and best
increment ∆p is sought. The modified problem

∑

x

[I(W(x;p + ∆p))− T (x)]2

is solved with respect to ∆p. When found then p gets updated

p← p + ∆p

. . .

19/38
Original Lucas-Kanade algorithm III

∑

x

[I(W(x;p + ∆p))− T (x)]2

linearization by performing first order Taylor expansion6

∑

x

[I(W(x;p)) +∇I ∂W
∂p

∆p− T (x)]2

∇I = [∂I
∂x,

∂I
∂y] is the gradient image7 computed at W(x;p). The term ∂W

∂p is
the Jacobian of the warp.

6Detailed explanation on the blackboard.
7As a vector it should have been a column wise oriented. However, for sake of clarity of equations row

vector is exceptionally considered here.

20/38
Original Lucas-Kanade algorithm IV

Derive
∑

x [I(W(x;p)) +∇I ∂W
∂p ∆p− T (x)]2 with respect to ∆p

20/38
Original Lucas-Kanade algorithm IV

Derive
∑

x [I(W(x;p)) +∇I ∂W
∂p ∆p− T (x)]2 with respect to ∆p

2
∑

x

[
∇I ∂W

∂p

]> [
I(W(x;p)) +∇I ∂W

∂p
∆p− T (x)

]

setting equality to zero yields

20/38
Original Lucas-Kanade algorithm IV

Derive
∑

x [I(W(x;p)) +∇I ∂W
∂p ∆p− T (x)]2 with respect to ∆p

2
∑

x

[
∇I ∂W

∂p

]> [
I(W(x;p)) +∇I ∂W

∂p
∆p− T (x)

]

setting equality to zero yields

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

where H is (Gauss-Newton) approximation of Hessian matrix.

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

21/38
The Lucas-Kanade algorithm—Summary

Iterate:

1. Warp I with W(x;p)

2. Warp the gradient ∇I with W(x;p)

3. Evaluate the Jacobian ∂W
∂p at (x;p) and compute the steepest descent

image ∇I ∂W
∂p

4. Compute the H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

5. Compute ∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

6. Update the parameters p← p + ∆p

until ‖∆p‖ ≤ ε

22/38
Example of convergence

video

23/38
Example of convergence

Convergence video: Initial state is within the basin of attraction

24/38
Example of divergence

Divergence video: Initial state is outside the basin of attraction

25/38
Example – on-line demo

Let play and see . . .

26/38
What are good features (windows) to track?

27/38
What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

27/38
What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

where H is the matrix

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

27/38
What are good features (windows) to track?

How to select good templates T (x) for image registration, object tracking.

∆p = H−1
∑

x

[
∇I ∂W

∂p

]>
[T (x)− I(W(x;p))]

where H is the matrix

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

The stability of the iteration is mainly influenced by the inverse of Hessian.
We can study its eigenvalues. Consequently, the criterion of a good feature
window is min(λ1, λ2) > λmin (texturedness).

28/38
What are good features for translations?

Consider translation W(x;p) =

[
x+ p1
y + p2

]
. The Jacobian is then

∂W
∂p =

[
1 0

0 1

]

H =
∑

x

[
∇I ∂W

∂p

]>[
∇I ∂W

∂p

]

=
∑

x

[
1 0

0 1

] [∂I
∂x
∂I
∂y

]
[∂I
∂x,

∂I
∂x]

[
1 0

0 1

]

=
∑

x



(

∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2




The image windows with varying derivatives in both directions.
Homeogeneous areas are clearly not suitable. Texture oriented mostly in one
direction only would cause instability for this translation.

