### Patch tracking based on comparing its pixels<sup>1</sup>

Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz

Last update: April 2, 2014

#### Talk Outline

- comparing patch pixels
- normalized cross-correlation, ssd . . .
- KLT gradient based optimization

good features to track

Please note that the lecture will be accompanied be several sketches and derivations on the blackboard and few live-interactive demos in Matlab

### What is the problem?





## Tracking of dense sequences — camera motion







 ${\cal I}$  -  ${\sf Image}$ 



Scene static, camera moves.

### Tracking of dense sequences — object motion



 ${\cal T}$  - Template



I - Image



Camera static, object moves.

### Alignment of an image (patch)







Goal is to align a template image  $T(\mathbf{x})$  to an input image  $I(\mathbf{x})$ .  $\mathbf{x}$  column vector containing image coordinates  $[x,y]^{\top}$ . The  $I(\mathbf{x})$  could be also a small subwindow within an image.

### How to measure the alignment?



- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

#### How to measure the alignment?



- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

#### **Criterial function**

What are the desired properties (on a certain domain)?

#### How to measure the alignment?



- What is the best criterial function?
- How to find the best match, in other words, how to find extremum of the criterial function?

#### **Criterial function**

What are the desired properties (on a certain domain)?

- convex (remember the optimization course?)
- discriminative
- **•** . . .

#### Normalized cross-correlation



You may know it as correlation coefficient (from statistics)

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

where  $\sigma$  means standard deviation.

#### Normalized cross-correlation



You may know it as correlation coefficient (from statistics)

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

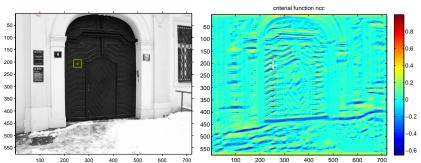
where  $\sigma$  means standard deviation.

Having template T(k, l) and image I(x, y),

$$r(x,y) = \frac{\sum_{k} \sum_{l} \left( T(k,l) - \overline{T} \right) \left( I(x+k,y+l) - \overline{I(x,y)} \right)}{\sqrt{\sum_{k} \sum_{l} \left( T(k,l) - \overline{T} \right)^{2}} \sqrt{\sum_{k} \sum_{l} \left( I(x+k,y+l) - \overline{I(x,y)} \right)^{2}}}$$

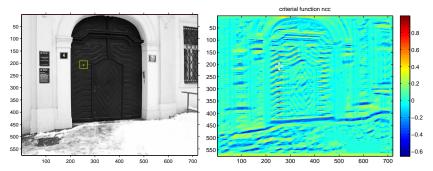
#### Normalized cross-correlation - in picture





### Normalized cross-correlation – in picture





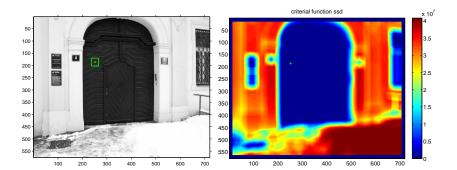
- well, definitely not convex
- but the discriminability looks promising
- very efficient in computation, see [3]<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>check also normxcorr2 in Matlab

### Sum of squared differences



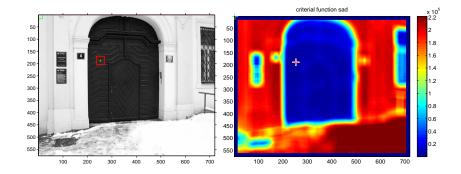
$$ssd(x,y) = \sum_{k} \sum_{l} (T(k,l) - I(x+k,y+l))^{2}$$



#### Sum of absolute differences

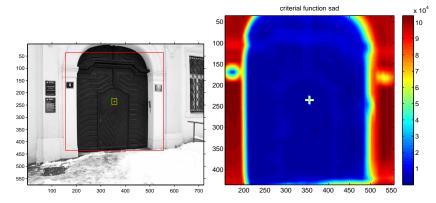


$$sad(x,y) = \sum_{k} \sum_{l} |T(k,l) - I(x+k,y+l)|$$



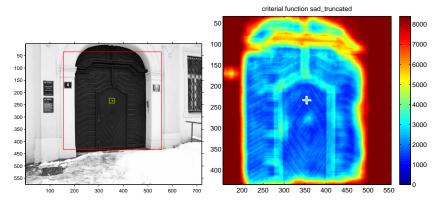
## SAD for the door part





### SAD for the door part – truncated





Differences greater than 20 intensity levels are counted as 20.

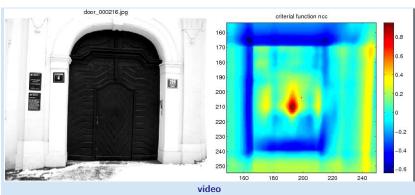
#### Normalized cross-correlation: how it works



live demo for various patches

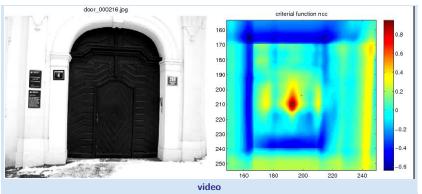
## Normalized cross-correlation: tracking





### Normalized cross-correlation: tracking





- What went wrong?
- ♦ Why did it failed?

#### Suggestions for improvement?

#### Tracking as an optimization problem



finding extrema of a criterial function . . .

#### Tracking as an optimization problem



- finding extrema of a criterial function . . .
- . . . sounds like an optimization problem

#### Kanade-Lucas-Tomasi (KLT) tracker

- Iteratively minimizes sum of square differences.
- It is a Gauss-Newton gradient algorithm.

#### Importance in Computer Vision



- ♦ Firstly published in 1981 as an image registration method [4].
- ◆ Improved many times, most importantly by Carlo Tomasi [5, 6]
- Free implementation(s) available<sup>3</sup>. Also part of the OpenCV library<sup>4</sup>.
- ◆ After more than two decades, a project<sup>5</sup> at CMU dedicated to this single algorithm and results published in a premium journal [1].
- Part of plethora computer vision algorithms.

Our explanation follows mainly the paper [1]. It is a good reading for those who are also interested in alternative solutions.

#### Original Lucas-Kanade algorithm I



Goal is to align a template image  $T(\mathbf{x})$  to an input image  $I(\mathbf{x})$ .  $\mathbf{x}$  column vector containing image coordinates  $[x,y]^{\mathsf{T}}$ . The  $I(\mathbf{x})$  could be also a small subwindow withing an image.

Set of allowable warps  $\mathbf{W}(\mathbf{x};\mathbf{p}),$  where  $\mathbf{p}$  is a vector of parameters. For translations

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \left[ \begin{array}{c} x + p_1 \\ y + p_2 \end{array} \right]$$

W(x; p) can be arbitrarily complex

The best alignment, p\*, minimizes image dissimilarity

$$\sum_{\mathbf{x}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

### Original Lucas-Kanade algorithm II



$$\sum_{\mathbf{x}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^2$$

 $I(\mathbf{W}(\mathbf{x}; \mathbf{p})$  is nonlinear! The warp  $\mathbf{W}(\mathbf{x}; \mathbf{p})$  may be linear but the pixels value are, in general, non-linear. In fact, they are essentially unrelated to  $\mathbf{x}$ .

**Linearization** of the image: It is assumed that some p is known and best increment  $\Delta p$  is sought. The modified problem

$$\sum_{\mathbf{x}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

is solved with respect to  $\Delta p$ . When found then p gets updated

$$\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$$

. . .

<sup>3</sup>http://www.ces.clemson.edu/~stb/klt/

<sup>4</sup>http://opencv.willowgarage.com/wiki/

<sup>&</sup>lt;sup>5</sup>http://www.ri.cmu.edu/projects/project\_515.html

#### Original Lucas-Kanade algorithm III



$$\sum_{\mathbf{x}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

linearization by performing first order Taylor expansion<sup>6</sup>

$$\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^{2}$$

 $\nabla I = [\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}]$  is the gradient image<sup>7</sup> computed at  $\mathbf{W}(\mathbf{x}; \mathbf{p})$ . The term  $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$  is the Jacobian of the warp.

#### Original Lucas-Kanade algorithm IV



Derive  $\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^2$  with respect to  $\Delta \mathbf{p}$ 

## Original Lucas-Kanade algorithm IV



Derive  $\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^2$  with respect to  $\Delta \mathbf{p}$ 

$$2\sum_{\mathbf{x}}\left[\nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\right]^{\top}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\Delta\mathbf{p} - T(\mathbf{x})\right]$$

setting equality to zero yields

<sup>&</sup>lt;sup>6</sup>Detailed explanation on the blackboard

<sup>&</sup>lt;sup>7</sup>As a vector it should have been a column wise oriented. However, for sake of clarity of equations row vector is exceptionally considered here.

#### Original Lucas-Kanade algorithm IV



Derive  $\sum_{\mathbf{x}} [I(\mathbf{W}(\mathbf{x}; \mathbf{p})) + \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x})]^2$  with respect to  $\Delta \mathbf{p}$ 

$$2\sum_{\mathbf{x}}\left[\nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\right]^{\top}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I\ \frac{\partial\mathbf{W}}{\partial\mathbf{p}}\Delta\mathbf{p} - T(\mathbf{x})\right]$$

setting equality to zero yields

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

where H is (Gauss-Newton) approximation of Hessian matrix.

$$\mathbf{H} = \sum_{\mathbf{x}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

#### The Lucas-Kanade algorithm—Summary



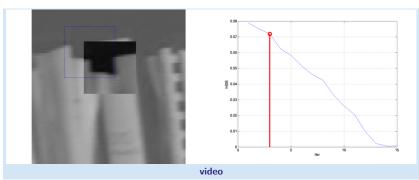
Iterate:

- 1. Warp I with  $\mathbf{W}(\mathbf{x}; \mathbf{p})$
- 2. Warp the gradient  $\nabla I$  with  $\mathbf{W}(\mathbf{x}; \mathbf{p})$
- 3. Evaluate the Jacobian  $\frac{\partial W}{\partial p}$  at (x;p) and compute the steepest descent image  $\nabla I \frac{\partial W}{\partial p}$
- 4. Compute the  $\mathtt{H} = \sum_{\mathbf{x}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\mathsf{T}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$
- 5. Compute  $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[ \nabla I \; \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ T(\mathbf{x}) I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$
- 6. Update the parameters  $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

until  $\|\Delta \mathbf{p}\| \leq \epsilon$ 

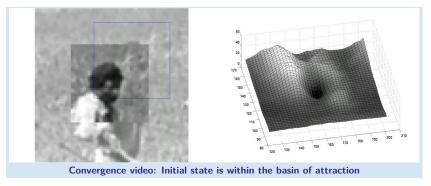
## **Example of convergence**





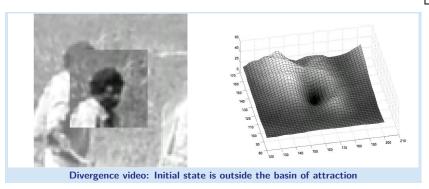
## **Example of convergence**





# **Example of divergence**





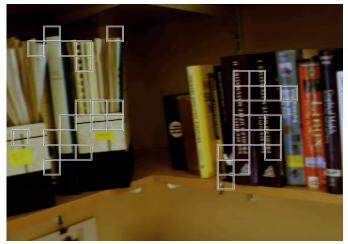
Example – on-line demo



Let play and see . . .

### What are good features (windows) to track?





# What are good features (windows) to track?



How to select good templates  $T(\mathbf{x})$  for image registration, object tracking.

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[ \nabla I \; \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

# What are good features (windows) to track?



How to select good templates  $T(\mathbf{x})$  for image registration, object tracking.

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

where H is the matrix

$$\mathbf{H} = \sum_{\mathbf{v}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

### What are good features (windows) to track?



How to select good templates  $T(\mathbf{x})$  for image registration, object tracking.

$$\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[ \nabla I \; \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]$$

where H is the matrix

$$\mathbf{H} = \sum_{\mathbf{v}} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ \nabla I \ \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$$

The stability of the iteration is mainly influenced by the inverse of Hessian. We can study its eigenvalues. Consequently, the criterion of a good feature window is  $\min(\lambda_1,\lambda_2)>\lambda_{min}$  (texturedness).

#### What are good features for translations?



Consider translation  $\mathbf{W}(\mathbf{x};\mathbf{p}) = \left[ egin{array}{c} x+p_1 \\ y+p_2 \end{array} 
ight]$  . The Jacobian is then

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{split} \mathbf{H} &= \sum_{\mathbf{x}} \left[ \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^{\top} \left[ \nabla I \, \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right] \\ &= \sum_{\mathbf{x}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial I}{\partial x}, \frac{\partial I}{\partial x} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \sum_{\mathbf{x}} \begin{bmatrix} \left( \frac{\partial I}{\partial x} \right)^2 & \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} \\ \frac{\partial I}{\partial x} \frac{\partial I}{\partial y} & \left( \frac{\partial I}{\partial y} \right)^2 \end{bmatrix} \end{split}$$

The image windows with varying derivatives in both directions. Homeogeneous areas are clearly not suitable. Texture oriented mostly in one direction only would cause instability for this translation.