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Introduction

Content of the course

@ Intro to utility theory, basics noncooperative game theory, representation
of games in normal form, examples of games, dominance and Pareto
efficiency

@ Nash equilibrium, mixed strategies, MINIMAX, solution concepts, finding a
solution

© Mechanism design, auctions, combinatorial auction and voting

@ Negotiation protocol, monotonic concession protocol,
contract-net-protocol



Self-interested agents

Self-interested agents

@ What does it mean to say that an agent is self-interested?

e not that they want to harm other agents

e not that they only care about things that benefit them

e that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description
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Self-interested agents

Self-interested agents

@ What does it mean to say that an agent is self-interested?
e not that they want to harm other agents
e not that they only care about things that benefit them
e that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description
o Utility theory:
e quantifies degree of preference across alternatives
e understand the impact of uncertainty on these preferences
e utility function: a mapping from states of the world to real
numbers, indicating the agent's level of happiness with that
state of the world
e Decision-theoretic rationality: take actions to maximize
expected utility.
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Self-interested agents

Example: friends and enemies

@ Alice has three options: club (c), movie (m), watching a video
at home (h)
@ On her own, her utility for these three outcomes is 100 for ¢,
50 for m and 50 for h
@ However, Alice also cares about Bob (who she hates) and
Carol (who she likes)
e Bob is at the club 60% of the time, and at the movies
otherwise
o Carol is at the movies 75% of the time, and at the club
otherwise
@ If Alice runs into Bob at the movies, she suffers disutility of
40; if she sees him at the club she suffers disutility of 90.
@ If Alice sees Carol, she enjoys whatever activity she's doing
1.5 times as much as she would have enjoyed it otherwise
(taking into account the possible disutility caused by Bob)
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Self-interested agents

Example: friends and enemies

@ Alice has three options: club (c), movie (m), watching a video
at home (h)
@ On her own, her utility for these three outcomes is 100 for ¢,
50 for m and 50 for h
@ However, Alice also cares about Bob (who she hates) and
Carol (who she likes)
e Bob is at the club 60% of the time, and at the movies
otherwise
o Carol is at the movies 75% of the time, and at the club
otherwise

@ If Alice runs into Bob at the movies, she suffers disutility of
40; if she sees him at the club she suffers disutility of 90.

@ If Alice sees Carol, she enjoys whatever activity she's doing
1.5 times as much as she would have enjoyed it otherwise
(taking into account the possible disutility caused by Bob)

@ What should Alice do (show of hands)?
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Self-interested agents

What activity should Alice choose?

B=c B=m B=c B=m
C=c 15 150 C=c 50 10
C=m 10 100 C=m 75 15
A=c A=m
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Self-interested agents
What activity should Alice choose?

B=c B=m B=c B=m
C=c 15 150 C=c 50 10
C=m 10 100 C=m 75 15
A=c A=m

@ Alice's expected utility for c:
0.25(0.6 - 154 0.4 - 150) + 0.75(0.6 - 10 4+ 0.4 - 100) = 51.75.
@ Alice's expected utility for m:
0.25(0.6 - 50 + 0.4 - 10) + 0.75(0.6(75) 4+ 0.4(15)) = 46.75.

@ Alice's expected utility for h: 50.
Alice prefers to go to the club (though Bob is often there and Carol
rarely is), and prefers staying home to going to the movies (though
Bob is usually not at the movies and Carol almost always is):
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Utility Theory

Lecture Overview

@ Utility Theory
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Utility Theory

Why utility?

@ Why would anyone argue with the idea that an agent’s
preferences could be described using a utility function as we
just did?
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Utility Theory

Why utility?

@ Why would anyone argue with the idea that an agent’s
preferences could be described using a utility function as we
just did?

e why should a single-dimensional function be enough to explain
preferences over an arbitrarily complicated set of alternatives?

e Why should an agent's response to uncertainty be captured
purely by the expected value of his utility function?

@ It turns out that the claim that an agent has a utility function
is substantive.
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Utility Theory

Preferences Over Outcomes

If 01 and 09 are outcomes
@ 01 =~ 09 means o7 is at least as desirable as 0s.
o read this as “the agent weakly prefers o1 to 02"
@ 01 ~ 02 means o1 =~ 02 and oy = 01.
e read this as “the agent is indifferent between 07 and 05."
@ 01 > 02 means 01 = 02 and 09 ¥ 01
e read this as “the agent strictly prefers 07 to 05"
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Utility Theory

Lotteries

@ An agent may not know the outcomes of his actions, but may
instead only have a probability distribution over the outcomes.

Definition (lottery)

A lottery is a probability distribution over outcomes. It is written

[Pl $01,pP2 1 02,...,Pk ¢ Ok]

where the o; are outcomes and p; > 0 such that

Zpizl
7

@ The lottery specifies that outcome o; occurs with probability
pi.
@ We will consider lotteries to be outcomes.
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Utility Theory

Preference Axioms: Completeness

Definition (Completeness)

A preference relationship must be defined between every pair of
outcomes:
Yo1Vo9 01 = 09 or 03 = 01
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Utility Theory

Preference Axioms: Transitivity

Definition (Transitivity)

Preferences must be transitive:

if 01 = 09 and 0y = 03 then 07 > o3

@ This makes good sense: otherwise
01 = 09 and 09 = 03 and 03 > 0.

@ An agent should be prepared to pay some amount to swap
between an outcome they prefer less and an outcome they
prefer more

@ Intransitive preferences mean we can construct a “money
pump” !
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Utility Theory

Preference Axioms

Definition (Monotonicity)

An agent prefers a larger chance of getting a better outcome to a
smaller chance:

@ If 01 > 02 and p > ¢ then

[p:o1,1—p:os]>lg:01,1—q: o0
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Utility Theory

Preference Axioms

Let P;(0;) denote the probability that outcome o; is selected by
lottery ¢. For example, if £ =1[0.3:01;0.7 : [0.8 : 02;0.2 : 01]] then
Pg(ol) = 0.44 and Pg(03) =0.

Definition (Decomposability (“no fun in gambling”))
If Yo; € O, Pgl (OZ) = sz(oi) then 41 ~ #5.
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Utility Theory

Preference Axioms

Definition (Substitutability)
If 01 ~ 09 then for all sequences of one or more outcomes
., 0 and sets of probabilities p, ps, ..., px for which

P+ =1,
[p:01,p3:03,...,Dk: 0] ~ [p:02,P3:03,...,Pk : Ofl.

03, ..

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 14



Utility Theory

Preference Axioms

Definition (Continuity)

Suppose 01 > 02 and 03 > 03, then there exists a p € [0, 1] such
that oo ~ [p: 01,1 —p: 03]
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Utility Theory

Preferences and utility functions

Theorem (von Neumann and Morgenstern, 1944)

If an agent’s preference relation satisfies the axioms Completeness,
Transitivity, Decomposability, Substitutability, Monotonicity and
Continuity then there exists a function u : O — [0, 1] with the
properties that:

Q u(o1) > u(o2) iff the agent prefers 01 to o9, and

@ when faced about uncertainty about which outcomes he will
receive, the agent prefers outcomes that maximize the
expected value of .

Proof idea:
@ define the utility of the best outcome u(0) = 1 and of the
worst u(0) = 0
@ now define the utility of each other outcome o as the p for
which o ~ [p:5; (1 —p) : o].



Introduction

Agent's Rationality

@ An agent that violates any of the Axioms is not acting rationally.
o Important Note: The axioms do not mention the utility function!

o They define rationality by placing constraints on preferences
e The assumption is that all agents have some mechanism for
computing/acting on preferences



Introduction

Agent's Rationality

@ An agent that violates any of the Axioms is not acting rationally.
o Important Note: The axioms do not mention the utility function!

o They define rationality by placing constraints on preferences
e The assumption is that all agents have some mechanism for
computing/acting on preferences
@ The agents rationality is given by the choice of actions based on expected
utility of the outcome of the action. Action can be seen as a choice of the
appropriate lottery. The rational agent selects to chose such an action a
that executes the lottery / that provides the maximal expected outcome:

a = arg max Z piu(oi)

pioi€l



Introduction

Agent's Rationality

@ Bounded Rationality: capability of the agent to perform rational decision
(to choose the lottery providing maximal expected outcome) given bounds
on computational resources:

e bounds on time complexity
e bounds on memory requirements

o Calculative Rationality: capability to perform rational choice earlier than a
fastest change in the environment can occur.




Introduction

Agent's Rationality

Let us have a community of agents A; € A each choosing to play an action aj,
executing the lottery /;. providing the agents with the utility u(a;).

o Self-interested rational agent: selects the action that optimizes its
individual utility

a = arg max iU(oi
gmax > piU(o)
pj:oj€l
o Cooperative rational agent: selects the action that optimizes
collective utility of the whole team:

a = arg max E E piju(oij) + E piu(oi)
Vaj€A—ap; jo jEl; pioi€l



Game Theory Intro

Lecture 3
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What is Game Theory?

Lecture Overview

@ What is Game Theory?
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What is Game Theory?

Non-Cooperative Game Theory

@ What is it?
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What is Game Theory?

Non-Cooperative Game Theory

@ What is it?
e mathematical study of interaction between rational,
self-interested agents
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What is Game Theory?

Non-Cooperative Game Theory

@ What is it?
e mathematical study of interaction between rational,
self-interested agents

@ Why is it called non-cooperative?
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What is Game Theory?

Non-Cooperative Game Theory

@ What is it?
e mathematical study of interaction between rational,
self-interested agents

@ Why is it called non-cooperative?

e while it's most interested in situations where agents’ interests
conflict, it's not restricted to these settings
o the key is that the individual is the basic modeling unit, and
that individuals pursue their own interests
@ cooperative/coalitional game theory has teams as the central
unit, rather than agents
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What is Game Theory?

TCP Backoff Game

X 'Waming - 1o]x]

Yo Internet Connection [ Mot Opbimzed
Dowmdoad [ntzmatE00ST 2000 Nowl
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What is Game Theory?

TCP Backoff Game

X 'Waming - 10]x]

Yo Internet Connection [ Mot Opbimzed
Dewmload lntzmatBOOST 2000 Mol

Should you send your packets using correctly-implemented TCP
(which has a “backoff” mechanism) or using a defective
implementation (which doesn't)?

o Consider this situation as a two-player game:

e both use a correct implementation: both get 1 ms delay

e one correct, one defective: 4 ms delay for correct, 0 ms for
defective

e both defective: both get a 3 ms delay.
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What is Game Theory?

TCP Backoff Game

% Warning [ [0[x]
Yot |riteinet Connection = Mot Optimized
Download ntzmetE00ST 20001 Nowl

Should you send your packets using correctly-implemented TCP
(which has a “backoff” mechanism) or using a defective
implementation (which doesn’t)?
o Consider this situation as a two-player game:
e both use a correct implementation: both get 1 ms delay
@ one correct, one defective: 4 ms delay for correct, 0 ms for
defective
e both defective: both get a 3 ms delay.
@ Play this game with someone near you. Then find a new
partner and play again. Play five times in total.
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What is Game Theory?

TCP Backoff Game

o Consider this situation as a two-player game:
e both use a correct implementation: both get 1 ms delay
e one correct, one defective: 4 ms delay for correct, 0 ms for
defective
e both defective: both get a 3 ms delay.

@ Questions:

e What action should a player of the game take?

e Would all users behave the same in this scenario?

e What global patterns of behaviour should the system designer
expect?

o Under what changes to the delay numbers would behavior be
the same?

o What effect would communication have?

o Repetitions? (finite? infinite?)

e Does it matter if | believe that my opponent is rational?
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What is Game Theory?

Defining Games

e Finite, n-person game: (N, A, u):
e N is a finite set of n players, indexed by ¢
e A=A, x...x A,, where A; is the action set for player i
@ a € A is an action profile, and so A is the space of action

profiles
o u = (uy,...,un), a utility function for each player, where
u;: A— R

@ Writing a 2-player game as a matrix:
e row player is player 1, column player is player 2
e rows are actions a € A;, columns are a’ € A,
o cells are outcomes, written as a tuple of utility values for each

player
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What is Game Theory?

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix (“normal
form™).
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Example Matrix Games

Lecture Overview

© Example Matrix Games
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Example Matrix Games

More General Form

Prisoner’s dilemma is any game

C D
C | a,a | bec
D | ¢b | dd

withe>a > d > b.

Game Theory Intro Lecture 3, Slide 8



Example Matrix Games

Games of Pure Competition

Players have exactly opposed interests
@ There must be precisely two players (otherwise they can't
have exactly opposed interests)

e For all action profiles a € A, uj(a) + uz(a) = ¢ for some
constant ¢

e Special case: zero sum
@ Thus, we only need to store a utility function for one player
@ in a sense, it's a one-player game
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Example Matrix Games

Matching Pennies

One player wants to match; the other wants to mismatch.

Heads Tails

Heads 1 -1

Tails -1 1

Game Theory Intro Lecture 3, Slide 10



Example Matrix Games

Matching Pennies

One player wants to match; the other wants to mismatch.

Heads Tails

Heads 1 -1

Tails -1 1

Play this game with someone near you, repeating five times.
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Example Matrix Games

Rock-Paper-Scissors

Generalized matching pennies.

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

...Believe it or not, there's an annual international competition for
this game!
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Example Matrix Games

Games of Cooperation

Players have exactly the same interests.
@ no conflict: all players want the same things
° Va € A,Vi,j, ui(a) = uj(a)
@ we often write such games with a single payoff per cell

@ why are such games “noncooperative”?
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Example Matrix Games

Coordination Game

Which side of the road should you drive on?

Left Right
Left 1 0
Right 0 1
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Example Matrix Games

Coordination Game

Which side of the road should you drive on?

Left Right
Left 1 0
Right 0 1

Play this game with someone near you. Then find a new partner
and play again. Play five times in total.
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Example Matrix Games

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.
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Example Matrix Games

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.

F |00 | 1,2

Play this game with someone near you. Then find a new partner
and play again. Play five times in total.
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From Optimality to Equilibrium

Lecture 4
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Recap

Lecture Overview

@ Recap
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Recap

Non-Cooperative Game Theory

@ What is it?
e mathematical study of interaction between rational,
self-interested agents

@ Why is it called non-cooperative?
e while it's most interested in situations where agents’ interests
conflict, it's not restricted to these settings
o the key is that the individual is the basic modeling unit, and
that individuals pursue their own interests
@ cooperative/coalitional game theory has teams as the central
unit, rather than agents
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Recap

Defining Games

e Finite, n-person game: (N, A, u):
e N is a finite set of n players, indexed by ¢
e A=A, x...x A,, where A; is the action set for player i
@ a € A is an action profile, and so A is the space of action

profiles
o u = (uy,...,un), a utility function for each player, where
u;: A— R

@ Writing a 2-player game as a matrix:
e row player is player 1, column player is player 2
e rows are actions a € A;, columns are a’ € A,
o cells are outcomes, written as a tuple of utility values for each
player
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Recap

Prisoner’s dilemma

Prisoner’s dilemma is any game

withe>a > d > b.

C D
a,a | b,c
c,b | d,d

From Optimality to Equilibrium
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Recap

Games of Pure Competition

Players have exactly opposed interests
@ There must be precisely two players (otherwise they can't
have exactly opposed interests)

@ For all action profiles a € A, uj(a) 4+ uz(a) = ¢ for some
constant ¢

e Special case: zero sum

Heads Tails

Heads 1 -1

Tails -1 1

From Optimality to Equilibrium Lecture 4, Slide 6



Recap

Games of Cooperation

Players have exactly the same interests.
@ no conflict: all players want the same things
° Va € A,Vi,j, ui(a) = uj(a)

Left Right
Left 1 0
Right 0 1
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Recap

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.
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Pareto Optimality

Lecture Overview

@ Pareto Optimality
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Pareto Optimality

Analyzing Games

@ We've defined some canonical games, and thought about how
to play them. Now let's examine the games from the outside

@ From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?
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Pareto Optimality

Analyzing Games

@ We've defined some canonical games, and thought about how
to play them. Now let's examine the games from the outside

@ From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?

e we have no way of saying that one agent's interests are more
important than another’s

e intuition: imagine trying to find the revenue-maximizing
outcome when you don't know what currency has been used to
express each agent's payoff

@ Are there situations where we can still prefer one outcome to
another?
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who
strictly prefers o to o

e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome
that Pareto-dominates it.

Lecture 4, Slide 11
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome

that Pareto-dominates it.
e can a game have more than one Pareto-optimal outcome?
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome

that Pareto-dominates it.
e can a game have more than one Pareto-optimal outcome?
e does every game have at least one Pareto-optimal outcome?

Lecture 4, Slide 11

From Optimality to Equilibrium



Pareto Optimality

Pareto Optimal Outcomes in Example Games
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

C D
C | -1,-1 | —4,0
D | 0,-4 | —3-3

Left

Right

Left Right
1 0
0 1

From Optimality to Equilibrium
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

C | -1,-1 | —4,0 Left |\ 1 0
D 0’ —4 73’ -3 R|ght 0 1
B F
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

c D Left Right
c | -1,-1 | —4,0 Left 1 0
D 0,—4 -3,-3 Right 0 1
B F Heads Tails
B 2,1 10,0 Heads 1 -1
F 0,0 | 1,2 Tails -1 1
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Best Response and Nash Equilibrium

Lecture Overview

e Best Response and Nash Equilibrium
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Best Response and Nash Equilibrium

Best Response

o If you knew what everyone else was going to do, it would be
easy to pick your own action
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Best Response and Nash Equilibrium

Best Response

o If you knew what everyone else was going to do, it would be
easy to pick your own action
o Leta_; = <a1, SRR o 7 I ¢ VT IR ,an>.
e now a = (a_;,a;)

@ Best response: a € BR(a—;) iff
Ya; € A;, ui(a;‘,a,i) > ui(ai,a,i)
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Best Response and Nash Equilibrium

Nash Equilibrium

@ Now let’s return to the setting where no agent knows
anything about what the others will do

@ What can we say about which actions will occur?
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Best Response and Nash Equilibrium

Nash Equilibrium

@ Now let’s return to the setting where no agent knows
anything about what the others will do

@ What can we say about which actions will occur?

@ Idea: look for stable action profiles.

@ a=(ay,...,ay) is a (“pure strategy”) Nash equilibrium iff
Vi, a; € BR(CL_l)
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left Right
C —1,-1 _4’ 0 Left 1 0
D 0, —4 -3,-3 nght 0 1
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left Right
C | -1,-1 | —4,0 Left | 1 0
D 0, —4 -3,-3 nght 0 1
B F

From Optimality to Equilibrium Lecture 4, Slide 16



Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left  Right
C | -1,-1 —4,0 Left 1 0
D 0,—4 -3,-3 Right 0 1
B F Heads Tails
B 2,1 10,0 Heads 1 -1
F 0,0 | 1,2 Tails -1 1
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left  Right
C | -1,-1 —4,0 Left 1 0
D 0,—4 -3,-3 Right 0 1
B F Heads Tails
B 2,1 10,0 Heads 1 -1
F 0,0 | 1,2 Tails -1 1

The paradox of Prisoner’s dilemma: the Nash equilibrium is the only
non-Pareto-optimal outcome!
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Mixed Strategies

Lecture Overview

@ Mixed Strategies
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Introduction

Strategies in game theory

@ In game theory, a strategy refers to one of the options that a player can
choose. That is, every player in a non-cooperative game has a set of
possible strategies, and must choose one of the choices.

@ A strategy must specify what action will happen in each contingent state
of the game 7 e.g. if the opponent does a, then take action b, whereas if
the opponent does c, take action d.

@ Strategies in game theory may be random (mixed) or deterministic (pure).
That is, in some games, players choose mixed strategies. Pure strategies
can be thought of as a special case of mixed strategies, in which only
probabilities 0 or 1 are assigned to actions.



Mixed Strategies

Mixed Strategies

@ It would be a pretty bad idea to play any deterministic
strategy in matching pennies

o Idea: confuse the opponent by playing randomly
@ Define a strategy s; for agent ¢ as any probability distribution
over the actions A;.
e pure strategy: only one action is played with positive
probability
e mixed strategy: more than one action is played with positive
probability
o these actions are called the support of the mixed strategy

@ Let the set of all strategies for i be .S;
@ Let the set of all strategy profiles be S =57 x ... x 5,.
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Mixed Strategies

Utility under Mixed Strategies

@ What is your payoff if all the players follow mixed strategy
profile s € 57

o We can't just read this number from the game matrix
anymore: we won't always end up in the same cell
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Mixed Strategies

Utility under Mixed Strategies

@ What is your payoff if all the players follow mixed strategy
profile s € 57

o We can't just read this number from the game matrix
anymore: we won't always end up in the same cell

@ Instead, use the idea of expected utility from decision theory:

ui(s) = Z u;(a)Pr(als)

a€A

Pr(als) = T s;(ay)

JEN
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € Si, wi(s], s—i) > wi(8i,5—4)
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Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
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@ Nash equilibrium:
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € Si, wi(s], s—i) > wi(8i,5—4)

@ Nash equilibrium:
o s=(81,...,8y,) is a Nash equilibrium iff Vi, s; € BR(s_;)

@ Every finite game has a Nash equilibrium! [Nash, 1950]
o e.g., matching pennies: both players play heads/tails 50%/50%
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

@ It's hard in general to compute Nash equilibria, but it's easy
when you can guess the support

@ For BoS, let's look for an equilibrium where all actions are
part of the support
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Let player 2 play B with p, F' with 1 — p.
o If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F' and B (why?)
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Let player 2 play B with p, F' with 1 — p.
o If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F' and B (why?)

ul(B) = ul(F)
2p+0(1 —p) =0p+1(1—p)
1

ng
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Likewise, player 1 must randomize to make player 2
indifferent.
e Why is player 1 willing to randomize?
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Likewise, player 1 must randomize to make player 2
indifferent.
e Why is player 1 willing to randomize?
o Let player 1 play B with ¢, F with 1 —gq.
u(B) = ua(F)
q¢+0(1—¢q)=0¢+2(1—q)

: e (2 1y (1 2
@ Thus the mixed strategies (35, 5), (35, 5) are a Nash
equilibrium.
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Mixed Strategies

Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different
interpretations:
@ Randomize to confuse your opponent
e consider the matching pennies example
@ Players randomize when they are uncertain about the other’s
action
e consider battle of the sexes

@ Mixed strategies are a concise description of what might
happen in repeated play: count of pure strategies in the limit

@ Mixed strategies describe population dynamics: 2 agents
chosen from a population, all having deterministic strategies.
MS is the probability of getting an agent who will play one PS
or another.
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Introduction

Strategic dominance

One of the (simple) metrics that allows comparison of two strategies

@ Strategic dominance (commonly called simply dominance) occurs when
one strategy is better than another strategy for one player, no matter how
that player's opponents may play. Many simple games can be solved using
dominance.

@ Intransitivity (just the opposite) occurs in games where one strategy may
be better or worse than another strategy for one player, depending on how
the player's opponents may play.



Introduction

Strategic dominance

B dominates A: choosing B always gives at least as good an outcome as
choosing A. There are 2 possibilities:

@ B strictly dominates A: choosing B always gives a better outcome than
choosing A, no matter what the other player(s) do.

Vs_;e€S_;: u,-(A,s,,-) > u,-(B,s,-)

o B weakly dominates A: There is at least one set of opponents’ action for
which B is superior, and all other sets of opponents’ actions give B at least
the same payoff as A.

Vs_;€S5_;: u,-(A,s,,-) > u,-(B,s,-)

with at least one strong inequality
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