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Introduction

Content of the course

1 Intro to utility theory, basics noncooperative game theory, representation
of games in normal form, examples of games, dominance and Pareto
efficiency

2 Nash equilibrium, mixed strategies, MINIMAX, solution concepts, finding a
solution

3 Mechanism design, auctions, combinatorial auction and voting

4 Negotiation protocol, monotonic concession protocol,
contract-net-protocol
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Self-interested agents

What does it mean to say that an agent is self-interested?

not that they want to harm other agents
not that they only care about things that benefit them
that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description

Utility theory:

quantifies degree of preference across alternatives
understand the impact of uncertainty on these preferences
utility function: a mapping from states of the world to real
numbers, indicating the agent’s level of happiness with that
state of the world
Decision-theoretic rationality: take actions to maximize
expected utility.
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Example: friends and enemies

Alice has three options: club (c), movie (m), watching a video
at home (h)

On her own, her utility for these three outcomes is 100 for c,
50 for m and 50 for h
However, Alice also cares about Bob (who she hates) and
Carol (who she likes)

Bob is at the club 60% of the time, and at the movies
otherwise
Carol is at the movies 75% of the time, and at the club
otherwise

If Alice runs into Bob at the movies, she suffers disutility of
40; if she sees him at the club she suffers disutility of 90.

If Alice sees Carol, she enjoys whatever activity she’s doing
1.5 times as much as she would have enjoyed it otherwise
(taking into account the possible disutility caused by Bob)

What should Alice do (show of hands)?
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What activity should Alice choose?

58 3 Introduction to Non-Cooperative Game Theory: Games in Normal Form

be making an implicit assumption that the agent has desires about how to act which
are consistent with utility-theoretic assumptions. Thus,before we discuss game theory
(and thus interactions betweenmultiple utility-theoretic agents), we should examine
some key properties of utility functions and explain why they are believed to form a
solid basis for a theory of preference and rational action.

A utility function is a mapping from states of the world to real numbers. These
numbers are interpreted as measures of an agent’s level of happiness in the given states.
When the agent is uncertain about which state of the world he faces, his utility is defined
as the expected value of his utility function with respect tothe appropriate probability
distribution over states.

3.1.1 Example: friends and enemies

We begin with a simple example of how utility functions can beused as a basis for
making decisions. Consider an agent Alice, who has three options: going to the club
(c), going to a movie (m), or watching a video at home (h). If she is on her own, Alice
has a utility of100 for c, 50 for m and50 for h. However, Alice is also interested in
the activities of two other agents, Bob and Carol, who frequent both the club and the
movie theater. Bob is Alice’s nemesis; he’s downright painful to be around. If Alice
runs into Bob at the movies, she can try to ignore him and only suffers a disutility of40;
however, if she sees him at the club he’ll pester her endlessly, yielding her a disutility of
90. Unfortunately, Bob prefers the club: he’s there 60% of the time, spending the rest
of his time at the movie theater. Carol, on the other hand, is Alice’s friend. She makes
everything more fun. Specifically, Carol increases Alice’sutility for either activity by
a factor of1.5 (after taking into account the possible disutility of running into Bob).
Carol can be found at the club 25% of the time, and the movie theater 75% of the time.

It will be easier to determine Alice’s best course of action if we list Alice’s utility for
each possible state of the world. There are twelve outcomes that can occur: Bob and
Carol can each be in either the club or the movie theater, and Alice can be in the club,
the movie theater or at home. Alice has a baseline level of utility for each of her three
actions, and this baseline is adjusted if either Bob, Carol or both are present. Following
the description above, we see that Alice’s utility is always50 when she stays home,
and for her other two activities it is given by Figure 3.1.

B = c B = m

C = c 15 150

C = m 10 100

A = c

B = c B = m

C = c 50 10

C = m 75 15

A = m

Figure 3.1 Alice’s utility for the actionsc andm.

So how should Alice choose among her three activities? To answer this ques-

c©Shoham and Leyton-Brown, 2006

Alice’s expected utility for c:

0.25(0.6 · 15 + 0.4 · 150) + 0.75(0.6 · 10 + 0.4 · 100) = 51.75.

Alice’s expected utility for m:

0.25(0.6 · 50 + 0.4 · 10) + 0.75(0.6(75) + 0.4(15)) = 46.75.

Alice’s expected utility for h: 50.

Alice prefers to go to the club (though Bob is often there and Carol
rarely is), and prefers staying home to going to the movies (though
Bob is usually not at the movies and Carol almost always is).

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 5
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Lecture Overview

1 Self-interested agents

2 Utility Theory

3 Game Theory

4 Example Matrix Games
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Why utility?

Why would anyone argue with the idea that an agent’s
preferences could be described using a utility function as we
just did?

why should a single-dimensional function be enough to explain
preferences over an arbitrarily complicated set of alternatives?
Why should an agent’s response to uncertainty be captured
purely by the expected value of his utility function?

It turns out that the claim that an agent has a utility function
is substantive.

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 7
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Preferences Over Outcomes

If o1 and o2 are outcomes

o1 � o2 means o1 is at least as desirable as o2.

read this as “the agent weakly prefers o1 to o2”

o1 ∼ o2 means o1 � o2 and o2 � o1.

read this as “the agent is indifferent between o1 and o2.”

o1 � o2 means o1 � o2 and o2 6� o1
read this as “the agent strictly prefers o1 to o2”

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 8
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Lotteries

An agent may not know the outcomes of his actions, but may
instead only have a probability distribution over the outcomes.

Definition (lottery)

A lottery is a probability distribution over outcomes. It is written

[p1 : o1, p2 : o2, . . . , pk : ok]

where the oi are outcomes and pi > 0 such that∑
i

pi = 1

The lottery specifies that outcome oi occurs with probability
pi.

We will consider lotteries to be outcomes.

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 9
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Preference Axioms: Completeness

Definition (Completeness)

A preference relationship must be defined between every pair of
outcomes:

∀o1∀o2 o1 � o2 or o2 � o1

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 10
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Preference Axioms: Transitivity

Definition (Transitivity)

Preferences must be transitive:

if o1 � o2 and o2 � o3 then o1 � o3

This makes good sense: otherwise
o1 � o2 and o2 � o3 and o3 � o1.

An agent should be prepared to pay some amount to swap
between an outcome they prefer less and an outcome they
prefer more

Intransitive preferences mean we can construct a “money
pump”!

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 11
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Preference Axioms

Definition (Monotonicity)

An agent prefers a larger chance of getting a better outcome to a
smaller chance:

If o1 � o2 and p > q then

[p : o1, 1− p : o2] � [q : o1, 1− q : o2]

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 12
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Preference Axioms

Let P`(oi) denote the probability that outcome oi is selected by
lottery `. For example, if ` = [0.3 : o1; 0.7 : [0.8 : o2; 0.2 : o1]] then
P`(o1) = 0.44 and P`(o3) = 0.

Definition (Decomposability (“no fun in gambling”))

If ∀oi ∈ O, P`1(oi) = P`2(oi) then `1 ∼ `2.

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 13
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Preference Axioms

Definition (Substitutability)

If o1 ∼ o2 then for all sequences of one or more outcomes
o3, . . . , ok and sets of probabilities p, p3, . . . , pk for which
p+

∑k
i=3 pi = 1,

[p : o1, p3 : o3, . . . , pk : ok] ∼ [p : o2, p3 : o3, . . . , pk : ok].
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Preference Axioms

Definition (Continuity)

Suppose o1 � o2 and o2 � o3, then there exists a p ∈ [0, 1] such
that o2 ∼ [p : o1, 1− p : o3].

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 15
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Preferences and utility functions

Theorem (von Neumann and Morgenstern, 1944)

If an agent’s preference relation satisfies the axioms Completeness,
Transitivity, Decomposability, Substitutability, Monotonicity and
Continuity then there exists a function u : O → [0, 1] with the
properties that:

1 u(o1) ≥ u(o2) iff the agent prefers o1 to o2; and

2 when faced about uncertainty about which outcomes he will
receive, the agent prefers outcomes that maximize the
expected value of u.

Proof idea:

define the utility of the best outcome u(o) = 1 and of the
worst u(o) = 0
now define the utility of each other outcome o as the p for
which o ∼ [p : o; (1− p) : o].

Self-Interested Agents and Utility Theory CPSC 532L Lecture 2, Slide 16
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Agent’s Rationality

An agent that violates any of the Axioms is not acting rationally.

Important Note: The axioms do not mention the utility function!

They define rationality by placing constraints on preferences
The assumption is that all agents have some mechanism for
computing/acting on preferences

The agents rationality is given by the choice of actions based on expected
utility of the outcome of the action. Action can be seen as a choice of the
appropriate lottery. The rational agent selects to chose such an action a
that executes the lottery l that provides the maximal expected outcome:

a = arg max
l∈L

∑
pi :oi∈l

piu(oi )
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Agent’s Rationality

Bounded Rationality: capability of the agent to perform rational decision

(to choose the lottery providing maximal expected outcome) given bounds
on computational resources:

bounds on time complexity
bounds on memory requirements

Calculative Rationality: capability to perform rational choice earlier than a
fastest change in the environment can occur.
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Agent’s Rationality

Let us have a community of agents Aj ∈ A each choosing to play an action aj ,
executing the lottery lj . providing the agents with the utility u(ai ).

Self-interested rational agent: selects the action that optimizes its
individual utility

a = arg max
l∈L

∑
pi :oi∈l

piU(oi )

Cooperative rational agent: selects the action that optimizes
collective utility of the whole team:

a = arg max
l∈L

∑
∀aj∈A−a

∑
pi,j :oi,j∈lj

pi,ju(oi,j) +
∑

pi :oi∈l

piu(oi )
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Game Theory Intro

Lecture 3
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Lecture Overview

1 What is Game Theory?

2 Example Matrix Games
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Non-Cooperative Game Theory

What is it?

mathematical study of interaction between rational,
self-interested agents

Why is it called non-cooperative?

while it’s most interested in situations where agents’ interests
conflict, it’s not restricted to these settings
the key is that the individual is the basic modeling unit, and
that individuals pursue their own interests

cooperative/coalitional game theory has teams as the central
unit, rather than agents

Game Theory Intro Lecture 3, Slide 3
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TCP Backoff Game

Game Theory

Consider this situation as a two-player game:
both use a correct implementation: both get 1 ms delay
one correct, one defective: 4 ms delay for correct, 0 ms for defective
both defective: both get a 3 ms delay.

Should you send your packets using correctly-implemented 
TCP (which has a “backoff” mechanism) or using a defective
implementation (which doesn’t)?

Game Theory Intro Lecture 3, Slide 4
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TCP Backoff Game

Consider this situation as a two-player game:

both use a correct implementation: both get 1 ms delay
one correct, one defective: 4 ms delay for correct, 0 ms for
defective
both defective: both get a 3 ms delay.

Questions:

What action should a player of the game take?
Would all users behave the same in this scenario?
What global patterns of behaviour should the system designer
expect?
Under what changes to the delay numbers would behavior be
the same?
What effect would communication have?
Repetitions? (finite? infinite?)
Does it matter if I believe that my opponent is rational?

Game Theory Intro Lecture 3, Slide 4
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Defining Games

Finite, n-person game: 〈N,A, u〉:
N is a finite set of n players, indexed by i
A = A1 × . . .×An, where Ai is the action set for player i

a ∈ A is an action profile, and so A is the space of action
profiles

u = 〈u1, . . . , un〉, a utility function for each player, where
ui : A 7→ R

Writing a 2-player game as a matrix:

row player is player 1, column player is player 2
rows are actions a ∈ A1, columns are a′ ∈ A2

cells are outcomes, written as a tuple of utility values for each
player

Game Theory Intro Lecture 3, Slide 5
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Games in Matrix Form

Here’s the TCP Backoff Game written as a matrix (“normal
form”).

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.

c©Shoham and Leyton-Brown, 2006
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Lecture Overview

1 What is Game Theory?

2 Example Matrix Games

Game Theory Intro Lecture 3, Slide 7



What is Game Theory? Example Matrix Games

More General Form

Prisoner’s dilemma is any game
58 3 Competition and Coordination: Normal form games

C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games

c©Shoham and Leyton-Brown, 2006

with c > a > d > b.
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Games of Pure Competition

Players have exactly opposed interests

There must be precisely two players (otherwise they can’t
have exactly opposed interests)

For all action profiles a ∈ A, u1(a) + u2(a) = c for some
constant c

Special case: zero sum

Thus, we only need to store a utility function for one player

in a sense, it’s a one-player game
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What is Game Theory? Example Matrix Games

Matching Pennies

One player wants to match; the other wants to mismatch.

3.2 Games in normal form 59

constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.

Multi Agent Systems, draft of February 11, 2006

Play this game with someone near you, repeating five times.
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The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
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provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
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Play this game with someone near you, repeating five times.
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What is Game Theory? Example Matrix Games

Rock-Paper-Scissors

Generalized matching pennies.
60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game.

VG GL

VG 2, 1 0, 0

GL 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

...Believe it or not, there’s an annual international competition for
this game!
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What is Game Theory? Example Matrix Games

Games of Cooperation

Players have exactly the same interests.

no conflict: all players want the same things

∀a ∈ A,∀i, j, ui(a) = uj(a)
we often write such games with a single payoff per cell

why are such games “noncooperative”?
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What is Game Theory? Example Matrix Games

Coordination Game

Which side of the road should you drive on?

58 3 Competition and Coordination: Normal form games

C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games

c©Shoham and Leyton-Brown, 2006

Play this game with someone near you. Then find a new partner
and play again. Play five times in total.
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Play this game with someone near you. Then find a new partner
and play again. Play five times in total.

Game Theory Intro Lecture 3, Slide 13



What is Game Theory? Example Matrix Games

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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Play this game with someone near you. Then find a new partner
and play again. Play five times in total.
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Play this game with someone near you. Then find a new partner
and play again. Play five times in total.
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Lecture Overview

1 Recap

2 Pareto Optimality

3 Best Response and Nash Equilibrium

4 Mixed Strategies
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Non-Cooperative Game Theory

What is it?

mathematical study of interaction between rational,
self-interested agents

Why is it called non-cooperative?

while it’s most interested in situations where agents’ interests
conflict, it’s not restricted to these settings
the key is that the individual is the basic modeling unit, and
that individuals pursue their own interests

cooperative/coalitional game theory has teams as the central
unit, rather than agents
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Defining Games

Finite, n-person game: 〈N,A, u〉:
N is a finite set of n players, indexed by i
A = A1 × . . .×An, where Ai is the action set for player i

a ∈ A is an action profile, and so A is the space of action
profiles

u = 〈u1, . . . , un〉, a utility function for each player, where
ui : A 7→ R

Writing a 2-player game as a matrix:

row player is player 1, column player is player 2
rows are actions a ∈ A1, columns are a′ ∈ A2

cells are outcomes, written as a tuple of utility values for each
player
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Prisoner’s dilemma

Prisoner’s dilemma is any game
58 3 Competition and Coordination: Normal form games

C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games

c©Shoham and Leyton-Brown, 2006

with c > a > d > b.
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Games of Pure Competition

Players have exactly opposed interests

There must be precisely two players (otherwise they can’t
have exactly opposed interests)

For all action profiles a ∈ A, u1(a) + u2(a) = c for some
constant c

Special case: zero sum

3.2 Games in normal form 59

constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.

Multi Agent Systems, draft of February 11, 2006

From Optimality to Equilibrium Lecture 4, Slide 6



Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Games of Cooperation

Players have exactly the same interests.

no conflict: all players want the same things

∀a ∈ A,∀i, j, ui(a) = uj(a)

58 3 Competition and Coordination: Normal form games

C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Lecture Overview

1 Recap

2 Pareto Optimality

3 Best Response and Nash Equilibrium

4 Mixed Strategies
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Analyzing Games

We’ve defined some canonical games, and thought about how
to play them. Now let’s examine the games from the outside

From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?

we have no way of saying that one agent’s interests are more
important than another’s
intuition: imagine trying to find the revenue-maximizing
outcome when you don’t know what currency has been used to
express each agent’s payoff

Are there situations where we can still prefer one outcome to
another?
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Pareto Optimality

Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o′, and there is some agent who
strictly prefers o to o′

in this case, it seems reasonable to say that o is better than o′

we say that o Pareto-dominates o′.

An outcome o∗ is Pareto-optimal if there is no other outcome
that Pareto-dominates it.

can a game have more than one Pareto-optimal outcome?
does every game have at least one Pareto-optimal outcome?
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Pareto Optimal Outcomes in Example Games

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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tor, what kind of behavior can he expect from the two users? Will any two users behave
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Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form
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form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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Because of their special nature, we often represent common value games with an
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Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
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Note, though, that whereas the full matrix representation is unambiguous, when we use
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A classical example of a zero-sum game is the game ofmatching pennies. In this matching
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heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
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Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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when congestion occurs. You have two possible strategies: C(for using a Correct
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Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
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the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.
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Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
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Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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Best Response

If you knew what everyone else was going to do, it would be
easy to pick your own action

Let a−i = 〈a1, . . . , ai−1, ai+1, . . . , an〉.
now a = (a−i, ai)

Best response: a∗i ∈ BR(a−i) iff
∀ai ∈ Ai, ui(a∗i , a−i) ≥ ui(ai, a−i)
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easy to pick your own action

Let a−i = 〈a1, . . . , ai−1, ai+1, . . . , an〉.
now a = (a−i, ai)
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Nash Equilibrium

Now let’s return to the setting where no agent knows
anything about what the others will do

What can we say about which actions will occur?

Idea: look for stable action profiles.

a = 〈a1, . . . , an〉 is a (“pure strategy”) Nash equilibrium iff
∀i, ai ∈ BR(a−i).
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Nash Equilibria of Example Games

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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The paradox of Prisoner’s dilemma: the Nash equilibrium is the only
non-Pareto-optimal outcome!
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when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 
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B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

3.2 Games in normal form 59

constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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when congestion occurs. You have two possible strategies: C(for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond).If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.

These consequences are shown in Figure 3.1. Your options arethe two rows, and
your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?

Game theory gives answers to many of these questions. It tells us that any rational
user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, ifthe number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as thestrategicor matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are twoprisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion ofutility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo anypositive affinepositive affine

transformation transformation; this simply means that each payoffx is replaced by a payoffax + b,
wherea is a fixed positive real number andb is a fixed real number.

There are some restricted classes of normal-form games thatdeserve special men-
tion. The first is the class ofcommon-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profilesa ∈ A1 × · · · × An and any pair of agentsi, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also calledpure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.

Because of their special nature, we often represent common value games with an
abbreviated form of the matrix in which we list only one payoff in each of the cells.

As an example, imagine two drivers driving towards each other in a country without
traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown inFigure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination gameslie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly calledconstant-sum games. Unlike common-payoff games,constant-sum

games
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Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 
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B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the contextof two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game isconstant sumif there exists a constantc such
that for each strategy profilea ∈ A1 ×A2 it is the case thatu1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume thatc = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum gamesrepresent situations of pure
competition; one player’s gain must come at the expense of the other player.

As in the case of common-payoff games, we can use an abbreviated matrix form to
represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrixrepresents a common-payoff
game or a zero-sum one.

A classical example of a zero-sum game is the game ofmatching pennies. In this matching
pennies gamegame, each of the two players has a penny, and independently chooses to display either

heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game ofRock, Paper, Scissors, also known asRochambeau, Rock, Paper,
Scissors,or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.

In general, games tend to include elements of both coordination and competition.
Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, calledBattle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VGthe husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.

Multi Agent Systems, draft of February 11, 2006

The paradox of Prisoner’s dilemma: the Nash equilibrium is the only
non-Pareto-optimal outcome!
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Introduction

Strategies in game theory

In game theory, a strategy refers to one of the options that a player can
choose. That is, every player in a non-cooperative game has a set of
possible strategies, and must choose one of the choices.

A strategy must specify what action will happen in each contingent state
of the game ? e.g. if the opponent does a, then take action b, whereas if
the opponent does c, take action d .

Strategies in game theory may be random (mixed) or deterministic (pure).
That is, in some games, players choose mixed strategies. Pure strategies
can be thought of as a special case of mixed strategies, in which only
probabilities 0 or 1 are assigned to actions.



Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Mixed Strategies

It would be a pretty bad idea to play any deterministic
strategy in matching pennies

Idea: confuse the opponent by playing randomly

Define a strategy si for agent i as any probability distribution
over the actions Ai.

pure strategy: only one action is played with positive
probability
mixed strategy: more than one action is played with positive
probability

these actions are called the support of the mixed strategy

Let the set of all strategies for i be Si

Let the set of all strategy profiles be S = S1 × . . .× Sn.
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Utility under Mixed Strategies

What is your payoff if all the players follow mixed strategy
profile s ∈ S?

We can’t just read this number from the game matrix
anymore: we won’t always end up in the same cell

Instead, use the idea of expected utility from decision theory:

ui(s) =
∑
a∈A

ui(a)Pr(a|s)

Pr(a|s) =
∏
j∈N

sj(aj)
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Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.

Best response:

s∗i ∈ BR(s−i) iff ∀si ∈ Si, ui(s∗i , s−i) ≥ ui(si, s−i)

Nash equilibrium:

s = 〈s1, . . . , sn〉 is a Nash equilibrium iff ∀i, si ∈ BR(s−i)

Every finite game has a Nash equilibrium! [Nash, 1950]

e.g., matching pennies: both players play heads/tails 50%/50%
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Computing Mixed Nash Equilibria: Battle of the Sexes

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in agame, but not yet his
set ofstrategies, or his available choices. Certainly one kind of strategy isto select
a single action and play it; we call such a strategy apure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.

We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX let Π(X) be the set of all probability distributions overX. Then the set ofmixed
strategiesfor player i is Si = Π(Ai). The set ofmixed strategy profilesis simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets,S1 × · · · × Sn.

By si(ai) we denote the probability that an actionai will be played under mixed
strategysi. The subset of actions that are assigned positive probability by the mixed
strategysi is called thesupportof si.

Definition 3.2.5 Thesupportof a mixed strategysi for a player i is the set of pure
strategies{ai|si(ai) > 0}.

c©Shoham and Leyton-Brown, 2006

It’s hard in general to compute Nash equilibria, but it’s easy
when you can guess the support

For BoS, let’s look for an equilibrium where all actions are
part of the support
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Let player 2 play B with p, F with 1− p.

If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F and B (why?)

u1(B) = u1(F )
2p+ 0(1− p) = 0p+ 1(1− p)

p =
1
3
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Likewise, player 1 must randomize to make player 2
indifferent.

Why is player 1 willing to randomize?

Let player 1 play B with q, F with 1− q.

u2(B) = u2(F )
q + 0(1− q) = 0q + 2(1− q)

q =
2
3

Thus the mixed strategies (2
3 ,

1
3), (1

3 ,
2
3) are a Nash

equilibrium.
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Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different
interpretations:

Randomize to confuse your opponent

consider the matching pennies example

Players randomize when they are uncertain about the other’s
action

consider battle of the sexes

Mixed strategies are a concise description of what might
happen in repeated play: count of pure strategies in the limit

Mixed strategies describe population dynamics: 2 agents
chosen from a population, all having deterministic strategies.
MS is the probability of getting an agent who will play one PS
or another.
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Introduction

Strategic dominance

One of the (simple) metrics that allows comparison of two strategies

Strategic dominance (commonly called simply dominance) occurs when
one strategy is better than another strategy for one player, no matter how
that player’s opponents may play. Many simple games can be solved using
dominance.

Intransitivity (just the opposite) occurs in games where one strategy may
be better or worse than another strategy for one player, depending on how
the player’s opponents may play.



Introduction

Strategic dominance

B dominates A: choosing B always gives at least as good an outcome as
choosing A. There are 2 possibilities:

B strictly dominates A: choosing B always gives a better outcome than
choosing A, no matter what the other player(s) do.

∀s−i ∈ S−i : ui (A, s−i ) > ui (B, si )

B weakly dominates A: There is at least one set of opponents’ action for
which B is superior, and all other sets of opponents’ actions give B at least
the same payoff as A.

∀s−i ∈ S−i : ui (A, s−i ) ≥ ui (B, si )

with at least one strong inequality
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