Distributed Constraint Reasoning

Michal Jakob

Agent Technology Center, Dept. of Cybernetics, FEE Czech Technical University

A4M33MAS Autumn 2010 - Lect. 11

(based on slides by Jose M. Vidal)

Channel Allocation in Sensor Networks

• Find a **non-conflicting assignment** of communication channels assuming **local communication only**

Meeting Scheduling

Extension: Private constraints and preferences

Problem: set up 3 meetings involving 3 managers

A1

from http://cs.smu.ca/~pawan/wi07/petcu.pdf

(Distributed) Constraint Reasoning

- Find an assignment to a set of variables such that
 - **1. Boolean constraints** defined in terms of these variables are all fulfilled
 - **2. Objective function** defined in terms of these variables is maximized

Constraint Satisfaction Problem

- Problem specification:
 - $X = \{x_i, \dots, x_m\}$ set of **variables**
 - $D = \{D_i, ..., D_m\}$ set of **domains** for the variables, i.e. $x_i \in D_i$; if D_i is finite, let $D_i = \{v_{i,1}, ..., v_{i,d(i)}\}$
 - $C = \{c_1, ..., c_k\}$ set of **constraints** over X; the constraint c_i is represented as a **Boolean predicate** $P_i(y_1, ..., y_j), \{y_1, ..., y_j\} \subseteq X$ that determines whether a given value assignment combination for $y_1, ..., y_j$ fulfill the particular constraint
- Solution:
 - find an **assignment** of variables $\{x_i, ..., x_m\}$ such that **all constraints are satisfied**

Distributed Constraint Satisfaction Problem

- $A = \{A_1, \dots, A_n\}$ set of **agents**
- Each agent is responsible for one variable
 - extension to multiple variables per agent possible
- Agent can communicate by sending messages

When is Distributed Constraint Reasoning Needed?

- Additional individual goals of agents
 - privacy
 - individual interests / preferences
 - semi-cooperative agents
- Additional limits/restrictions on communication between agents
- Problem size?
- Dynamism?

Solution Algorithms

- Requirements on a good algorithm:
 - terminates in a finite number of steps
 - is **complete**: finds a solution if it exists
 - is sound: the solution returned is valid
- Top-Down
 - domain pruning: Filtering, Hyper-resolution
 - heuristic search : Asynchronous backtracking, Asynchronous weak-commitment search
- Bottom-Up
 - Distributed breakout

Conclusion

- Distributed constraint reasoning problem is a widely applicable model
- We distinguish between constraint satisfaction and constraint optimization
- Top-down and bottom-up techniques exist
 - top-down are complete but computationally more intensive on most problems
 - bottom-up are faster but can get stuck in local minima
- Very active areas of research with a lot of progress new algorithms emerging frequently
- Reading: [Vidal] Chapter 2 and [Shoham] Chapter 1

