Particle Swarm Optimization

- Inspired by biological and sociological motivations
 - Bird flocks
 - Fish schools
 - Swarms of insects
PSO: Characteristics

• Population-based optimization technique – originally designed for solving real-valued function optimizations
• Applicable for optimizations in rough, discontinuous and multimodal surfaces
• Does not require any gradient information of the function to be optimized
• Conceptually very simple
PSO: Characteristics

- Each candidate solution of continuous optimization problem is described (encoded) by a real vector N-dimensional search space: \(x = x_1, \ldots, x_n \).
- Each candidate solution is called PARTICLE and represents one individual of a population called SWARM.
- The particles change their components and FLY through the multi-dimensional search space.
- Particles calculate their FITNESS function as the quality of their actual position in the search space using w.r.t. the function to be optimized.
- Particles also compare themselves to their neighbors and imitate the best of that neighbors.
PSO: Fundamentals

- Swarm of particles is flying through the parameter space and searching for the optimum
- Each particle is characterized by
 - Position vector… $x_i(t)$
 - Velocity vector… $v_i(t)$
PSO: Velocity Update

- Velocity update (i^{th} particle):

$$v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (pbest_i(t) - x_i(t)) + C_2 \varphi_2 (gbest(t) - x_i(t))$$

$pbest_i(t)$ … personal best experience; the best value of the fitness function found by the i-th particle up to time t.

$gbest(t)$ … global best experience; the best value out of $pbest_i(t)$ values of all particles in the swarm found up to time t.

ω … inertial factor

φ_1 and φ_2 … uniformly distributed random numbers that determine the influence of $pbest_i(t)$ and $gbest(t)$.

C_1 … particle’s self-confidence; controls the contribution towards the self-exploration.

C_2 … swarm confidence; controls the contribution towards the global direction.
• Velocity update (i^{th} particle):

\[v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (p_{best}(t) - x_i(t)) + C_2 \varphi_2 (g_{best}(t) - x_i(t)) \]
• Velocity update (i^{th} particle):

\[v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (p_{best}(t) - x_i(t)) + C_2 \varphi_2 (g_{best}(t) - x_i(t)) \]
PSO: Velocity Update

- Velocity update (i^{th} particle):

\[v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (p_{best}(t) - x_i(t)) + C_2 \varphi_2 (g_{best}(t) - x_i(t)) \]
PSO: Velocity Update

- Velocity update (i^{th} particle):

\[v_i(t+1) = \omega \ v_i(t) + C_1 \varphi_1 (p_{best}(t) - x_i(t)) + C_2 \varphi_2 (g_{best}(t) - x_i(t)) \]
PSO: Velocity Update

- Velocity update (i^{th} particle):

$$v_i(t+1) = \omega v_i(t) + C_1 \varphi_1 (p_{best_i}(t) - x_i(t)) + C_2 \varphi_2 (g_{best}(t) - x_i(t))$$
PSO: Position Update

- Position update (i^{th} particle):

$$x_i(t+1) = x_i(t) + v_i(t+1)$$
PSO: Algorithm

Input: Randomly initialized position and velocity of the particles: \(X_i(0) \) and \(V_i(0) \)

Output: Position of the approximate global optima \(X^* \)

begin
 while terminating condition is not reached do
 begin
 for i=1 to number_of_particles
 begin
 calculate fitness \(f(X_i) \)
 update \(p_i \) and \(g_i \)
 adapt velocity of the particle
 update position of the particle
 increase i
 end
 end
end
PSO: Setting the Inertia Factor ω

- **Static parameter setting**
 - $\omega < 1$ … only little momentum is preserved from the previous time-step.
 - $\omega = 0$ … the particle moves in each step totally ignoring information about the past velocity.
 - $\omega > 1$ … particles can hardly change their direction which implies a reluctance against convergence towards optimum.
 $\omega > 1$ is always used with V_{max} to avoid *swarm explosion*.

- **Dynamic parameter setting** – annealing scheme; ω decreases linearly with time from $\omega=0.9$ to $\omega=0.4$.

 Globally explores the search space in the beginning of the run.

 Performs local search in the end.

- V_{max} can be set to the full search range of the particle’s position in order to allow global search.
PSO: Swarm Size

- Swarm size has no significant effect on the performance of the PSO. Typical values are 20-60.
PSO: Acceleration Coefficients C_1 and C_2

- **Static setting**
 Usually $C_1=C_2$ and range from $[0, 4]$, for example $C_1=C_2=1.494$.

- **Dynamic setting** - coefficients vary with time according to

 \[
 C_1 = (C_{1f} - C_{1i}) \frac{i}{\text{MAXITER}} + C_{1i}
 \]

 \[
 C_2 = (C_{2f} - C_{2i}) \frac{i}{\text{MAXITER}} + C_{2i}
 \]

 where C_{1f} and C_{2f} are final values for C_1 and C_2, C_{1i} and C_{2i} are current values at iteration i, and MAXITER is the maximum number of iterations.

 Particular scheme: C_1 decreases from 2.5 to 0.5; C_2 increases from 0.5 to 2.5.

 Effect: Global search during the early phase of the optimization process; convergence to global optimum at the final stage of the optimization process.
http://www.softcomputing.net/aciis.pdf