
Evolutionary Algorithms: Introduction

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a4m33bia/start

pContents

1. Introduction to Evolutionary Algorithms (EAs)

� Simple Genetic Algorithm (SGA),

� Areas of EA’s applications,

� SGA example: Evolving strategy for an artificial ant problem.

� Schema theory – a schema, its properties, exponential growth equation and its conse-

quences.

2. Genetic Programming (GP) and Grammatical Evolution (GE)

� Tree representation, closure condition, ’strong typing’,

� Application of GP to the artificial ant problem,

� Other examples.

3. Multi-objective EAs (MOEAs)

� Multi-objective optimization

� Concept of dominance and Pareto-optimality,

� NSGA, NSGA-II, SPEA, SPEA2.

� �Evolutionary Algorithms

pContents

4. Real-coded EAs

� Evolution strategies,

� Crossover operators for real-coded representation,

� Differential evolution.

5. EAs for dynamic optimization problems

6. Swarm Intelligence

� Ant Colony Optimization,

� Particle Swarm Optimization.

� �Evolutionary Algorithms

pEvolutionary Algorithms: Characteristics

EAs are stochastic optimization algorithms

� Stochastic – but not random search

� Use an analogy of natural evolution

− genetic inheritance (J.G. Mendel) – the basic principles of transference of hereditary fac-

tors from parent to offspring – genes, which present hereditary factors, are lined up on

chromosomes

− strife for survival (Ch. Darwin) – the fundamental principle of natural selection – is the

process by which individual organisms with favorable traits are more likely to survive and

reproduce

� Not fast in some sense – population-based algorithm

� Robust – efficient in finding good solutions in difficult searches

� �Evolutionary Algorithms

pEA: Vocabulary

Vocabulary borrowed from natural genetics

� Gene (also features, characters) – elementary units from which chromosomes are made.

− each gene is located at certain place of the chromosome called locus,

− a particular value for a locus is an allele.

example: the ”thickness” gene (which might be at locus 8) might be set to allele 2,

meaning its second-thinnest value.

� Chromosome – entire representation of the solution.

� Fitness – quality measure assigned to an individual, expresses how well it is adapted to the

environment.

� Individual (chromosome + its quality measure ”fitness value”) – a solution to a problem.

� Genotype – what’s on the chromosome.

� Phenotype – interpretation of the genotype (e.g., binary sequence may map to integers or

reals, or order of execution, etc.).

� �Evolutionary Algorithms

pRepresentation

In conventional GAs, the solution is represented by a binary string

� binary string –

� �Evolutionary Algorithms

pRepresentation

In conventional GAs, the solution is represented by a binary string

� binary string –

However, other types of representation can be more suitable for the problem at hand

� real-valued string –

� string of chars –

� tree or graph

� �Evolutionary Algorithms

pEvaluation Function

Objective (Fitness) function

� the only information about the sought solution the algorithm is endowed with,

� must be defined for every possible chromosome.

Fitness function may be

� multimodal,

� discrete,

� multidimensional,

� nonlinear,

� noisy,

� multiobjective.

Fitness does not have to be define analytically

� simulation results,

� classification success rate.

Fitness function should not be too costly!!!

� �Evolutionary Algorithms

pExample: Coding & Evaluation

Function optimization

� maximization of f (x, y) = x2 + y2,

� parameters x and y take on values from interval < 0, 31 >,

� and are code on 5 bits each.

� �Evolutionary Algorithms

pEvolutionary Cycle

� �Evolutionary Algorithms

pIdealized Illustration of Evolution

� Uniform sampled population. � Population converged to promising regions.

� �Evolutionary Algorithms

pInitialization

Random

� randomly generated solutions,

� no prior information about the shape of the sought solution,

� relies just on ”lucky” sampling of the whole search space by a finite set of samples.

Informed (pre-processing)

� (meta)heuristic routines used for seeding the initial population,

� biased random generator sampling regions of the search space that are likely to contain the

sought solutions,

+ may help to find better solutions,

+ may speed up the search process,

– may cause irreversible focusing of the search process on regions with local optima.

� �Evolutionary Algorithms

pReproduction

Reproduction (parental selection) models nature’s survival-of-fittest principle

� prefers better individuals to the worse ones,

� still, every individual should have a chance to reproduce.

Roulette wheel

� probability of choosing some solution is directly proportional to

its fitness value

Expected frequencies vs. observed frequencies

� Expected selection frequency – given selection probability of i-th individual, Pi, and PopSize

individuals to be selected, we expect to get on average PopSize ∗ Pi copies of individual i.

� �Evolutionary Algorithms

pReproduction

Reproduction (parental selection) models nature’s survival-of-fittest principle

� prefers better individuals to the worse ones,

� still, every individual should have a chance to reproduce.

Roulette wheel

� probability of choosing some solution is directly proportional to

its fitness value

Expected frequencies vs. observed frequencies

� Expected selection frequency – given selection probability of i-th individual, Pi, and PopSize

individuals to be selected, we expect to get on average PopSize ∗ Pi copies of individual i.

� Observed selection frequency can be anywhere between 0 and PopSize.

� �Evolutionary Algorithms

pStochastic Universal Sampling

SUS ensures that the observed selection frequencies of each individual are in line with the expected

frequencies:

� extra wheel, let’s denote it a pointer wheel, with equidis-

tantly distributed PopSize pointers

Ex.: If we are selecting 8 individuals, the pointer wheel will

have 8 pointers distributed with 360/8 = 45 degrees step

size.

� works by making a single spin of the roulette wheel

� an arbitrary rotation of the pointer wheel determines a whole

set of PopSize selected individuals

� every individual i receives a number of copies in the set of selected individuals from interval

(bexpectedFrequency(i)c, dexpectedFrequency(i)e)
Ex.: If we have an individual that occupies 4.5% of the roulette wheel and we select 100

individuals, we would expect on average 4.5 copies for that individual to be selected. Then,

the individual will be selected either four or five times. Neither more, nor less.

� �Evolutionary Algorithms

pReproduction: Premature Convergence & Stagnation

Two (strongly related) issues in the evolution process

� population diversity,

� selective pressure.

Premature convergence – a premature loss of diversity in the population with the search

converging to a sub-optimal solution.

� early stages of the evolution search process.

Stagnation – ineffective search due to a weak selective pressure.

� later stages of the evolution search process.

� �Evolutionary Algorithms

pPremature Convergence

� �Evolutionary Algorithms

pStagnation

� �Evolutionary Algorithms

pHow to Deal with it?

Balance between exploration and exploitation.

� How to achieve the optimal selective pressure during the whole evolution search?

Options

� scaling techniques,

� proper selection mechanisms,

� fitness sharing and crowding,

�

� �Evolutionary Algorithms

pScaling

Linear scaling – adjustment of the fitness values distribution in order to get desired selection

pressure

σ = fmax/favg

The actual chromosomes’ fitness is scaled as

f ′i = a · fi + b

Parameters a and b are determined so that

� the average fitness is mapped to itself, and

� the best fitness is increased by a desired multiple of the average fitness.

Typical value of σ is from (1.5, 2.0)

� �Evolutionary Algorithms

pEffect of Linear Scaling

Linear scaling help to remedy both the premature convergence and stagnation.

� �Evolutionary Algorithms

pTournament Selection

Tournament selection – the best out of n randomly chosen individuals is selected.

� n is the size of the tournament,

� rank-based method – absolute differences among individuals do not count.

� �Evolutionary Algorithms

pGenetic Operators: Crossover

Role of crossover

� sampling (exploration) of the search space

Idea

� given two well-fit solutions to the given problem, it is possible to get a new solution by properly

mixing the two that is even better than both its parents.

Example: 1-point crossover

� �Evolutionary Algorithms

pEAs and Optimization with Constraints

Search space with constraints – contains both feasible and infeasible solutions.

Ex.: Assuming the Traveling Salesman Problem and a simple one-point crossover, it is easy to

imagine a situation that an infeasible solution is produced by the operator, even when both parents

are feasible solutions.

−→

Neither of the two offspring represents a feasible solution – either some city is missing or is

duplicated in the tour.

� �Evolutionary Algorithms

pTSP: Edge-Recombination Operator

Direct representation

genotype: a e d b c

tour: a → e → d → b → c

Edge recombination crossover

� Create a table of neighbors (edge table) – for

each city i there is a list of cities that have a

link to i in the parental tours.

� Start creating a tour in a randomly chosen

city, currentCity.

Remove all occurrences of currentCity from

the edge table.

� Choose a new currentCity among the unused neighbors of currentCity in the edge table.

If currentCity has already an empty list of unused neighbors, choose an arbitrary city that is

not yet in the created tour.

Remove all occurrences of currentCity from the edge table.

Repeat this step until all cities have been added to the tour.

� �Evolutionary Algorithms

pGenetic Operators: Mutation

Role of mutation

� preservation of a population diversity,

� minimization of a possibility of loosing some important piece of genetic information.

Single bit-flipping mutation
Population with missing genetic

information

0 0 1 1 0 0 0 1 1 0

0 1 1 0 0 1 0 1 0 0

0 0 0 1 1 0 1 0 1 1

0 1 0 0 1 0 0 1 1 1

0 1 1 0 0 0 0 1 0 1

. . .

0 1 0 0 1 1 0 1 0 0

� �Evolutionary Algorithms

pReplacement Strategy

Replacement strategy defines

� how big portion of the current generation will be replaced in each generation, and

� which solutions in the current population will be replaced by the newly generated ones.

Two general cases

� Generational – the whole old population is completely rebuild in each generation (analogy

of short-lived species).

� Steady-state – just a few individuals are replaced in each generation (analogy of longer-lived

species).

� �Evolutionary Algorithms

pGenerational Replacement Strategy

1 initialize(oldPopulation)

2 evaluate(oldPopulation)

3 while(not termination condition)

4 newPopulation← bestOf(oldPopulation) // elitism

5 while(newPopulation not full)

6 parents← select(oldPopulation)

7 offspring ← crossover(parents)

8 mutate(offspring) // optional

9 evaluate(offspring)

10 newPopulation← offspring

11 swap(oldPopulation, newPopulation)

12 return bestOf(oldPopulation)

� �Evolutionary Algorithms

pSteady-State Replacement Strategy

1 initialize(population)

2 evaluate(population)

3 while(not termination condition)

4 parents← select(population)

5 offspring ← crossover(parents)

6 mutate(offspring) // optional

7 evaluate(offspring)

8 population← offspring // replacement rule

9 return bestOf(population)

� �Evolutionary Algorithms

pApplication Areas of Evolutionary Algorithms

EAs are popular for their

� simplicity,

� effectiveness,

� robustness.

Holland: ”It’s best used in areas where you don’t really have a good idea what the solution

might be. And it often surprises you with what you come up with.”

Applications
� control,

� engineering design,

� image processing,

� planning & scheduling,

� VLSI circuit design,

� network optimization & routing problems,

� optimal resource allocation,

� marketing,

� credit scoring & risk assessment,

� and many others.

� �Evolutionary Algorithms

pMultiple Traveling Salesmen Problem

Rescue operations planning

� Given N cities and K agents, find an opti-

mal tour for each agent so that every city is

visited exactly once.

� A typical criterion to be optimized is the

overall time spent by the squad (i.e., the

slowest team member) during the task ex-

ecution.

� �Evolutionary Algorithms

pArtificial Ant Problem

Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).

� �Evolutionary Algorithms

pArtificial Ant Problem: GA Approach

Collins a Jefferson 1991, standard GA using binary representation

Representation

� strategy represented by finite state machine,

� table of transitions coded as binary chromosomes of fixed length.

Example: 4-state FSM, 34-bit long chromosomes (2 + 4× 8)

� �Evolutionary Algorithms

pArtificial Ant Problem: Example cont.

Ant behavior

� What happens if the ant ”hits” an obstacle?

� What is strange with transition from state 10

to the initial state 00?

� When does the ant succeed?

� Is the number of states sufficient to solve the

problem?

� Do all of the possible 34-bit chromosomes

represent a feasible solution?

� �Evolutionary Algorithms

pArtificial Ant Problem: GA result

Representation

� 32 states,

� 453 = 64× 7 + 5 bits !!!

Population size: 65.536 !!!

Number of generations: 200

Total number of samples tried: 13× 106 !!!

� �Evolutionary Algorithms

pSchema Theory

Schema theory (J. Holland, 1975) – tries to analyze effect of selection, crossover and mutation

on the population’s genotype in order to answer the question: ”Why and How Evolutionary
Algorithms Work?”

In its original form the schema theory assumes:

� binary representation,

� proportionate roulette wheel selection,

� 1-point crossover and bit-flip mutation.

� �Evolutionary Algorithms

pSchema theory

Schema – a template, which defines set of solutions from the search space with certain specific

similarities.

� consists of 0s, 1s (fixed values) and wildcard symbols * (any value),

� covers 2r strings, where r is a number of ∗ used in the schema.

Example: schema S ={11*0*} covers strings 11000, 11001, 11100, and 11101

Schema properties

� Defining length δ(S) (compactness) – distance between first and last non-* in a schema

(= number of positions where 1-point crossover can disrupt the schema).

� Order o(S) (specificity) – a number of non-*’s (= number of positions where simple bit

swapping mutation can disrupt the schema).

− Chromosomes are order l schemata, where l is length of chromosome (in bits or loci).

− Chromosomes are instances (or members) of lower-order schemata.

� Fitness f (S) (quality) – average fitness computed over all covered strings.

Example: S ={**1*01*0**}: δ(S) = 5, o(S) = 4

� �Evolutionary Algorithms

pSchema Properties: Example

8-bit Count Ones problem – maximize a number of ones in 8-bit string.

string fitness string fitness

00000000 0 11011111 7

00000001 1 . . . 10111111 7

00000010 1 01111111 7

00000100 1 11111111 8

Assume schema Sa ={1*1**10*} vs. Sb ={*0*0****}:
� defining length: δ(Sa) = 7− 1 = 6, δ(Sb) = 4− 2 = 2

� order: o(Sa) = 4, o(Sb) = 2

� fitness of Sa: Sa covers 24 strings in total

1 string of fitness 3

4 string of fitness 4 f (Sa) = (1 · 3 + 4 · 4 + 6 · 5 + 4 · 6 + 1 · 7)/16
6 string of fitness 5 f (Sa) = 80/16 = 5

4 string of fitness 6

1 string of fitness 7

fitness of Sb: Sb = (1 · 0 + 6 · 1 + 15 · 2 + 20 · 3 + 15 · 4 + 6 · 5 + 1 · 6)/26 = 192/64 = 3

Question: How will a fitness of S ={*0*1****} compare to Sb?

� �Evolutionary Algorithms

pSchema Theorem Derivation: Effect of Reproduction

Let m(S, t) be a number of instances (strings) of schema S in population of size n at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection

A string ai is copied according to its fitness; it gets selected with a probability

pi =
fi∑
fj
.

After picking n strings with replacement from the population at time t, we expect to have

m(S, t + 1) representatives of the schema S in the population at time t + 1 as given by the

equation

m(S, t + 1) = m(S, t) · n · f (S)∑
fj
,

where f (S) is the fitness of schema S at time t.

� �Evolutionary Algorithms

pSchema Theorem Derivation: Effect of Reproduction

Let m(S, t) be a number of instances (strings) of schema S in population of size n at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection

A string ai is copied according to its fitness; it gets selected with a probability

pi =
fi∑
fj
.

After picking n strings with replacement from the population at time t, we expect to have

m(S, t + 1) representatives of the schema S in the population at time t + 1 as given by the

equation

m(S, t + 1) = m(S, t) · n · f (S)∑
fj
,

where f (S) is the fitness of schema S at time t.

The formula can be rewritten as

m(S, t + 1) = m(S, t) · f (S)
favg

,

where favg is the average fitness of the population.

� �Evolutionary Algorithms

pSchema Theorem Derivation: Effect of Crossover and Mutation

Effect of 1-point Crossover

� Survival probability ps – let’s make a conservative assumption that crossover within the defining

length of S is always disruptive to S, and ignore gains.

� Crossover probability pc – fraction of population that undergoes crossover.

ps ≥ 1− (pc · δ(S)/(L− 1))

Example: Compare survival probability of S = (11 ∗ ∗ ∗ ∗) and S = (1 ∗ ∗ ∗ ∗0).

� �Evolutionary Algorithms

pSchema Theorem Derivation: Effect of Crossover and Mutation

Effect of 1-point Crossover

� Survival probability ps – let’s make a conservative assumption that crossover within the defining

length of S is always disruptive to S, and ignore gains.

� Crossover probability pc – fraction of population that undergoes crossover.

ps ≥ 1− (pc · δ(S)/(L− 1))

Example: Compare survival probability of S = (11 ∗ ∗ ∗ ∗) and S = (1 ∗ ∗ ∗ ∗0).

Effect of Mutation

Each fixed bit of schema (o(S) of them) changes with probability pm, so they all stay unchanged

with probability

ps = (1− pm)o(S)

that can be approximated as

ps = (1− o(S) · pm)
assuming pm � 1.

� �Evolutionary Algorithms

pSchema Theorem Derivation (cont.)

Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) · f (S)
favg

· [1− pc ·
δ(S)

L− 1
− o(S) · pm].

What does it tell us?

� �Evolutionary Algorithms

pSchema Theorem Derivation (cont.)

Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) · f (S)
favg

· [1− pc ·
δ(S)

L− 1
− o(S) · pm].

What does it tell us?

Schema theorem: Short, low-order, above-average schemata receive exponentially increasing

trials in subsequent generations of a genetic algorithm.

Building Block Hypothesis: A genetic algorithm seeks near-optimal performance through the

juxtaposition of short, low-order, high-performance schemata, called the building blocks.

David Goldberg: ”Short, low-order, and highly fit schemata are sampled, recombined, and resam-

pled to form strings of potentially higher fitness. . . we construct better and better strings from

the best partial solutions of the past samplings.”

Y. Davidor: ”The whole GA theory is based on the assumption that one can state something

about the whole only by knowing its parts.”

Corollary: The problem of coding for a GA is critical for its performance, and that such a coding

should satisfy the idea of short building blocks.

� �Evolutionary Algorithms

pEA Materials: Reading, Demos, Software

Reading

� D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, 1989.

� Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1998.

� Z. Michalewicz: How to solve it? Modern heuristics. 2nd ed. Springer, 2004.

Demos

� M. Obitko: Introduction to genetic algorithms with java applet,

http://cs.felk.cvut.cz/∼xobitko/ga/

Software

� ECJ – A Java-based Evolutionary Computation Research System

http://cs.gmu.edu/∼eclab/projects/ecj/
� PISA -- A Platform and Programming Language Independent Interface for Search

Algorithms

http://www.tik.ee.ethz.ch/sop/pisa/?page=selvar.php

� �Evolutionary Algorithms

